ARTICLE IN PRESS

Chinese Chemical Letters xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

¹ Original article

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Synthesis of novel β-propanamides to inhibit cholesteryl ester transfer protein (CETP)

⁴ Q1 Hong-Lei Xie, Chun-Chi Liu, Yi-Qun Li, Chang-Lin Bai, Chen-Zhou Hao, Jing Guo,
 ⁵ Chang-Qun Luo, Dong-Mei Zhao*, Mao-Sheng Cheng

Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

ARTICLE INFO

Article history: Received 6 June 2016 Received in revised form 16 July 2016 Accepted 9 August 2016 Available online xxx

Keywords: CETP inhibitor Cardiovascular disease High-density lipoprotein Low-density lipoprotein In vitro

ABSTRACT

A novel series of β -propanamide derivatives as inhibitors of cholesteryl ester transfer protein (CETP) were synthesized. Previously, **H3** (IC₅₀ 2 µmol/L) was observed to inhibit CETP moderately (Xie et al., 2016). Structural modifications based on **H3** led to discovery of the successful CETP inhibitor, known as 1-methyl-4-arylpyrazole. Using a similar approach, compound **Q08** was identified as a highly potent CETP inhibitor with an IC₅₀ of 490 nmol/L *in vitro*.

© 2016 Dong-Mei Zhao. Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death in industrialized and developing countries [1,2]. Epidemiological studies have identified two key risk factors that increased the likelihood of CVD events: decreased levels of high-density lipoprotein-cholesterol (HDL-C) and increased levels of lowdensity lipoprotein-cholesterol (LDL-C) [3–5]. Several clinical studies have established the inverse relationship between cardiovascular events and HDL-C serum levels [6–8]. Niacin elevates HDL-C levels in clinical treatments but is not used often due to considerable side effects [9,10]. Thus, there is a high demand for a specific HDL-C raising therapies with better efficacy and safety.

Plasma cholesteryl ester transfer protein (CETP) regulates the inverse transport of cholesterol esters and also facilitates the transfer of cholesteryl esters from HDL-C to both LDL-C and very low density lipoprotein-cholesterol (VLDL-C) [11,12]. CETP reduces atheroprotective HDL-C levels. Conversely, CETP inhibitors help prevent retrograde cholesterol transport and therefore increase HDL-C levels. Four small molecule inhibitors have entered phase III clinical trials: torcetrapib, anacetrapib, evacetrapib and dalcetrapib (Scheme 1). Torcetrapib is the first inhibitor of phase III clinical trials with a potent CETP IC₅₀ of 50 nmol/L [13,14]. However, torcetrapib was prematurely terminated due to a higher mortality rate in the torcetrapib/atorvastatin group than the atorvastatin group. Dalcetrapib also showed modest potency in phase III clinical trials and was terminated because it failed to exhibit a clinically relevant reduction in cardiovascular events [15]. Recently, potent CETP inhibitors anacetrapib and evacetrapib entered phase III and overcame the issues with torcetrapib and dalcetrapib [16,17]. Clinical trial data for both anacetrapib and evacetrapib showed elevated HDL-C and lowered LDL-C without side effects, such as torcetrapib.

We previously reported a series of *N*,*N*-3-phenyl-3-benzylaminopropionanilide derivatives as CETP inhibitors. Structureactivity optimization from screening **L10** identified compound **H16** (IC₅₀ 0.15 μ mol/L) as a potent CETP inhibitor and **H3** (IC₅₀ 2 μ mol/L) as a modest CETP inhibitor [18]. The structure of **H16** was notably flexible and might be the basis for its poor bioavailability. To identify novel CETP inhibitors, we explored β -propanamide derivatives with low flexibility and reduced synthetic complexity. To begin our optimization, we methodically replaced β -propanamide moieties of **H3** with a focus on amide terminus substructure. Simultaneously, we focused on benzyl moiety modifications with 3-1,1,2,2-tetrafluoroethoxyl and 4-F. After further optimization of **H3**, we discovered compound **Q08** (IC₅₀ 490 nmol/L) to inhibit CETP *in vitro*, as measured by BODIPY-CE fluorescence assay.

