

IL FARMACO

Il Farmaco 53 (1998) 439-442

Short communication

Synthesis and aldose reductase inhibitory activity of benzoyl-amino acid derivatives

Stefania Benvenuti*, Fabio Severi, Luca Costantino, Gabriella Vampa, Michele Melegari

Dipartimento di Scienze Farmaceutiche, Università di Modena, Via Campi 183, 41100 Modena, Italy

Received 5 December 1997; accepted 26 March 1998

Abstract

A series of N-(4-methoxy, 4-fluoro, 4-trifluoromethyl and 4-nitrobenzoyl)-L-amino acids was synthesized and their inhibitory activity towards bovine lens aldose reductase (ALR2) was tested. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Benzoyl-L-amino acid derivatives; Aldose reductase inhibitors

1. Introduction

The use of insulin and oral hypoglycemic agents has afforded relief for the control of glycemia in people suffering from diabetes, but the long-term side effects such as neuropathy, retinopathy, nephropathy and cataract that can occur are still a matter of concern. The cause would appear to be the increased glucose flux through the polyol pathway and/ or the high intracellular accumulation of sorbitol [1]. Sorbitol is formed by reduction of glucose by aldose reductase (ALR2), the first enzyme of the polyol pathways that catalyses the transformation of aldoses into the corresponding polyalcohols [2].

Thus, several ALR2 inhibitors have been studied as therapeutic agents in order to reduce or to delay the development of long-term diabetic complications [3,4]. These compounds belong to different chemical classes and they can be divided into two general groups, those containing rigid spirohydantoins or a related ring system, such as Sorbinil, and those containing a carboxylic acid moiety, like Alrestatin, Tolrestat and Zopolrestat; in these molecules a planar aromatic structure with a carboxylic or another acid proton appears to be essential to the inhibitory effect [5].

Considering that some N-benzoylglycines were reported to be weak inhibitors of ALR2 [6], we decided to synthesize a series of N-(4-substituted)benzoyl-L-amino acids as ALR2 inhibitors (Table 1).

Table 1

The series of N-(4-substituted) benzoyl-L-amino acids synthesized as ALR2 inhibitors

Comp.	R	R'
1	OCH ₃	Н
2	OCH ₃	CH ₃
3	OCH ₃	CH ₂ -C ₆ H ₅
4	OCH ₃	CH ₂ –C ₆ H₄OH
5	OCH ₃	CH_2 - $CH(CH_3)_2$
6	OCH ₃	CH(CH ₃)-CH ₂ -CH ₃
7	OCH ₃	$CH(CH_3)_2$
8	OCH ₃	CH ₂ -CH ₂ SCH ₃
9	F	н
10	F	CH ₃
11	F	CH ₂ -C ₆ H ₅
12	F	CH ₂ -C ₆ H ₄ OH
13	F	$CH_2-CH(CH_1)_2$
14	CF ₃	H
15	CF ₃	CH ₃
16	CF ₃	CH ₂ -C ₄ H ₅
17	CF ₃	$CH_2 - CH(CH_3)_2$
18	NO ₂	н
19	NO ₂	CH ₃
20	NO ₂	CH ₂ -C ₆ H ₅
21	NO ₂	CH ₂ -C ₆ H ₄ OH
22	NO ₂	$CH_2 - CH(CH_3)_2$

^{*} Corresponding author. Tel.: + 39 59 378 575; fax: + 39 59 378 560; e-mail: melegari@unimo.it

2. Experimental

2.1. Chemistry

2.1.1. Material and methods

Melting points were determined on a Büchi 510 apparatus and are uncorrected. Structural assignments for compounds are based on UV, mass spectral, and ¹H NMR data (Table 2). The UV spectra were recorded on a Perkin-Elmer Lambda 15 spectrophotometer using 1 cm quartz cells in a 10^{-5} M ethanol solution. The ¹H NMR spectra were recorded in DMSO-d₆ solution with a Bruker AMX-400 WB spectrometer. Chemical shifts δ are reported in ppm from tetramethylsilane used as internal standard. Mass spectra were obtained with a Finningan MAT SSQ 710 instrument.

Microanalyses were within $\pm .0.4\%$ of the theoretical values.

Table 2 Physical data of compounds 1–22

The compounds were separated by flash-chromatography with silica gel 60 (particle size 0.040–0.063 mm, Merck) and the column was connected to an LKB Multirac 2111 fraction collector. The fractions were monitored using thinlayer chromatography plates.

