Synthesis of Fe_3O_4 @Sio₂/Isoniazid/Cu(II) magnetic nanocatalyst as a recyclable catalyst for a highly efficient preparation of quinolines in moderate conditions

Shahram Lotfi, Ahmad Nikseresht, Nasrin Rahimi

PII:	S0277-5387(19)30585-6
DOI:	https://doi.org/10.1016/j.poly.2019.114148
Reference:	POLY 114148
To appear in:	Polyhedron
Received Date:	5 May 2019
Revised Date:	2 September 2019
Accepted Date:	7 September 2019

Please cite this article as: S. Lotfi, A. Nikseresht, N. Rahimi, Synthesis of Fe₃O₄@Sio₂/Isoniazid/Cu(II) magnetic nanocatalyst as a recyclable catalyst for a highly efficient preparation of quinolines in moderate conditions, *Polyhedron* (2019), doi: https://doi.org/10.1016/j.poly.2019.114148

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Elsevier Ltd. All rights reserved.

Highlighted Revised Manuscript

Synthesis of $Fe_3O_4@Sio_2/Isoniazid/Cu(II)$ magnetic nanocatalyst as a recyclable catalyst for a highly efficient preparation of quinolines in moderate conditions

Shahram Lotfi*, Ahmad Nikseresht and Nasrin Rahimi

^{*} Corresponding author email: <u>sh.lotfei@gmail.com, Tel. /Fax: +98 8343724748</u>

Department of Chemistry, Payame Noor University (PNU), 19395-4697 Tehran, Iran

Abstract

investigation This efficient procedure paper reports the on an prepare to Fe₃O₄@SiO₂/Isoniazid/Cu(II) as a recoverable magnetic nanocatalyst. The prepared nanocatalyst, Fe₃O₄@SiO₂/Isoniazid/Cu(II), was identified via vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), x-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The nanocatalyst was applied on Friedländer synthesis for highly efficient preparation of quinoline derivatives from α -methylene ketones and 2-aminoaryl ketones under moderate conditions. This method has the advantages of short reaction times, good yields as well as simple catalyst separation by external magnet and solution decanting to recover the catalyst for next cycles, with ability to be used for 4 times without significant loss in catalytic activity.

Key words: Heterogeneous nanocatalysts; Isoniazid/Cu(II); Friedländer synthesis; Quinolines

1. Introduction

Over the past few years, the application of heterogeneous catalysts in various organic transformations has proved strategically essential and eco-friendly. Owing to the solubility in reaction media, homogeneous catalysts display better catalytic activities in chemical reactions than their heterogeneous peers, increasing the availability of catalytic active sites for the substrate and consequently easing the reaction [1]. Nonetheless, the serious issues related to separating the homogeneous catalysts have limited their use in industry. Therefore, it is

necessary to develop efficient, easy, and appropriate methods for the preparation of a wide range of organic compounds under heterogeneous catalytic conditions.

Among various types of heterogeneous catalysts, Fe_3O_4 magnetic nanoparticles have been greatly favored owing to the fact that they are simply synthesized and surface modified and can be recovered from the reaction mixture using a magnet. Therefore, various catalysts such as metals and polymers can be supported on Fe_3O_4 nanoparticles because they can be easily separated out after being employed in the reaction several consecutive times [2-6]. However, the use of magnetic particles alone causes aggregation, changing the surface and catalytic activity, hence the necessity of a suitable covering to elude such restrictions [7]. Lately, core-shell magnetic nanomaterials, as efficient magnetic nanocatalysts, have gained much research attention; these nanomaterials incorporate features of magnetic cores and diverse functional shells for various uses and have the following advantages: useful and efficient applications in medicine [8, 9], high stability [10], comfortable surface modification [11, 12], optical properties [13], and environmental friendly [14]. The Fe₃O₄ magnetic core–shell structure is reported in the literature as a heterogeneous nanocatalyst for the synthesis of organic compounds [15, 16].