52

53

54

http://dx.doi.org/10.1016/j.cclet.2016.10.016

1001-8417/© 2016 Dong-Mei Zhao. Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: H.-L. Xie, et al., Synthesis of novel β-propanamides to inhibit cholesteryl ester transfer protein (CETP), Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.10.016

^{*} Corresponding author. E-mail address: medchemzhao@163.com (D.-M. Zhao).

ARTICLE IN PRESS

H.-L. Xie et al./Chinese Chemical Letters xxx (2016) xxx-xxx

Scheme 1. The four CETP inhibitors that have advanced to phase III clinical trials.

⁵⁵ **2. Experimental**

⁵⁶ 2.1. Chemistry

Compounds Q01-Q11 were prepared according to Scheme 2. Overall, the compounds were prepared in three steps. The key intermediate **2** was prepared by standard reductive amination using commercially available benzaldehydes. The secondary amine 2 was treated with acrylic acid through a Michael reaction at 50 °C for 6 h to generate the key linker **3**. Next, compound **3** was treated with HOBT, EDCI and DIEA in DMF at 25 °C for 2 h, followed by substitution of various aliphatic amines or by condensation reactions to obtain the desired target 5 compounds. Compound was prepared by aromatic amines with 1-methyl-4-(4,4,5,5,-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole through a Suzuki reaction.

All solvents were purchased from Aladdin (Shanghai, China)
 and were not purified further, and all of the chemicals were
 purchased from commercial sources with purity >98%. Melting
 points (mp) were determined in open capillaries on a Buchi
 353 melting point apparatus (Buchi Labortechnik, Flawil,
 Switzerland) and were uncorrected. Solvents used for moisture
 sensitive reactions were distilled and used in an argon atmosphere.

Purity and homogeneity of the compounds were measured by chromatography on a glass column using silica gel (100–200 mesh) assessed by TLC and HPLC chromatography. Mass spectra were taken in ESI mode on an Agilent 1100 LC–MS (Agilent, Palo Alto, CA, USA). NMR spectra were recorded at 400 MHz for ¹H and 151 MHz or 101 MHz for ¹³C on a Bruker spectrometer with TMS as an internal standard, CDCl₃ or DMSO- d_6 as solvent, and coupling constants (*J*) were in hertz (Hz), and the signals were designated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; br s, broad singlet. These data can be found in the Supporting information.

2.2. In vitro CETP inhibitory assay

The CETP RP Activity Assay Kit (Catalogue # RB-RPAK; Roar) uses a donor molecule containing a fluorescent self-quenched neutral lipid that is transferred to an acceptor by CETP (Catalogue # R8899; Roar). CETP-mediated transfer of the fluorescence neutral lipid to the acceptor molecule results in an increase in fluorescence (ExEm = 465/535 nm). Inhibition of CETP prevents lipid transfer and therefore decreases the fluorescence intensity. The testing compounds were entirely dissolved using 100% DMSO. Vibrating hard on oscillator for more than 30 s helped significantly before storing in a nitrogen cabinet. Stocking compounds (10 mmol/L)

Scheme 2. Synthetic routes. Reagents and conditions: (a) AcOH, substituted benzald ehydes; (b) NaBH₄, r.t.; (c) 10% HCl, acrylic acid, 50°C; (d) substituted amines, HOBT, EDCI, DIEA, r.t.

Please cite this article in press as: H.-L. Xie, et al., Synthesis of novel β -propanamides to inhibit cholesteryl ester transfer protein (CETP), Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.10.016