2.1.2. General procedure for synthesis

L-Amino acid (8.5 mmol), 1N NaOH (18 mmol) and acetone (10 ml) for 1-8 or ethyl ether (25 ml) for 9-22 were added dropwise to a solution of 4-methoxybenzoyl chloride (8.5 mmol) in acetone (5 ml) for 1-8 or ethyl ether (25 ml) for 9-22. The resulting mixture was stirred at room temperature for 60 minutes. The solution was acidified to pH 1 with conc. HCl and concentrated in vacuo to eliminate the organic solvent.

For compounds 1-8 the precipitate was purified by flashchromatography (ethyl acetate/cyclohexane/acetic acid

Comp.	M.p. (°C)	Spectral data
1	160–162	UV: 252.8 (log ϵ = 4.19)
	(172 [11])	MS, m/z : 209 $(M^+)^{(19)}$, 165 ⁽³⁶⁾ , 164 ⁽³⁸⁾ , 135 ⁽¹⁰⁰⁾ , 107 ⁽¹⁹⁾
	, <u> </u>	¹ H NMR: 3.91 (3H, OCH ₃ , s), 4.00 (2H, CH ₂ , d), 7.10 (2H, Ar, m), 7.94 (2H, Ar, m), 8.75 (1H, NH, d), 12.64 (1H, COOH, s)
2	141–143	UV: 252.0 (log $\epsilon = 4.21$)
		MS, m/z : 223 $(M^+)^{(3)}$, 179 ⁽²⁷⁾ , 178 ⁽¹⁷⁾ , 135 ⁽¹⁰⁰⁾ , 107 ⁽⁷⁾
		¹ H NMR: 1.48 (3H, CH ₃ , m), 3.91 (3H, OCH ₃ , s), 4.49 (1H, CH, d), 7.09 (2H, Ar, m), 7.96 (2H, Ar, m),
		8.56 (1H, NH, d), 12.58 (1H, COOH, s)
3	90	UV: 252.0 (log $\epsilon = 4.20$)
		$MS, m/z: 299 (M^+)^{(4)}, 151^{(41)}, 135^{(100)}, 107^{(6)}$
		¹ H NMR: 3.19 (2H, CH ₂ , m), 3.83 (3H, OCH ₃ , s), 4.61 (1H, CH, m), 7.02 (2H, Ar, m), 7.25 (5H, Ar, m),
		7.82 (2H, Ar, m), 8.44 (1H, NH, d), 12.75 (1H, COOH, s)
4	110-112	UV: 252.8 (log $\epsilon = 4.20$)
		$MS, m/z: 315 (M^+)^{(4)}, 164^{(17)}, 152^{(80)}, 135^{(100)}, 107^{(57)}$
		¹ H NMR: 3.02 (2H, CH ₂ , m), 3.82 (3H, OCH ₃ , s), 4.53 (1H, CH, d), 6.64 (2H, Ar, m), 6.96 (2H, Ar, m),
		7.10 (2H, Ar, m), 7.82 (2H, Ar, m), 8.43 (1H, NH, d), 12.61 (1H, COOH, s)
5	133-136	UV: 252.0 (log ϵ = 4.21)
		$MS, m/z; 265 (M^+)^{(<1)}, 209^{(25)}, 151^{(5)}, 135^{(100)}, 107^{(6)}$
		¹ H NMR: 0.92 (6H, 2CH ₃ , dd), 1.7 (3H, CH ₂ -CH, m), 3.83 (3H, OCH ₃ , s), 4.43 (1H, CH _a , d), 7.03 (2H, Ar,
		m), 7.87 (2H, Ar, m), 8.41 (1H, NH, d), 12.55 (1H, COOH, s)
6	105-107	UV: 252.0 (log ϵ = 4.22)
		$MS, m/z; 265 (M^+)^{(4)}, 221^{(15)}, 220^{(7)}, 209^{(20)}, 191^{(18)}, 151^{(65)}, 135^{(100)}, 107^{(14)}$
		¹ H NMR: 0.92 (6H, 2CH ₃ , dd), 1.37 (2H, CH ₂ , m), 2.01 (1H, CH _β , m), 3.83 (3H, OCH ₃ , s), 4.37 (1H, CH _α ,
		m), 7.03 (2H, Ar, m), 7.90 (2H, Ar, m), 8.20 (1H, NH, d), 12.55 (1H, COOH, s)
7	147-151	UV: 251.0 (log ϵ = 4.08)
		MS, m/z: n.d.
		¹ H NMR: 0.97 (6H, 2CH ₃ , dd), 2.22 (1H, CH _p , m), 3.83 (3H, OCH ₃ , s), 4.29 (1H, CH _a , m), 7.01 (2H, Ar,
		m), 7.90 (2H, Ar, m), 8.20 (1H, NH, d), 12.52 (1H, COOH, s)
8	117-120	UV: 252.8 (log ϵ = 4.24)
-		MS, m/z : 283 $(M^+)^{(4)}$, 209 ⁽²⁸⁾ , 192 ⁽³⁾ , 191 ⁽²⁵⁾ , 135 ⁽¹⁰⁰⁾ , 107 ⁽⁷⁾
		¹ H NMR: 2.05 (3H, SCH ₃ , s), 2.06 (2H, CH ₂ , m), 2.61 (2H, CH ₂ , m), 3.83 (3H, OCH ₃ , s), 4.51 (1H, CH _a ,
		m), 7.03 (2H, Ar, m), 7.87 (2H, Ar, m), 8.45 (1H, NH, d), 12.59 (1H, COOH, s)
9	163-165	UV: 234.0 (log ϵ =3.69)
-		MS, m/z : 197 $(M^+)^{(2)}$, 153 ⁽⁵⁹⁾ , 152 ⁽⁴⁰⁾ , 123 ⁽¹⁰⁰⁾
		¹ H NMR: 3.93 (2H, CH ₂ , d), 7.31 (2H, Ar, m), 7.92 (2H, Ar, m), 8.85 (1H, NH, t), 12.50 (1H, COOH, s)
10	103-104	UV: 230.4 (log $\epsilon = 4.06$)
		MS, m/z : 211 $(M^+)^{(2)}$, 167 ⁽¹³⁾ , 166 ⁽²⁷⁾ , 123 ⁽¹⁰⁰⁾
		¹ H NMR: 1.41 (3H, CH ₃ , d), 4.43 (1H, CH, m), 7.32 (2H, Ar, m), 7.98 (2H, Ar, m), 8.67 (1H, NH, d), 12.50
		(1H, COOH, s)