Today, silica is among the materials which is widely used for the shell and increases its stability. Additionally, the surface hydroxyl functional groups (-OH) of silica provide an active surface, simplifying the linkage of other organic functional groups for chemically modifying the surface. This method has been successfully used to immobilize a broad variety of catalysts such as organocatalysts, transition metal catalysts, and biocatalysts [17-20].

Heterocyclic compounds are the biggest and most diverse organic compounds in nature, widely applied in pharmaceutical chemistry owing to their unique chemical properties [21]. Among the significant heterocyclic aromatic compounds, quinoline derivatives are reported in different studies due to their unique medicinal properties and potential biological activities [22]. A reported reaction is Friedländer which involves the reaction between ketones or 2-aminoaryl aldehydes with carbonyl compounds, capable of enolization in the presence of an acidic catalyst [23, 24]. Nowadays, there exist several methods for the synthesis of heterocyclic compounds such as chitosan-SO₃H [25], PEG-OSO₃H [26], HClO₄-SiO₂ [26], CF₃COOH [27], SBA-15/propyl-SO₃H [28], NaHSO₄/silica-gel [29] and HO₃SO-SiO₂ [30, 31]. Although most of these procedures are of significance, many have one or more of the following disadvantages: difficulty in separating the nanocatalyst, time-consuming reaction workup, and costly reaction conditions.

Accordingly, it is important to provide an efficient synthesis method that can cover the drawbacks of previous methods.

In this research, efforts were made to synthesize and characterize a new heterogeneous Cu nanocatalyst (Fe₃O₄@SiO₂/ISN/Cu(II)) to prepare quinoline derivatives. The Fe₃O₄@SiO₂/ISN/Cu(II) catalyst was synthesized via decorating Cu(II) ions onto Fe₃O₄@SiO₂ nanoparticles. The catalyst was easily separated by an external magnet with no significant decrease in catalytic activity, and was reused 4 times without a considerable reduction in the yield of quinolines produced.

2. Experimental

2.1 Materials and Methods

Isoniazid, as a pharmaceutical grade material, was purchased from the DarouPakhsh Pharmaceutical Company Tehran, Iran. $FeCl_3 \cdot 6H_2O$, $FeCl_2 \cdot 4H_2O$, $Cu(OAc)_2$, TEOS (tetraethyl orthosilicate), CPTES (3-Chloropropyltriethoxysilane), and aryl halides were obtained from Merck. Other reagents and solvents used in this investigation were obtained from Sigma Aldrich, Fluka or Merck Chemicals. All chemicals and solvents were used as received, without prior purification.

Melting points were determined by a Stuart SMP₃ melting point instrument. The Fourier transform infrared (FT-IR) spectra were recorded with a Shimadzu, IR Prestige 21 spectrometer in the range of 400-4000 cm⁻¹. Nanocatalysts were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) (Holland Philips XL300), transmission electron microscopy (TEM) (Holland Philips CM10), x-ray powder diffraction (XRD) (Holland Philips PW-1840), and vibrating sample magnetometer (VSM) (Meghnatis Daghigh Kavir Co., Iran).

2.2 Preparation of Fe₃O₄ and Fe₃O₄@SiO₂ magnetic nanostructures

Fe₃O₄ and Fe₃O₄@SiO₂ nanostructures were synthesized according to the reported methods [32]. For this purpose, 3g of FeCl₃.6H₂O and 1g of FeCl₂.4H₂O salts were poured into the roundbottom flask; then, 120 mL water was added and stirring was applied vigorously for a complete dissolution. The concentrated NH₃ (28%) solution was then added to reach a solution pH of 11. The solution under N₂ atmosphere at 60 °C was stirred vigorously for one hour. The black

precipitate was decanted by a magnet, washed with distilled water several times, and dried at 50 °C in an oven for 24 hours. In order to prepare Fe_3O_4 @SiO₂ nanostructures, 1 gr of Fe_3O_4 nanoparticles was dispersed by ultrasound in isopropyl alcohol/water solvent; next, 1.0 mL tetraethyl orthosilicate (TEOS) and 4.80 mL NH₃ (28%) were added to the solution at ambient temperature under vigorous stirring. The final product was separated by a magnet and washed several times with distilled H₂O/EtOH to remove impurities. The product was dried at 50 °C and stored for the next step.

