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Stabilized short helical heptapeptides containing a combination of an a-aminoisobutyric acid as a helical
promoter and L/D-serine derivatives to produce cross-linked units were synthesized. The cyclic peptide
R3,7R-2, which had D-serine derivatives at its 3rd and 7th positions, formed a stable right-handed (P)
a-helix in solution and the crystalline state. Furthermore, its N-terminal free helical peptide catalyzed
the enantioselective epoxidation of (E)-chalcone to afford the epoxide in a high yield and moderate
enantioselectivity.

� 2010 Elsevier Ltd. All rights reserved.
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The de novo design of peptides that fold into well-defined sec-
ondary structures is of extreme importance to a wide variety of
fields such as organic chemistry and biological and material sci-
ences. A number of approaches for stabilizing the secondary struc-
tures of peptides have been reported.1 As conformationally
restricted amino acids, a,a-disubstituted a-amino acids have been
widely used,2 and a-aminoisobutyric acid (Aib) has been found to
be particularly useful as a helical promoter.3 On the other hand, for
covalent helix-stabilization, disulfide, lactam, and hydrocarbon
bridge methods have been reported.4 Thus, we speculated that sta-
ble helical structures could be constructed using a combination of
a,a-disubstituted a-amino acids and a covalent cross-linking sys-
tem. Herein, we have designed and synthesized four L-leucine (L-
Leu) based heptapeptides, S3,7S-2, S3,7R-2, R3,7S-2, and R3,7R-2,
containing an a-aminoisobutyric acid at the 4th position as a heli-
cal promoter and L/D-serine derivatives5 at the 3rd and 7th posi-
tions to produce a cross-linked subunit (Fig. 1).6 Their dominant
conformations were studied using their CD spectra in solution
and X-ray crystallographic analysis in the crystalline state. In
addition, N-terminal free peptides were prepared and used for
enantioselective epoxidation of (E)-chalcone, which is known as
the Juliá–Colonna asymmetric reaction.7
ll rights reserved.
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L/D-Serine derivatives A were synthesized starting from Boc-
L/D-Ser.5 The linear heptapeptides S3,7S-1, S3,7R-1, R3,7S-1, and
R3,7R-1 were prepared by conventional solution-phase methods
with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and
1-hydroxybenzotriazole (HOBT) as coupling reagents (Scheme 1).8

An intramolecular ruthenium catalyzed ring-closing metathesis
reaction of S3,7S-1, S3,7R-1, R3,7S-1, and R3,7R-1 gave cyclic peptides
as a mixture of olefin isomers (E/Z ratio of isomers was not deter-
mined), and subsequent hydrogenation afforded saturated cyclic
peptides S3,7S-2, S3,7R-2, R3,7S-2, and R3,7R-2 in good yields.9

The CD spectra of the eight peptides (S3,7S-1, S3,7R-1, R3,7S-1,
R3,7R-1, S3,7S-2, S3,7R-2, R3,7S-2, and R3,7R-2) were measured in
S3,7S-2, S3,7R-2, R3,7S-2, R3,7R-2

Figure 1. Chemical structures of heptapeptides S3,7S-2, S3,7R-2, R3,7S-2, and R3,7R-
2. The nomenclature S3,7R refers to a peptide with an S configuration at the 3rd
position and an R configuration at the 7th position.
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Scheme 1. Synthesis of heptapeptides S3,7S-2, S3,7R-2, R3,7S-2, and R3,7R-2.