(continued)

Table 2	(continue	d)
---------	-----------	----

Comp.	M.p. (°C)	Spectral data
11	134-135	UV: 269.6 (log $\epsilon = 4.12$)
		MS, m/z : 287 $(M^+)^{(3)}$, 148 ⁽⁷⁶⁾ , 147 ⁽³⁷⁾ , 123 ⁽¹⁰⁰⁾
		¹ H NMR: 3.12 (2H, CH ₂ , m), 4.64 (1H, CH, m), 7.13–7.35 (7H, Ar, m), 7.88 (2H, Ar, m), 8.72 (1H, NH, d),
		12.52 (1H, COOH, s)
12	149-151	UV: 270.4 (log $\epsilon = 3.86$)
		MS, m/z : 303 $(M^+)^{(2)}$, 164 ⁽⁸³⁾ , 140 ⁽²⁵⁾ , 123 ⁽⁷⁰⁾ , 107 ⁽¹⁰⁰⁾
		¹ H NMR: 3.02 (2H, CH ₂ , m), 4.53 (1H, CH, d), 6.64 (2H, Ar, m), 7.11 (2H, Ar, m), 7.30 (2H, Ar, m), 7.88
		(2H, Ar, m), 8.62 (1H, NH, d), 9.13 (1H, OH, s), 12.64 (1H, COOH, s)
13	159-162	UV: 222.4 (log $\epsilon = 3.84$)
		$MS, m/z; 253 (M^+)^{(<1)}, 208^{(7)}, 197^{(24)}, 179^{(12)}, 139^{(2)}, 123^{(100)}$
		¹ H NMR: 0.93 (6H, 2CH ₃ , dd), 1.73 (3H, CH ₂ -CH, m), 4.48 (1H, CH, m), 7.87 (2H, Ar, m), 8.11 (2H, Ar,
		m), 8.83 (1H, NH, d), 12.55 (1H, COOH, s)
14	153-156	UV: 222.4 $(\log \epsilon = 3.95)$
		$MS, m/z: 247 (M^+)^{(1)}, 203^{(26)}, 202^{(23)}, 173^{(100)}, 145^{(55)}$
		¹ H NMR: 3.98 (2H, CH2, d), 7.88 (2H, Ar, m), 8.08 (2H, Ar, m), 9.06 (1H, NH, t), 12.60 (1H, COOH, s)
15	146-147	UV: 223.2 $(\log \epsilon = 4.08)$
		$MS, m/z; 261 (M^+)^{(3)}, 2170^{(8)}, 216^{(50)}, 173^{(100)}, 145^{(70)}$
		¹ H NMR: 1.43 (3H, CH ₃ , d), 4.47 (1H, CH, m), 7.87 (2H, Ar, m), 8.10 (2H, Ar, m), 8.90 (1H, NH, d), 12.58
		(1H, COOH, s)
16	133-135	UV: 212.0 (log $\epsilon = 4.03$)
		$MS, m/z: 337 (M^+)^{(2)}, 173^{(97)}, 148^{(100)}, 147^{(41)}, 145^{(65)}$
		¹ H NMR: 3.20 (2H, CH ₂ , m), 4.68 (1H, CH, m), 7.16–7.36 (5H, Ar, m), 7.85 (2H, Ar, m), 7.99 (2H, Ar, m),
		8.93 (1H, NH, d), 12.78 (1H, COOH, s)
17	82	UV: 237.0 (log $\epsilon = 3.40$)