2.3 Synthesis of the Fe₃O₄@SiO₂/Isoniazid/Cu(II)

0.5 g of Fe₃O₄@SiO₂ nanostructure was dispersed by ultrasonic bath in toluene solvent; after that, 0.6 mL of 3-Chloropropyltriethoxysilane (CPTES) was added to the mixture and stirred vigorously at 100 °C for 48 hours. The precipitate (Fe₃O₄@SiO₂-pr-Cl) was separated by a magnet that was washed several times with EtOH and dried at 60 °C in an oven for 48 hours. Next, 0.5 g of Fe₃O₄@SiO₂-pr-Cl nanoparticle was dispersed by ultrasonic bath in toluene solvent, and 2 mmol of isoniazid ligand was added. This mixture was stirred vigorously under nitrogen atmosphere at 80 °C for 24 hours. The precipitate was collected by a magnet, and washed several times with ethanol/water, dried at 40°C for 48 hours. To preparation of Fe₃O₄@SiO₂/isoniazid, 0.5g of it was dispersed by ultrasonic bath in acetonitrile. Then, 50 mg of Cu(OAc)₂ salt was added to the reaction mixture and stirring was applied vigorously at 50 °C for 10 hours. The product (Fe₃O₄@SiO₂/Isoniazid/Cu(II)) was separated by a magnet that was washed several times with distilled H₂O and EtOH to remove impurities; the product was dried at 50°C for 24 hours. Scheme 1, represents the synthetic trend of Fe₃O₄@SiO₂/Isoniazid/Cu(II).

2.4 Preparation of quinolines

1.2 mmol α -CH-acid, 1.0 mmol 2-aminoaryl ketone, and 0.07 g nanocatalyst were poured in a bottom round flask containing ethanol solvent, and were heated and vigorously stirred until the end of the reaction. Once the reaction was completed, understood via TLC technique, the nanocatalyst was decanted from the reaction mixture by a magnet, which was then washed with EtOH (about 5 mL). The final product was recrystallized by ethanol and stored for characterization. All products were known compounds characterized by their M.p. which was compared with literature reports.

3. Results and discussion

3.1 Characterization of Fe₃O₄@SiO₂/ISN/Cu(II) nanocatalyst

3.1.1 FT-IR

FT-IR technique was applied to confirm the immobilization and coating of silica and other functionalized molecules. Fig. 1 shows the FT-IR spectra of Fe₃O₄ magnetic nanoparticles (MNPs), Fe₃O₄@SiO₂/ISN core-shell MNPs and Fe₃O₄@SiO₂/ISN/Cu(II) MNPs. In Fig. 1a (FT-IR of Fe₃O₄), the bond at 562 cm⁻¹ is attributed to the vibration of Fe-O band, while the band at 3410 cm⁻¹ is related to the symmetrical and asymmetrical stretching vibration of hydroxyl groups (–OHs) [33], indicating the presence of some amount of ferric hydroxide in Fe₃O₄. The band at 1620 cm⁻¹ is ascribed to the bending vibration of the adsorbed water. Fig. 1b displays the FT-IR spectrum of Fe₃O₄@SiO₂/ISN core-shell MNPs and shows some new absorption peaks in comparison with Fig.1a. The sharp peak at 1079 cm⁻¹ is attributed to the stretching vibration bands of Si–O–Si, while the band at 959 cm⁻¹ is assigned to the bending vibration of the silanol group (Si-OH) [34]. The characteristic peaks of C-H bonds are seen at 2941 and 2861 cm⁻¹ which can be attributed to symmetric and antisymmetric stretch of CH₂ groups. The primer of isoniazid groups to the surface of Fe_3O_4 (a)SiO₂ MNPs is verified through the bands at 1619, 3016 and 1399 cm⁻¹ assigned respectively to the C=C, aryl C-H stretches and C-N stretching of amine. The observations indicated which isoniazid molecules as acceptor ligand were successfully attached to the silica shell. Meanwhile, after coordination of nanocomposites with Cu(II) intensity of 1619 and 1399 cm⁻¹ peaks decreases that can be ascribed to the bonding interactions between the functional groups of the nanocomposites and the Cu(II). Every band reveals that the exterior of Fe₃O₄ nanoparticles have successfully been modified with isoniazide groups for the metalligand coordination.

