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Abstract: The first asymmetric aza-Friedel–Crafts reaction of 2-
naphthol with tosylimines was developed via a dinuclear zinc cata-
lyst (up to 98% ee). It provided a new method for the asymmetric
synthesis of Betti base derivatives.
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Friedel–Crafts reaction of aromatic substrates to alde-
hydes, ketones, activated olefines, and imines is a key re-
action in synthetic organic chemistry for the formation of
carbon–carbon bonds.1 The stereoselective addition of sp2

C–H bonds to an imine, an aza-Friedel–Crafts reaction, is
particularly attractive both because the nucleophiles re-
quire no preactivation and because the products are chiral
benzylic amines, the substructure exists in many natural
products and medicinal chemistry programs.2 The com-
pounds, especially bearing 1,3-amino-oxygenated func-
tional motifs, are ubiquitous to a variety of potent drugs,
including a number of nucleoside antibiotics and HIV pro-
tease inhibitors, such as ritonavir and lipinavir.3 Since
these compounds have multiple centers for chelation with
metal ions, they are likely to be potent inhibitors of metal-
loenzymes containing Fe, Cu, Zn, Co, etc. ions as cofac-
tors.4 In addition, chiral aminophenols have been reported
as excellent chelating agents in metal-catalyzed asymmet-
ric induction in a variety of reactions5 and as precursors in
chiral boranate complexes.6 Chiral Betti base was proved
to be an excellent chiral auxiliary for total syntheses of
enantiopure alkaloidal natural products.7

During the past decades, indole and its derivatives have
been demonstrated to be good substrates for the asymmet-
ric Friedel–Crafts reaction.8 Recently, the substrates have

been expanded successfully to electron-rich benzenes9a–d

and five-membered aromatic heterocycles.9e–j In contrast,
the applications of the naphthols in asymmetric Friedel–
Crafts reaction have rarely been explored.10 The first ex-
ample of enantioselective Friedel–Crafts reaction involv-
ing 1-naphthols was reported by Erker and van der
Zeijden10a using a zirconium trichloride Lewis acid con-
taining a ‘dibornacyclopentadienyl’ ligand. Recently, Jør-
gensen,10b,c Chen10d and Wang10e presented the
organocatalytic asymmetric Friedel–Crafts reaction of 2-
naphthol with azodicarboxylates, nitroolefins, and a,b-
unsaturated aldehydes, respectively. However, the enanti-
oselective aza-Friedel–Crafts reaction of 2-naphthol with
electron-deficient imines has not been reported up till
now.

Since racemic Betti base was achieved, numerous modifi-
cations of this reaction surfaced and optically pure Betti
base analogues were prepared either by resolution11 or by
induction of chirality using optically active amines or al-
dehydes.5,12 The development of new methods for their as-
sembly is therefore of considerable synthetic importance.
Herein, we wish to report first asymmetric aza-Friedel–
Crafts reaction of 2-naphthol with electron-deficient im-
ines in excellent enantioselectivity, which provided a
method for asymmetric synthesis of new Betti base deriv-
atives.

The dinuclear zinc complexes 1–3 were prepared as pre-
viously method13 by treating the bis-ProPhenol with 2
equivalents of diethylzinc in toluene at room temperature
(Scheme 1). Aza-Friedel–Crafts reaction of 2-naphthol
with (E)-N-benzylidene-4-methylbenzenesulfonamide
was first examined,14 which is a useful way to prepare
Betti base derivatives. The desired product could not be

Scheme 1 Preparation of complexes 1–3
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obtained in the absence of complex 2 (Table 1, entry 1).
On the other hand, combining 2-naphthol with (E)-N-ben-
zylidene-4-methylbenzenesulfonamide in the presence of
0.1 equivalents of complex 2 yielded Betti base derivative
in 37% yield and 10% ee (entry 2). Increasing the catalyst
to 0.3 and 0.5 equivalents could improve the yields and
enantioselectivities (entries 3 and 4). The enantioselectiv-
ities of the reaction were strongly affected by the reaction
conditions. The reaction proceeded at a faster rate and
with slightly lower enantiomeric excess at 50 °C (entry 5).
In order to obtain a satisfactory result, 1 equivalent of the
complex 2 was used and 1-[(R)-phenyl(tosylamino)meth-
yl]naphthalen-2-ol (4a) was afforded in 90% yield and
96% ee (entry 6). The results showed that dinuclear zinc
complexes 1 and 3 gave lower enantioselectivities than
complex 2 (entries 7 and 8). Further optimization studies
were then carried out using complex 2. Solvents such as
1,4-dioxane, xylene, CH2Cl2, and THF were also exam-
ined and toluene was found to be the best choice (entries
9–12). Thus, entry 4 in Table 1 was identified as the opti-
mized reaction procedure.

