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Abstract—A novel inhibitor of ceramide trafficking, (1R,3R)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide
(HPA-12), has been synthesized using a chiral zirconium-catalyzed asymmetric Mannich-type reaction as a key-step. © 2001
Elsevier Science Ltd. All rights reserved.

Sphingolipid biosynthesis is now of great interest
because of its important roles in cell growth, differenti-
ation, and apotosis, etc.1 Enzymes that catalyze sphingo-
lipid biosynthesis are targets for chemists as well as
biologists to create new drugs. Our group has accom-
plished total synthesis of sphingofungin B,2 an inhibitor
of serinepalmitoyl transferase (SPT), and more recently,
khafrefungin,3 an inhibitor of inositol phosphoryl-
ceramide (IPC), and the structural relationship of bio-
logical activity has been clarified. In the course of our
investigations to search for a new molecule that shows

a characteristic property in sphingolipid biosynthesis,
we have found that (1R,3R)-N-(3-hydroxy-1-hydroxy-
methyl-3-phenylpropyl)dodecanamide (HPA-12, 1) is a
novel inhibitor of ceramide trafficking from endoplas-
mic reticulum to the site of sphingomyelin (SM) synthe-
sis. HPA-12 is the first compound of the specific
inhibitor for SM synthesis in mammalian cells, and a
potential drug that inhibits intracellular trafficking of
sphingolipids.4 In this report, we describe the first syn-
thesis of HPA-12 using a chiral zirconium-catalyzed
enantioselective Mannich reaction as a key-step.

Scheme 1.
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In the initial and key-step, we examined the three-com-
ponent reaction of an �-alkoxy aldehyde, 2-amino-m-
cresol, and 1-ethylthio-1-trimethylsiloxyethene in the
presence of a catalytic amount of a chiral zirconium
complex prepared from zirconium tert-butoxide, (R)-
6,6�-Br2BINOL, and N-methylimidazole(Scheme 1).5 It
was found that the alkoxy part of the aldehyde signifi-
cantly influenced the enantioselectivity of the product,
and that a high level of selectivity was obtained when
the tert-butyldimethylsiloxy group was used. The ben-
zyloxy group and more bulky tert-butyldiphenylsiloxy
group gave much lower selectivity.

The absolute configuration of the product 3c6 was
determined after converting to literature-known lactone
6 as shown in Scheme 2. Treatment of 3c with cerium
ammoniumnitrate (CAN) in acetonitrile–water (3:1)
gave amine-free adduct 4 in 61% yield. t-Butoxycar-
bonyl (Boc) protection of the amino group followed by

deprotection of the t-butyldimethylsiloxy group gave
the desired lactone 6 in high yield. Comparison of the
optical rotation of 6 with that in literature7 revealed
that the absolute configuration of Mannich adduct 3c
was R.

The preparation of HPA-12 from 3c was performed
according to the transformations shown in Scheme 3.
The adduct 4 was acylated under standard conditions
to give amide 7 in 81% yield. Conversion of 7 to ketone
8 was performed using diphenylcopper lithium in THF
at −15°C for 1 h. While the yield of 8 was moderate
(37%), 55% of the starting material (7) was recovered
(82% conversion yield). Anti-selective reduction of 8
proceeded using L-Selectride® in THF at −78°C (92%,
syn/anti=23/77).8 The use of lithium borohydride
instead of L-Selectride® gave lower selectivity (82%,
syn/anti=54/46). These selectivity would be explained
by the preferential conformation of 8.9 Finally, depro-
tection of the tert-butyldimethylsiloxy group of 9 using
tetrabutylammonium fluoride gave HPA-12 in 99%
yield. After recrystallization from ether/hexane, HPA-
12 was obtained in 96% ee.10

Thus, HPA-12, a novel inhibitor of ceramide traffick-
ing, has been synthesized using a chiral zirconium-cata-
lyzed Mannich-type reaction as a key-step. Based on

Scheme 2.

Scheme 3.
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Scheme 4.

this synthetic scheme, we have synthesized all four
stereoisomers of HPA-12, and confirmed that only the
(1R,3R)-isomer showed high activity.4 Further investi-
gations to search for more active compounds as well as
to clarify biological aspects of the inhibition are now in
progress.
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