3.1.2 XRD

The XRD pattern of Fe₃O₄@SiO₂/ISN/Cu(II) is illustrated in Fig. 2. A strong characteristic diffraction was detected in the sample at 20 of 30.12°, 35.69°, 43.39°, 54.14°, 58.02° and 63.94° corresponding to the diffraction of (220), (311), (400), (422), (511), and (440) of the Fe₃O₄, implying that the modified nanoparticles were synthesized successfully without damaging the crystal structure of Fe₃O₄ core. The silica coating and functionalization with CPTES and

Isoniazid (Fe₃O₄@SiO₂/ISN/Cu(II)) showed the peak at $2\Theta = 16-26^{\circ}$, which can be due to the presence of non-crystalline SiO₂. The presence of a broad peak is in agreement with the amorphous structure of silica layer [35].

3.1.3 VSM

The magnetic properties of Fe₃O₄@SiO₂/ISN/Cu(II) prepared nanocatalyst was measured by VSM at ambient temperature (Fig. 3). Saturation magnetization of bare Fe₃O₄ nanoparticles was reported [34] as 61.8 emu g⁻¹, and the saturation magnetization of the prepared catalyst in the present study was 48.2 emu g⁻¹ (Fig. 3). These results indicate that the magnetization properties of bare Fe₃O₄ decrease when modified using Cu⁺² and the silica groups. This result demonstrated that the prepared catalyst has good magnetic properties. Thus, the aforementioned evidence suggested a simple and effective method of dispersing and recycling the procured catalyst form the solution by an external magnetic force.

3.1.4 TGA

The thermogravimetric analysis (TGA) of Fe₃O₄@SiO₂/ISN/Cu(II) prepared nanocatalyst is shown in Fig. 4. The weight loss at about 150 °C is due to the solvent adsorbed on the surface and inside of structures. The decomposition temperature of the organic compounds (ligand and propyl) in the sample started at about 180°C and continued up to 600 °C. The organic molecules were full decomposed at temperatures higher than 600 °C and the residual weight of Fe₃O₄@SiO₂/ISN/Cu(II) was 90%. In other words, it can be concluded that 5% of organic molecules was immobilized on the surface of Fe₃O₄@SiO₂/ISN/Cu(II). These results showed which isoniazid and chloro propyl successfully immobilized Fe₃O₄@SiO₂, indicating that the prepared catalyst has a good thermal stability which can be used in the reactions at high temperatures.

3.1.5 TEM, SEM and EDX

TEM and FESEM images were taken to determine the size and morphology of the prepared hybrid organic-inorganic nanocatalyst (Fe₃O₄@SiO₂/ISN/Cu(II)). TEM was used to observe the morphology of Fe₃O₄@SiO₂/ISN/Cu(II) catalyst. Fig. 5a shows that NPs have a core–shell structure with a distinct contrast between silica shells and Fe₃O₄ cores, implying that silica shells (Fe₃O₄@SiO₂) successfully coated the hydrophilic Fe₃O₄ NPs, seen as a bright gray area around

the Fe₃O₄ dark core. This revealed that the true core-shell morphology was grafted on isoniazid functionalized Fe₃O₄@SiO₂ NPs. The TEM image of the Fe₃O₄@SiO₂/ISN/Cu(II) nanocatalyst revealed that Cu(II), with a nearly spherical morphology, was formed on the surface of the modified Fe₃O₄ nanoparticles with amino groups as organic shell. In the TEM images, the average size of the Fe₃O₄ nanoparticles was approximately 10 to 20 nm, and that of Fe₃O₄@SiO₂ was 20 to 30 nm. In addition, the FESEM image of the nanocatalyst showed that they are spherical and mono-disperse. However, some particle aggregations were observed in the catalyst due to the magnetic attraction between the particles (Fig. 5b). Furthermore, the energy-dispersive x-ray spectroscopy (EDX) analysis of the nanocatalyst demonstrated the expected elements, namely Cu, C, N, Si, Fe, and O; the spectrum and data are indicated in Fig. 6 and Table 1.

