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Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan
(VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as tradi-
tional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were
applied with and without variable selection procedure (Genetic Algorithm GA) and data compression
procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS,
ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw
materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experi-
mental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen
mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate
the prediction ability of the suggested methods. The validity of the proposed methods was assessed using
the standard addition technique.

� 2013 Elsevier B.V. All rights reserved.
Introduction

Amlodipine (AML), 2-[(2-aminoethoxy)methyl]-4-(2-chloro-
phenyl)-1,4-dihydro-6-methyl-3,5-pyridine carboxylic acid
3-ethyl 5-methyl ester) [1] (Fig. 1a) is a dihydropyridine derivative
acts as a calcium channel blocker. It is used in the management of
hypertension, stable angina and variant angina [2].

Valsartan (VAL), N-[p-(o-1H-Tetrazol-5-ylphenyl)benzyl]-N-
valeryl-L-valine [1] (Fig. 1b), is an antagonist of the angiotensin-II
AT1-receptor. It is used for treatment of hypertension, heart
failure, and post-myocardial infarction [3].

Hydrochlorothiazide (HCT), 6-chloro-3,4-dihydro-2H-1,2,
4-benzothiadiazine-7-sulphonamide-1,1-dioxide [1] (Fig. 1c), is
a benzothiadiazines diuretic widely used in antihypertensive
pharmaceutical formulations [4].

Literature survey revealed that AML and HCT are official in
British Pharmacopoeia [5], while VAL, HCT and their mixture are
official in United States Pharmacopoeia [6]. There are many re-
ported methods for the determination of AML, VAL or HCT in differ-
ent dosage forms [7–14], but only few chromatographic methods
were reported for the simultaneous estimation of AML, VAL and
HCT in their ternary mixture [15–19]. Also, spectrophotometric
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Fig. 1. Structural formulae for (a) Amlodipine, (b) Valsartan, and (c) Hydrochlorothiazide.
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and traditional chemometric methods were applied on this
mixture [20–22].

The rationales of this work were to:

a. Develop simple and accurate methods for the simultaneous
determination of AML, VAL and HCT in their tablets.

b. Show the effect of variable selection (GA) and data compres-
sion (PCA) methods on enhancing the prediction power of
different chemometric models.

Neural networks

Artificial Neural Network (ANN) is a type of artificial intelli-
gence method that resembles biological nervous system in having
the ability to find the relationship between inputs and outputs. A
network is made up of a number of interconnected nodes (called
neurons) arranged into three basic layers (input, hidden and out-
put) that are interconnected by connections called weights. The
type of ANN used in this manuscript is feed-forward network
trained with the back propagation of errors learning algorithm.
The input nodes in this representation perform no computation
but are used to distribute inputs into the network. It is called
feed-forward ANN as information passes one way through the net-
work from the input layer, through the hidden layer and finally to
the output layer. The outputs (predicted concentrations) are com-
pared with targets (actual concentrations), and the difference be-
tween them is called error [23]. ANN parameters to be optimized:

– The transfer functions: There are two transfer functions used in
ANN; one between input and output of a node in the hidden
layer and the other is applied in output layer. The use of these
functions depends on relationship between the inputs and out-
puts. Tansig-purelin transfer functions are commonly used for
non-linear systems [24] while purelin-purelin functions are
used for linear ones [25].

– Hidden neurons number (HNN): It is related to the converging
performance of the output error function during the learning
process.

– Number of neurons: Unfortunately, there are no fixed rules as to
how many neurons should be included in the hidden layer. If
there are too few nodes in the hidden layer the network may
have difficulty generalizing to problems it has never encoun-
tered before. On the other hand, if there are too many nodes
in the hidden layer, the network may take an unacceptably long
time to learn anything of any value.

– Lc, Lcd and Lci: The learning coefficient (Lc) controls the degree
at which connection weights are modified during the learning
process. The learning coefficient decrease (Lcd) and learning
coefficient increase (Lci) control the variation of Lc value. It var-
ies as a function of performance of the ANN.

Experimental

Materials and reagents

– Amlodipine; kindly supplied by Al-Hekma pharmaceutical Com-
pany, Egypt, its purity was certified to be 99.9 ± 0.7.

– Valsartan; kindly supplied by Novartis pharmaceutical Com-
pany, Egypt, its purity was certified to be 99.7 ± 0.2.

– Hydrochlorothiazide; kindly supplied by Al-Hekma pharma-
ceutical Company, Egypt, its purity was certified to be
99.8 ± 0.4.