Table 1
Selected torsion angles x, u, w, and v (�) for peptide R3,7R-2

Residue Torsion angle

N. Yamagata et al. / Tetrahedron Letters 52 (2011) 798–801 799
2,2,2-trifluoroethanol (TFE) solution to obtain information about
their secondary structures. The CD spectra of all eight peptides
showed negative maxima at around 208 and 222 nm, indicating
that they displayed a right-handed helical-screw sense (P).10 Their
(h222/h208) R values suggested that the dominant secondary struc-
ture of the linear peptides S3,7S-1, S3,7R-1, and R3,7S-1 was a 310-
helix (R = 0.3).11,12 The CD spectra of the cyclic molecules S3,7S-2,
S3,7R-2, and R3,7S-2 were similar to those of the linear peptides.12

However, the CD spectrum of the cyclic R3,7R-peptide was dynam-
ically changed. These spectra indicate that cyclization changes the
dominant secondary structure from a 310-helix (R = 0.3 for R3,7R-
113) to an a-helix (R = 0.8 for R3,7R-2) (Fig. 2).10

The peptide R3,7R-2 formed suitable crystals for X-ray crystallo-
graphic analysis after slow evaporation of the solvent CHCl3/n-hex-
ane at room temperature.14 The relevant backbone and side-chain
torsion angles and the intra- and intermolecular hydrogen-bond
parameters are listed in Tables 1 and 2, respectively.

Only one conformer of the peptide molecule was found in the
asymmetric unit of the R3,7R-2 peptide, a right-handed (P) a-helix
containing a chloroform molecule. The mean values of the u and w
torsion angles of the amino acid residues (1–6) were �67.2� and
�46.9�, which are close to the values for an ideal right-handed
Figure 2. CD spectra in the 190–260 nm region of the linear peptide R3,7R-1 (blue)
and the cyclic peptide R3,7R-2 (red) in TFE solution. Peptide concentration: 0.5 mM.
(P) a-helix (�60� and �45�), and the torsion angles of D-Ser (7)
were distorted (u = 65.0�, w = �170.5�). Figure 3 shows the X-ray
structure of the (P) a-helical wheel as viewed from positions per-
pendicular to (A) and along (B) the helical axis. Three intramolec-
ular hydrogen bonds of the i i+4 type were observed between
the H–N(4) and C(0) = O(0) [N(4)� � �O(0) = 2.92 Å; N–H� � �O
158.2�], the H–N(5) and C(1) = O(1) [N(5)� � �O(1) = 3.17 Å; N–
H� � �O 150.7�], and the H–N(7) and C(3) = O(3) [N(7)� � �O(3)
= 2.92 Å; N–H� � �O 140.3�], and one weak intramolecular hydrogen
bond was found between the H–N(6) and C(2) = O(2)
[N(6)� � �O(2) = 3.26 Å; N–H� � �O 143.0�]. In packing mode, three
intermolecular hydrogen bonds were observed among the a-heli-
cal conformers; that is, between the H–N(1) and O(4’)
[N(1)� � �O(4’) = 3.04 Å; N–H� � �O 161.7�], the H–N(2) and O(5’)
[N(2)� � �O(5’) = 3.03 Å; N–H� � �O 151.3�], and the H–N(3) and O(6’)
[N(3)� � �O(6’) = 2.96 Å; N–H� � �O 154.6�]. The helical molecules were
connected by intermolecular hydrogen bonds forming head-to-tail
aligned chains.
u w x v

L-Leu(1) �75.2 �50.5 176.3 �70.0

L-Leu(2) �62.2 �38.5 176.5 �172.9

D-Ser(3) �52.6 �52.3 �177.9 165.6

Aib(4) �57.7 �37.4 �178.9 –

L-Leu(5) �67.8 �28.7 179.1 �62.7

L-Leu(6) �87.9 �74.2 �176.7 �65.5

D-Ser(7) 65.0 �170.5 �176.1 �69.9

Table 2
Intra- and intermolecular H-bond parameters for peptide R3,7R-2a

Donor D–
H

Acceptor
A

Distance
D� � �A

Angle (�) D–
H� � �A

Symmetry
operations

N4–H O0 2.92 158.2 x, y, z
N5–H O1 3.17 150.7 x, y, z
N6–H O2 3.26b 143.0 x, y, z
N7–H O3 2.92 140.3 x, y, z
N1–H O40 3.04 161.7 1 + x, y, z
N2–H O50 3.03 151.3 1 + x, y, z
N3–H O60 2.96 154.6 1 + x, y, z

a The amino acid numbering begins at the N-terminus of the peptide chain.
b The distance is a bit long for a hydrogen bond.