3.2. Evaluation of Fe₃O₄@SiO₂/ISN/Cu(II) in the preparation of quinolines

The reaction of 2-amino-5-chlorobenzophenone and acetylacetone was selected to optimize reaction conditions such as nanocatalyst dosage, solvent and temperature. First, different amounts of the nanocatalyst (0.02, 0.05, 0.07 and 0.1 g) were optimized for a predefined reaction time of 2 hours at 60°C (Table 2, entries 1-4). The obtained results displayed the most optimal yield (95%) obtained with a nanocatalyst amount of 0.07 g. In the next step, the model reaction at various temperatures (r.t, 60 and 80°C) were optimized (Table 2, entries 5 and 6). With the increase in temperature, the reaction rate was increased. A good yield of 95% was observed at 60°C for 2 hours of reaction time; furthermore, the best results were obtained when ethanol was used as reaction solvent. Further work indicated that the best results were obtained when the reaction was carried out at 60°C, for 2 h in ethanol. Further observed was that Fe₃O₄@SiO₂/ISN/Cu(II) showed higher catalytic activity compared with the corresponding homogenous Fe_3O_4 . In the optimized condition, different derivatives of quinolines were prepared using different types of cyclic and noncyclic α -methylene ketones. The results are summarized in Table 3. Good yields were observed in all derivatives, corroborating the strength of the preparation method. As shown in Table 3, chloro and without substituents on the amino aryl ketones did not show evident effects in terms of yields. However, the use of cyclohexanone reduced the yield (Table 3, entry 10). As demonstrated in Fig. 7, the nanocatalyst was successfully and efficiently recycled 4 times with 24% activity loss.

4. Conclusions

In this research, the synthesis of new nanocatalyst (Fe₃O₄@SiO₂/ISN/Cu(II)) via functionalization of silica-coated magnetic nanoparticles with Cu(OAc)₂ was reported. To investigate the structure and bonding of the synthesized nanocatalyst, TEM, FESEM, VSM, TGA, XRD, EDS, and FT-IR techniques were applied. The core-shell nanoparticles were stable, reusable, non-toxic and inexpensive heterogeneous nanocatalyst with great potential applications in organic syntheses. The new nanocatalyst was used for the synthesis of quinoline derivatives via Friedländer synthesis from α -methylene ketones and 2-aminoaryl ketones with excellent yields and short times. Furthermore, the advantages of the introduced nanocatalyst are good catalytic activity, easy separation by an external magnet, and good reusability for quinolines preparation via Friedländer synthesis. The proposed nanocatalyst was also successfully applied for the synthesis of quinoline derivatives via Friedländer synthesis with a reusability of 4 times with a relatively low reduction in catalytic activity of 24%.

References

- [1] A .Corma, H. Garcia, Advanced Synthesis & Catalysis, 348 (2006) 1391-412.
- [2] J A. Widegren, RG. Finke, J. Molecular Catalysis A: Chemical, 198 (2003) 317-341.
- [3] J. Xu, J. Sun, Y. Wang, J. Sheng, F. Wang, M. Sun, Molecules, 19 (2014) 11465-86.

[4] A. Schätz, M. Hager, O. Reiser, Advanced Functional Materials, 19 (2009) 2109-15.

[5] F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li, J. Ma, Green Chemistry, 13 (2011) 1238-43.

[6] (a) J. Mondal, T. Sen, A. Bhaumik, Dalton Transactions, 41(2012) 617381. (b) S. Rezaei, A.