ARTICLE IN PRESS

H.-L. Xie et al./Chinese Chemical Letters xxx (2016) xxx-xxx

٠	2		

97

98

99

100

101

102

103 104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

139

144

dilutions) in 96-well dilution plates. The assay was performed according to the instruction for the CETP inhibitor screening kit and recombinant CETP. 3. Results and discussion 3.1. In vitro activity and structure-activity relationships To evaluate the ability of various β -propanamides derivatives to $\frac{Q^2}{Q^2}$ inhibit CETP, all of these new synthetic compounds were assayed using anacetrapib as a reference compound for their inhibitory effects against CETP by BODIPY-CE fluorescence assay with CETP RP Activity Assay Kit (Catalogue # RB-RPAK; Roar) (Table 1). Most of the target compounds have a mild effect on CETP inhibition activity, while several key structural changes indicated the general SAR of this series. First, the effect of the substituted aniline terminus on the inhibition of CETP was examined. Compound aniline termini substituted by 3-CF₃-4-Cl, 4-Br, 3-Cl, 3,5-bisCH₃ and 3,4-diOCH₃ exhibited modest CETP inhibition, while the one substituted by 4-COOC₂H₅ compound **Q06** exhibited an IC₅₀ of 2.8 µmol/L. These results indicated that increased lipophilicity of the aniline moiety did not lead to increased potency. Compounds with 1-methyl-4-arylpyrazole **Q07** exhibited an IC₅₀ of 0.72 μ mol/L. When pyrimidines replaced benzene rings, we identified **O08**, which exhibits IC_{50} 0.49 μ mol/L and lower than **007**. These suggested that increased hydrophilicity was important to improve inhibition activity. The calculated LogP of Q07 and Q08 was 4.7 and 4.8, respectively. These results indicated that Q07 and Q08 physical properties fall within drug-like property space. However, the activity of compound Q11 was higher than Q04, indicating that compounds with 4-F benzyls exhibited higher potency than compounds with 3-1,1,2,2-tetrafluoroethoxylbenzyl. These results indicated that 4-F benzyl is significant to inhibit CETP. 4. Conclusion

130 We report a novel CETP inhibitor based on the structure of our 131 previously developed compound H3. Most of the newly synthetic 132 compounds exhibited moderate inhibition CETP activity. Com-133 pounds **007** (IC₅₀ 0.72 μ mol/L) and **008** (IC₅₀ 0.49 μ mol/L) were 134 identified to exhibit potent CETP inhibition. Compound Q08 135 titration is flexible and has a remarkable CLogP 4.8; therefore, **O08** 136 was selected for further development. It is highly expected that 137 this novel scaffold will produce promising CETP inhibition agents 138 after further modifications.

were diluted with DMSO for eight titration points (1:5 serial

Acknowledgments

The work was supported by the National Natural Science Q3 140 Foundation of China (No. 81373324) and the program for 141 Innovative Research Team of the Ministry of Education and 142 Program for Liaoning Innovative Research Team in University. 143

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cclet.2016.10.016. 146

Structure-activity relationship (SAR) of β -propanamides derivatives **Q01-Q11**.

Compound	R ₁	R ₂	IC ₅₀ (µmol/L)
Q01	3-OCF ₂ CF ₂ H	CI CF ₃	12.8
Q02	3-OCF ₂ CF ₂ H		20.9
Q03	3-OCF ₂ CF ₂ H	A Br	21.3
Q04	3-OCF ₂ CF ₂ H		9.4
Q05	3-OCF ₂ CF ₂ H	VII.	21.8
Q06	3-OCF ₂ CF ₂ H		2.8
Q07	4-F		0.72
Q08	4-F		0.49
Q09	4-F		7.2
Q10	4-F	Br	18.5
Q11	4-F		5.3
Anacetrapib ^a			0.06

^a The positive control.

Please cite this article in press as: H.-L. Xie, et al., Synthesis of novel β-propanamides to inhibit cholesteryl ester transfer protein (CETP), Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.10.016