– EXFORGE HCT� tablet dosage forms; labeled to contain 5(AML)/
160(VAL)/12.5(HCT) mg batch number 5002125, 5/160/25 mg
batch number 5002141 and 10/320/25 mg batch number
5002159, manufactured by Novartis Pharmaceuticals Corpora-
tion, USA. They were procured from U.S.A. market.

– Methanol; El-NASR Pharmaceutical Chemicals Co., Egypt.

Instruments

SHIMADZU dual beam UV–visible spectrophotometer (Kyoto/
Japan), model UV-1650 PC connected to IBM compatible and a
HP1020 laserjet printer. The bundled software, UV-Probe personal
spectroscopy software version 2.21 (SHIMADZU) was used. The
spectral band was 2 nm and scanning speed is 2800 nm/min with
0.1 nm interval.

Software

All chemometric methods were implemented in Matlab�

7.0.0.19920 (R14). PLS, GA-PLS, ANN, GA-ANN and PCA-ANN were
carried out by using PLS toolbox software version 2.1 in conjunction
with Neural Network toolbox. The t-test and F-test were performed
using Microsoft� Excel. All calculations were performed using a Dual
CPU, 1.47 GHz, 2.00 GB of RAM under Microsoft Windows Vista™.

Procedures

Standard solutions

(a) Standard stock solutions of AML, VAL and HCT 1 mg/mL in
methanol.

(b) Standard working solutions for AML and VAL 80 lg/mL and
for HCT 62.5 lg/mL were prepared from stock solutions by
appropriate dilutions with methanol.



Fig. 2. Zero order absorption spectrum of 20 lg/mL AML (. . .), 20 lg/mL VAL (–) and
20 lg/mL HCT (– – –) using methanol as blank.
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Spectral characteristics of AML, VAL and HCT
The zero-order (D0) absorption spectra of AML, VAL and HCT

(20 lg/mL for each) solutions were recorded against methanol as
a blank over a range of 200–400 nm.

Experimental design for chemometric methods
A 5-level, 3-factor design was performed using 5 concentration

levels for each of the 3 compounds to be analyzed. The design
spans the mixture space fairly well; where there are 5 mixtures
for each compound at each concentration level, resulting in 25
mixtures [26]. The central level of the design is 6, 32 and
9.375 lg/mL for AML, VAL and HCT, respectively. The concentra-
tion for each level for each compound is based on the calibration
range of each drug, the ratio of AML, VAL and HCT in the market
pharmaceutical product was involved. Table 1 represents the con-
centration design matrix. The regions from 200 to 230 nm were
rejected. Fifteen mixtures of this design were used as a calibration
set and the other 10 mixtures were used as a validation set to test
the predictive ability of the developed multivariate models.

Analysis of AML, VAL and HCT in EXFORGE HCT� tablets by the
proposed methods

Five tablets of each Exforge HCT� formulation were accurately
weighed and finely powdered. An amount of the powder equiva-
lent to 8 mg VAL was weighed and dissolved in methanol by
shaking in ultrasonic bath for about 30 min. The solutions were fil-
Table 1
The 5-level, 3-factor experimental design shown as concentrations of the mixture
components in lg/mL.

Mix. No. AML VAL HCT

1. 6 32 9.375

2. a 10 28 15.625

3. 6 24 3.125

4. 10 32 6.25

5. 2 24 15.625

6. 4 36 15.625

7. 2 40 6.25

8. 8 40 12.5

9. 4 40 9.375

10. 10 36 9.375

11. 6 28 6.25

12. 8 32 15.625

13. 4 28 12.5

14. 10 40 3.125

15. 6 40 15.625

16. 8 24 9.375

17. 10 24 12.5

18. 8 36 6.25

19. 2 36 3.125

20. 8 28 3.125

21. 2 32 12.5

22. 6 36 12.5

23. 4 24 6.25

24. 2 28 9.375

25. 4 32 3.125
a The shaded rows represent the validation set
tered into separate 100-mL measuring flasks, and the volume was
completed with methanol. Five mL aliquots were transferred into
10-mL measuring flasks and suitable aliquots of AML were
transferred from their standard working solutions for spiking the
solutions to reach concentrations within linearity range and then
volumes were completed with methanol. The spectra of these
solutions were scanned from 200 to 400 nm, stored in the
computer and analyzed by the proposed methods.