Ghorbani-Choghamarani, R. Badri, A. Nikseresht, Appl. Organometal. Chem., 32 (2017) e3948.

[7] Z. Lei, Y. Li, X. Wei, J. solid state chemistry, 181 (2008) 480-6.

[8] J. Zhang, W. Sun, L. Bergman, J M. Rosenholm, M. Lindén, G. Wu, H. Xu, H C. Gu, Materials Letters, 67 (2012) 379-82.

[9] SH. Xuan, SF. Lee, JT. Lau, X. Zhu, YX. Wang, F. Wang, JM. Lai, KW. Sham, PC. Lo, JC. Yu, CH. Cheng, ACS applied materials & interfaces, 4 (2012) 2033-40.

[10] S. Abramson, W. Safraou, B. Malezieux, V. Dupuis, S. Borensztajn, E. Briot, A. Bée. J. colloid and interface science, 364 (2011) 324-32.

[11] G. Bai, L. Shi, Z. Zhao, Y. Wang, M. Qiu, H. Dong, Materials Letters, 96 (2013) 93-6.

[12] AH. Lu, EE. Salabas, F. Schüth, Angew Chem Int Ed Engl., 46 (2007) 1222-44.

[13] B. Liu, W. Xie, D. Wang, W. Huang, M. Yu, A. Yao, Materials Letters, 62 (2008) 3014-17.

[14] Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. American Chemical Society, 130 (2008)28-29.

[15] D. Shao, K. Xu, X. Song, J. Hu, W. Yang, C. Wang, J. colloid and interface science, 336 (2009) 526-32.

[16] M. Esmaeilpour, AR. Sardarian, J. Javidi, Applied Catalysis A: General, 445 (2012) 359-67.
[17] MB. Gawande, Y. Monga, R. Zboril, RK. Sharma, Coordination Chemistry Reviews, 288 (2015) 118-43.

[18] H. Veisi, M. Pirhayati, A. Kakanejadifard, P. Mohammadi, MR. Abdi, J. Gholami, S. Hemmati, Chemistry Select., 14 (2018) 1820-6.

[19] H. Veisi, S. Razeghi, P. Mohammadi, S. Hemmati. Materials Science and Engineering: C, 97 (2019) 624-31.

[20] H. Veisi, SA. Kamangar, P. Mohammadi, S. Hemmati. Appl. Organometal. Chem., (2019) 4909.

[21] MJ. Genin, DA. Allwine, DJ. Anderson, MR. Barbachyn, DE. Emmert, SA. Garmon, DR. Graber, KC. Grega, JB. Hester, DK. Hutchinson, J. Morris, J. medicinal chemistry, 43 (2000) 953-70.

[22] (a) RD .Larsen, EG .Corley, AO .King, JD .Carroll, P .Davis, TR .Verhoeven, PJ .Reider,

M .Labelle, JY .Gauthier, YB .Xiang, RJ .Zamboni, J. Organic Chemistry, 61 (1996) 3398-405.

(b) A. Nikseresht, S. Ghasemi, S. Parak, Polyhedron, 151 (2018) 112 -117.

[23] J. Marco-Contelles, E. Pérez-Mayoral, A. Samadi, MD. Carreiras, E. Soriano, Chemical reviews, 109 (2009) 2652-71.

[24] SM. Prajapati, KD. Patel, RH. Vekariya, SN. Panchal, HD. Patel, a review. Rsc Advances, 4 (2014) 24463-76.

[25] BS .Reddy, A .Venkateswarlu, GN .Reddy, YR .Reddy, Tetrahedron Letters, 54 (2013) 5767-70.

[26] XL. Zhang, QY .Wang, SR. Sheng, Q. Wang, XL. Liu. Synthetic Communications®, 39 (2009) 3293-304.

[27] A. Shaabani, E. Soleimani, Z. Badri, Synthetic communications, 37 (2007) 629-35.