ARTICLE IN PRESS

H.-L. Xie et al./Chinese Chemical Letters xxx (2016) xxx-xxx

References

- P.G. McGovern, J.S. Pankow, E. Shahar, et al., Recent trends in acute coronary heart disease-mortality morbidity, medical care, and risk factors, N. Engl. J. Med. 334 (1996) 884–890.
- P.J. Barter, H.B. Brewer, M.J. Chapman, et al., Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 23 (2003) 160–167.
- [3] M.J. Chapman, G. Assmann, J.C. Fruchart, et al., Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid—a position paper developed by the European Consensus Panel on HDL-C, Curr. Med. Res. Opin. 20 (2004) 1253–1268.
- [4] R.B. Ruggeri, Cholesteryl ester transfer protein: pharmacological inhibition for the modulation of plasma cholesterol levels and promising target for the prevention of atherosclerosis, Curr. Top. Med. Chem. 5 (2005) 257–264.
- [5] A.R. Tall, CETP inhibitors to increase HDL cholesterol levels, N. Engl. J. Med. 356 (2007) 1364–1366.
- [6] R.W. Clark, T.A. Sutfin, R.B. Ruggeri, et al., Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib, Arterioscler. Thromb. Vasc. Biol. 24 (2004) 490–497.
- [7] G. Assmann, H. Schulte, A.V. Eckardstein, et al., High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport, Atherosclerosis 124 (1996) S11–S20.
- [8] P. Barter, A.M. Gotto, J.C. Larosa, et al., HDL cholesterol very low levels of LDL cholesterol, and cardiovascular events, N. Engl. J. Med. 357 (2007) 1301–1310.
 [0] P.M. Korrens, K. K. Starosa, et al., HDL cholesterol very low levels of LDL cholesterol, and cardiovascular events, N. Engl. J. Med. 357 (2007) 1301–1310.
- [9] P.M. Kearney, A. Keech, J. Simes, et al., Statins and diabetes-authors' reply, Lancet 371 (2008) 117–125.

 [10] C. Baigent, A. Keech, P.M. Kearney, et al., Efficacy and safety of cholesterollowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins, Lancet 366 (2005) 1267–1278.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

- [11] X.Y. Qiu, A. Mistry, M.J. Ammirati, et al., Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules, Nat. Struct. Mol. Biol. 14 (2007) 106–113.
 [12] S.P. Liu, A. Mistry, I.M. Paraelide, et al., C. Mittan, M. S. Struct, C. M. Struct, Mol. Structure, M. S. Structure, M. S. Structure, C. M. Structure, A. S. Structure, M. S. Structure, S. Structure
- [12] S.P. Liu, A. Mistry, J.M. Reynolds, et al., Crystal structures of cholesteryl ester transfer protein in complex with inhibitors, J. Biol. Chem. 287 (2012) 37321–37329.
 [13] D. Davia W.C. Chen, C.W. Zing, and T. T. Structures of the structure of th
- [13] D. Dalvie, W.C. Chen, C.H. Zheng, et al., Pharmacokinetics metabolism, and excretion of torcetrapib, a cholesteryl ester transfer protein inhibitor, in humans, Drug Metab. Dispos. 36 (2008) 2185–2198.
 [14] I.M. Mckenerger, M.H. Berker, M.H. Berker
- [14] J.M. Mckenney, M.H. Davidson, C.L. Shear, et al., Efficacy and safety of torcetrapib, a novel cholesteryl ester transfer protein inhibitor, in individuals with below-average high-density lipoprotein cholesterol levels on a background of atorvastatin, J. Am. Coll. Cardiol. 48 (2006) 1782–1790.
- [15] M. Vergeer, E.S.G. Stroes, The pharmacology and off-target effects of some cholesterol ester transfer protein inhibitors, Am. J. Cardiol. 104 (2009) 32E–38E.
 [16] D. Pleomefeld C.L. C. Landon, K.G. Stroes, Am. J. Cardiol. 2010 (2009) 32E–38E.
- [16] D. Bloomfield, G.L. Carlson, A. Sapre, et al., Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients, Am. Heart J. 157 (2009) 352–360.
- [17] G.G. Schwartz, A.G. Olsson, M. Abt, et al., Effects of dalcetrapib in patients with a recent acute coronary syndrome, N. Engl. J. Med. 367 (2012) 2089–2099.
 [18] HL, Vie J. C. Start, Start and St
- [18] H.L. Xie, Y.Q. Li, C.L. Bai, et al., Discovery of novel N,N-3-phenyl-3benzylaminopropionanilides as potent inhibitors of cholesteryl ester transfer protein *in vivo*, Bioorg. Med. Chem. 24 (2016) 1811–1818.

Please cite this article in press as: H.-L. Xie, et al., Synthesis of novel β-propanamides to inhibit cholesteryl ester transfer protein (CETP), Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.10.016

4

147

148

149

150

151