Figure 3. X-ray diffraction structure of R3,7R-2, as viewed from positions (A) perpendicular to and (B) along the helical axis. The chloroform molecule has been omitted. The
linker is shown in green.

Table 3
Asymmetric epoxidation of (E)-chalcone using the N-terminal free peptides H-S3,7S-1,
H-S3,7R-1, H-R3,7S-1, H-R3,7R-1, H-S3,7S-2, H-S3,7R-2, H-R3,7S-2, and H-R3,7R-2

Ph Ph

O

Ph Ph

O
O

Peptide (5 mol %)
UHP (1.1 Eq.)
DBU (5.6 Eq.)

THF, 0º to rt, 24h
(E )-chalcone (3) (2R,3S)-4

S

R

Entry Peptide Yield (%) ee (%)

1 H-S3,7S-1 90 58
2 H-S3,7S-2 89 65
3 H-S3,7R-1 91 57
4 H-S3,7R-2 89 64
5 H-R3,7S-1 82 35
6 H-R3,7S-2 86 37
7 H-R3,7R-1 93 30
8 H-R3,7R-2 89 69
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Next, we used the N-terminal free peptides17 H-S3,7S-1, H-S3,7R-
1, H-R3,7S-1, H-R3,7R-1, H-S3,7S-2, H-S3,7R-2, H-R3,7S-2, and H-
R3,7R-2 as catalysts for the enantioselective epoxidation of (E)-
chalcone (3).18 The epoxidation of 3 (0.3 mmol) using 5 mol % of
peptides was carried out in THF (2 mL) containing urea-H2O2

(UHP, 0.33 mmol) and DBU (1.68 mmol) under aerobic conditions
with the temperature gradually increasing from 0 �C to room tem-
perature over 24 h.19 In all cases, the epoxidation proceeded
smoothly to afford the product (2R,3S)-4 in high yield (Table 3).
The use of the linear and cyclic H-S3,7S- and H-S3,7R-peptides affor-
ded the epoxide (2R,3S)-4 with moderate enantiomeric excess (en-
tries 1, 2, 3, and 4), but that involving H-R3,7S-peptides gave
(2R,3S)-4 in a poor enantiomeric excess (entries 5 and 6). On the
other hand, the enantioselectivity of (2R,3S)-4 was improved by
the use of a stabilizing H-R3,7R-2 a-helical peptide (entries 7 and
8). Whether linear or cyclic peptides (entries 1–6) were used barely
affected the enantiomeric excess of (2R,3S)-4. However, in the case
of H-R3,7R-peptides, the enantiomeric product excess was strongly
affected by cyclization (entries 7 and 8); that is, the linear R3,7R-1
peptide forming the 310-helix gave a poor enantiomeric excess, but
the cyclic R3,7R-2 peptide forming the a-helix gave a moderate
enantiomeric excess. Since the R3,7R-2 peptide has a much stron-
ger tendency to form a-helix than the other peptides, it worked
more as an effective catalyst.18b,20

In summary, we have synthesized four linear heptapeptides,
S3,7S-1, S3,7R-1, R3,7S-1, and R3,7R-1, and four cyclic peptides,
S3,7S-2, S3,7R-2, R3,7S-2, and R3,7R-2, containing Aib as a helical
promoter and serine derivatives as a cross-linking system. The
dominant conformation of the linear peptide R3,7R-1 was a (P)
310-helix. Through the cyclization of R3,7R-1 into R3,7R-2, its
dominant conformation was changed to a (P) a-helical struc-
ture. In addition, its N-terminal free peptide was successfully
used as a catalyst for the enantioselective epoxidation of (E)-
chalcone. The design of further stabilized short helical peptides
and their application to asymmetric reactions is currently
underway.
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