		$MS, m/z; 303 (M^+)^{(<1)}, 258^{(14)}, 247^{(27)}, 229^{(18)}, 173^{(100)}, 145^{(38)}$
		¹ H NMR: 0.88 (6H, 2CH ₃ , dd), 1.72 (3H, CH ₂ -CH, m), 4.54 (1H, CH, m), 7.34 (2H, Ar, m), 7.99 (2H, Ar,
		m), 8.59 (1H, NH, d), 12.60 (1H, COOH, s)
18	133-135	UV: 257.0 ($\log \epsilon = 3.67$)
	(135 [12])	$MS, m/z; 224 (M^+)^{(1)}, 180^{(39)}, 179^{(46)}, 150^{(100)}, 120^{(11)}, 104^{(42)}$
		¹ H NMR: 3.97 (2H, CH ₂ , d), 8.10 (2H, Ar, m), 8.34 (2H, Ar, m), 9.15 (1H, NH, t), 12.65 (1H, COOH, s)
19	166-167	UV: 258.0 ($\log \epsilon = 3.64$)
		$\mathbf{MS}, m/z; 238 \ (M^+)^{(1)}, 194^{(4)}, 193^{(71)}, 150^{(100)}, 120^{(9)}, 104^{(32)}$
		¹ H NMR: 1.43 (3H, CH ₃ , d), 4.47 (1H, CH, m), 8.13 (2H, Ar, m), 8.35 (2H, Ar, m), 9.00 (1H, NH, d), 12.60
		(1H, COOH, s)
20	137-138	UV: 258.0 (log $\epsilon = 3.67$)
		$MS, m/z; 314 (M^+)^{(6)}, 150^{(73)}, 148^{(100)}, 147^{(50)}, 120^{(19)}, 104^{(82)}$
		¹ H NMR: 3.19 (1H, CH, m), 4.69 (2H, CH ₂ , m), 7.16–7.36 (5H, Ar, m), 8.03 (2H, Ar, m), 8.33 (2H, Ar, m),
		9.05 (1H, NH, d), 12.82 (1H, COOH, s)
21	148-150 dec	UV: 252.0 (log $\epsilon = 3.22$)
	(163–164 [13])	$\mathbf{MS}, m/z; 330 \ (M^+)^{(1)}, 164^{(83)}, 150^{(14)}, 120^{(6)}, 107^{(100)}, 104^{(17)}$
		¹ H NMR: 3.06 (2H, CH ₂ , m), 4.59 (1H, CH, m), 6.66 (2H, Ar, m), 7.10 (2H, Ar, m), 8.02 (2H, Ar, m), 8.32
		(2H, Ar, m), 8.99 (1H, NH, d), 9.13 (1H, OH, s), 12.70 (1H, COOH, s)
22	155	UV: 256.0 (log $\epsilon = 3.30$)
		MS, m/z : 280 $(M^+)^{(<1)}$, 235 ⁽²⁹⁾ , 224 ⁽³³⁾ , 206 ⁽²³⁾ , 150 ⁽¹⁰⁰⁾ , 120 ⁽⁹⁾ , 104 ⁽³⁹⁾
		¹ H NMR: 0.94 (6H, 2CH ₃ , dd), 1.73 (3H, CH ₂ CH, m), 4.41 (1H, CH, m), 8.13 (2H, Ar, m), 8.34 (2H, Ar,
		m), 8.94 (1H, NH, d), 12.61 (1H, COOH, s)

7:1:0.05) to obtain the corresponding N-(4-methoxybenzoyl)amino acid.