To extend substrate scope, a variety of different imine
substrates was further explored under the optimal reaction
conditions. As the results summarized in Table 2, the ex-
pected products could be obtained in good isolated yields

of 82–95% and good to excellent enantioselectivities of
74–98% ee of R-configuration for arylimines (entries 1–
11). For the less sterically hindered 4-substituted
arylimines, the products were obtained in higher enanti-
oselectivities ranging from 90–98% ee (entries 3, 5, 8, 10,
and 11). On the other hand, the 2-substituted arylimines
gave lower enantioselectivities (entries 2, 4, and 6). Aza-
Friedel–Crafts reaction to aliphatic aldimine such as (E)-
N-tosylbutan-1-imine was also examined, and the reaction
gave the product in high enantioselectivity of 91% (entry
12). For N-Boc imine, the alkylation reaction also pro-
ceeded smoothly and tert-butyl (2-hydroxynaphthalen-1-
yl)(phenyl)methylcarbamate was obtained in 88% yield
and 91% ee.

Figure 1 X-ray crystallography structure of 4k

The absolute configuration of the product was confirmed
by X-ray crystal structure analysis of Betti base derivative
4k (Figure 1). On the basis of this structure, compound 4k
possessed an R-configuration at the newly formed chiral
center.16 In addition, the absolute configuration of product
4a was also determined by comparison of the optical rota-
tion of (S)-4a17 and (R)-4a. In order to obtain Betti base
5a, which was an excellent chiral auxiliary for total syn-
theses of enantiopure alkaloidal natural products, sodium/
naphthalene in dry THF was used to deprotect the Ts
group and the (R)-Betti base 5a could be obtained suc-
cessfully (Scheme 2).18

Scheme 2 Formation of Betti base

A proposed reaction mechanism is shown in Scheme 3. 2-
Naphthol is deprotonized by complex 2 accompanied by
the formation of one equivalent of ethane. After this, the
tosylimine coordinates to this catalyst to form intermedi-

Table 1 Screening of the Reaction Conditions

Entry Complex 
(equiv)

Temp 
(°C)

Solvent Yield 
(%)b

ee 
(%)c

1 – 30 toluene n.r. n.d.

2 2 (0.1) 30 toluene 37 10

3 2 (0.3) 30 toluene 73 55

4 2 (0.5) 30 toluene 82 87

5 2 (0.3) 50 toluene 78 38

6 2 (1) 30 toluene 90 96 (R)

7 1 (1) 30 toluene 81 85

8 3 (1) 30 toluene 95 54

9 2 (1) 30 dioxane trace –

10 2 (1) 30 xylene 83 86

11 2 (1) 30 CH2Cl2 89 92

12 2 (1) 30 THF 20 24

a Reaction conditions: 2-naphthol/tosylimine = 1:3 (molar ratio); re-
action time: 48 h.
b Isolated yield.
c Determined by HPLC analysis using Chiralcel OD-H column.
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ate I, which is followed by aza-Friedel–Crafts alkylation
reaction to generate intermediate II. The product is then
released, and the active catalyst is reformed by a proton
exchange between intermediate II and an incoming 2-
naphthol.

In summary, we have discovered the first highly asym-
metric aza-Friedel–Crafts reaction of 2-naphthol with to-
sylimines for the synthesis of optically active Betti base
derivatives. A wide variety of aryl aldimine substrates
possessing either electron-withdrawing or electron-donat-
ing groups and aliphatic aldimine could be employed suc-
cessfully. Currently, we are further expanding the
application of the Betti base derivatives to catalyze new
asymmetric reactions.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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