[28] J. López-Sanz, E. Pérez-Mayoral, E. Soriano, M. Sturm, RM. Martín-Aranda, AJ. López-Peinado, J. Čejka, Catalysis today, 187 (2012) 97-103.

[29] A. Shaabani, E. Soleimani, Z. Badri, Monatshefte für Chemical Monthly, 137 (2006) 181-4.

[30] M, Dabiri, SC, Azimi, A. Bazgir, Monatshefte für Chemie-Chemical Monthly,138 (2007) 659-61.

[31] MA. Zolfigol, P. Salehi, M. Shiri, TF. Rastegar, A. Ghaderi, J. Iranian Chemical Society, 5 (2008) 490-7.

[32] E. Soleimani, S. Torkaman, H. Sepahvand, S. Ghorbani. Molecular diversity, (2019) 1-11.

[33] E. Tammari, A. Nezhadali, S. Lotfi, H. Veisi. Sensors and Actuators B, 241 (2017) 879– 886.

[34] D.V. Quang, J.E. Lee, J.-K. Kim, Y.N. Kim, G.N. Shao, H.T. Kim, Powder Technol., 235 (2013) 221–227.

[35] F. Heidari, M. Hekmati, H. Veisi, J. colloid and interface science, 501 (2017) 175-84.

Figure and scheme captions:

Scheme 1. Schematic diagram of Fe₃O₄@SiO₂/ISN/Cu(II) nanocatalyst preparation.

Fig. 1. FT-IR spectra of (a) Fe₃O₄, (b)Fe₃O₄@SiO₂/ISN and (c) Fe₃O₄@SiO₂/ISN/Cu(II).

Fig. 2. XRD patterns of Fe₃O₄@SiO₂/ISN/Cu(II) prepared nanocatalyst.

Fig. 3. VSM of Fe₃O₄@SiO₂/ISN/Cu(II) prepared nanocatalyst.

Fig. 4. TGA of Fe₃O₄@SiO₂/ISN/Cu(II) prepared nanocatalyst.

Fig. 5. TEM (a) and SEM (b) images of Fe₃O₄@SiO₂/ISN/Cu(II).

Fig. 6. EDX spectrum of Fe₃O₄@SiO₂/ISN/Cu(II) MNPs.

Fig. 7. Reusability of the catalyst for the synthesis of quinolines.

|--|

Sample	C (%)	O (%)	Si (%)	N (%)	Fe (%)	Cu (%)	Total (%)
Fe ₃ O ₄ @SiO ₂ /ISN/Cu(II)	27.03	46.18	17.75	3.69	5.09	0.26	100

Entry	Catalyst (mg)	Temperature (°C)	Time (h)	Yield (%) ^b
1	0.02	60	2	46
2	0.05	60	2	69
3	0.07	60	2	95
4	0.1	60	2	95
5	0.07	r.t	2	70
6	0.07	80	2	76

^a Reaction conditions: acetylaceton (1.2 mmol), 2-aminoaryl ketone (1 mmol), and the nanocatalyst. ^b Isolated yields.

Table 3. Synthesis of quinoline derivatives through Friedländer synthesis by Fe₃O₄@SiO₂/ISN/Cu(II) catalyst.

^a Conditions: acetylaceton deravatives (1.2 mmol) aminoaryl deravatives (1 mmol), and the nanocatalyst. ^b Yields isolated product.

Scheme 1.

Fig. 1.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Graphical Abstract

Synthesis of Fe₃O₄@SiO₂/isoniazid/Cu(II) magnetic nanocatalyst as recyclable catalyst for highly efficient preparation of quinolines in moderate condition

Shahram Lotfi, Ahmad Nikseresht and Nasrin Rahimi

efficient This paper reports the study on an procedure for preparation of Fe3O4@SiO2/Isoniazid/Cu(II) as a recoverable magnetic nanocatalyst. The structure of the synthesized nanocatalyst was investigated via different techniques namely VSM, TEM, SEM, EDS, TGA, XRD and FT-IR. Then the nanocatalyst was applied on Friedländer reactions for a highly efficient preparation of quinoline derivatives.