For compounds 9-22 the residue obtained by evaporation of the organic phase was crystallized from ethyl acetate/n-heptane.

2.2. Enzyme inhibition assay

Quercetin was purchased from Fluka; Tolrestat was synthesized following the published procedure [7]; Sorbinil was a gift from Pfizer. Aldose reductase (EC 1.1.1.21 ALR2) was partially purified from bovine lenses as reported in the literature [8,9].

The partially purified enzyme obtained had a specific activity of 6.5 mU/mg; no appreciable aldehyde reductase contamination was detected by sodium valproate assay [10].

A reference blank containing all the above reagents except the substrate was used to correct for the oxidation of NADPH not associated with the catalytic activity [8].

 IC_{50} values were determined from least-squares analysis of the linear portion of the log dose–inhibition curves. Each curve was generated using at least three concentrations of inhibitor causing an inhibition between 20% and 80% with two replicates at each concentration.

3. Results

All the compounds showed no activity when tested at a final concentration of 100 μ M in the assay. Sorbinil, Tolrestat, and quercetin show the following IC₅₀ values: Sorbinil 2.58 μ M, Tolrestat 0.096 μ M, and quercetin 39.9 μ M.

Compounds 1, 2 and 18 were reported to be weak inhibitors of rat lens ALR2 [6] (1/100 of the activity of Sorbinil), but they were found to be inactive with respect to bovine lens ALR2 and the introduction of different substituents showed no appreciable potentiating effects.

References

- C.R. Rasmussen, B.E. Maryanoff, G.F. Tutwiler, Section IV, Metabolic diseases and endocrin function. Ch. 17, Diabetes mellitus, Ann. Rep. Med. Chem. 16 (1981) 173-187.
- [2] M. Brownlee, A. Cerami, The biochemistry of the complications of diabetes mellitus, Ann. Rev. Biochem. 50 (1981) 385-432.
- [3] P.F. Kador, The role of aldose reductase in the development of diabetic complications, Med. Res. Rev. 8 (1988) 325-352.

- [4] R. Sarges, P.J. Oates, Aldose reductase inhibitors: recent developments, Prog. Drug Res. 40 (1993) 99-161.
- [5] P.F. Kador, J.H. Kinoshita, N.E. Sharpless, Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications, J. Med. Chem. 28 (1985) 841–849.
- [6] J. De Ruiter, B.E. Swearingen, V. Wandrekar, C.A. Mayfield, Synthesis and in vitro aldose reductase inhibitory activity of compounds containing an N-acylglycine moiety, J. Med. Chem. 32 (1989) 1033– 1038.
- [7] K. Sestanj, F. Bellini, S. Fung, N. Abraham, A. Treasurywala, L. Humber, N. Simard-Duquesns, D. Dvornik, N-[[5-(Trifluoromethyl)-6-methoxy-1-naphthalenyl]-N-methylglycine (Tolrestat), a potent orally active aldose reductase inhibitor, J. Med. Chem. 26 (1984) 255-256.
- [8] L. Costantino, G. Rastelli, K. Vescovini, G. Cignarella, P. Vianello, A. Del Corso, M. Cappiello, U. Mura, D. Barlocco, Synthesis, activity, and molecular modelling of a new series of tricyclic pyridazinones as selective aldose reductase inhibitors, J. Med. Chem. 39 (1996) 4396– 4405.
- [9] A. Del Corso, M. Camici, U. Mura, In vitro modification of bovine lens aldose reductase activity, Biochem. Biophys. Res. Commun. 148 (1987) 369–375.
- [10] W.H.J. Ward, C.M. Sennitt, H. Ross, A. Dingle, D. Timms, D.J. Mirrlees, D.P. Tuffin, Ponalrestat: a potent and specific inhibitor of aldose reductase, Biochem. Pharmacol. 39 (1990) 337-346.
- [11] H.G. Bray, M. Valda, S. Craddock, M.W. Thorpe, Biochem. J. 60 (1955) 225 [Beilstein 10, IV, 435].
- [12] N. Friedler, J.N. Smith, Biochem. J. 57 (1954) 396 [Beilstein, 9, IV, 1199].
- [13] M. Van der Schear, S. Landsteiner, J. Immunol. 29 (1935) 371 [Beilstein, 14, III, 1523].