Results and discussion

The absorption spectra of the three compounds, AML, VAL and
HCT show highly overlapped spectral band in the region 200–
300 nm as shown in Fig. 2. Only AML can be determined by zero
order spectrophotometry.

The goal of this study was to develop accurate and simple che-
mometric methods for simultaneous determination of AML, VAL
and HCT in their pharmaceutical preparations and to present the
effect of data compression and variable selection procedures on
enhancing the predictive power of PLS and ANN models.

The first step in model building, involves constructing the cali-
bration matrix for the ternary mixture. In this study the model was
optimized with the aid of the 5-level 3-factor design [26] resulting
in 25 sample mixtures. Table 1 shows the composition of the 25
sample mixtures. These 25 sample mixtures were split to 15 train-
ing mixtures (for building the models) and 10 validation mixtures
(for measuring predictive power of the models).

The quality of multicomponent analysis is dependent on the
wavelength range and spectral mode used [27]. The wavelengths
used were in range 231–400 nm for AML, 231–320 nm for VAL
and 231–360 nm for HCT. Wavelengths less than 231 nm were re-
jected due to the noisy content. Wavelengths more than 320 nm
for VAL and 360 nm for HCT were not used because corresponding
compounds do not absorb in these regions.

Variable selection: Genetic Algorithm (GA)

Molecular spectroscopy has been greatly improved by the use of
variety of multivariate statistical methods [28,29]. Methods such
as Partial Least Squares (PLS) or principal component regression
(PCR), allow to take into account the whole spectrum without
performing variable selection [30]. It has been recognized that an
efficient variable selection can be beneficial to improve the
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predictive ability of the model and to reduce its complexity [31].
Several techniques devoted to variable selection in PLS models ap-
plied to spectral data have been presented [32,33]. It has already
been shown that Genetic Algorithms (GAs) can be successfully
used as a variable selection technique [34,35]. The architecture of
a GA can be divided into five components: Initiation, Evaluation,
Exploitation, Exploration and Mutation. An important issue of suc-
cessful GA performance is the adjustment of GA parameters [36].

The fitness values were used as response variables. Mutation
rate was 0.005 in all cases as when it increased above this value,
no convergence occurred between average fitness and best fitness
values and model stop. The adjusted GA parameters are shown in
Table 2.

The GA was run on 170, 90 and 130 variables for AML, VAL and
HCT, respectively, using a PLS with maximum number of factors
allowed is the optimal number of components determined by
cross-validation on the model containing all the variables, and
the selected variables were used for running of PLS model and as
input data for ANN. GA reduced absorbance matrix to about
36–46% of the original matrix (62, 42 and 54 wavelengths for
AML, VAL and HCT, respectively).
Partial Least Squares (PLS-1)

The purpose of PLS method is to build a calibration model be-
tween the concentration of the analytes under study (AML, VAL
and HCT in our case) and the latent variables of the data matrix
[37]. Two different approaches can be used in Partial Least Squares
called PLS-1 and PLS-2. PLS-2 uses the whole information about the
concentration of all components to form latent variables (LVs),
while PLS-1 uses only the information about the concentration of
one component to create the LVs used by the model [38].

Including extra LVs in the model increases the possibility of the
known problem of overfitting. On the other hand, if the number of
LVs was too small meaningful data that could be necessary for the
calibration might be discarded. Therefore optimization of number
of the LVs is a critical issue in PLS method. Leave one out (LOO)
cross validation [39] and the bootstrap [40] can be applied to
predict the optimum number of PLS components.

PLS-1 method was run on the calibration data of absorption
spectra. To select the number of factors in the PLS-1 algorithm, a
cross validation (CV) method leaving out one sample at a time
[41] was applied using calibration set of 15 calibration spectra.
RMSECV (Root Mean Squares Error of Cross-Validation) indicates
both of the precision and accuracy of predictions. It was recalcu-
lated upon addition of each new factor to the PLS-1. The method
developed by Haaland and Thomas [28] was used for selecting
Table 2
Parameters of the Genetic Algorithms.

Parameter Value

Population size 20
Maximum generations 50
Mutation rate 0.005
The number of variables in a window (window width) 2
Per cent of population the same at Convergence 100, except VAL

(50)
% Wavelengths used at initiation 50
Crossover type Single
Maximum number of latent variables 3, except AML (2)
Cross validation Random
Number of subsets to divide
Data into for cross validation 4
Number of iterations for cross validation at each

generation
2

the optimum number of factors, which involves selecting that
model including the smallest number of factors that results in an
insignificant difference between the corresponding RMSECV and
the minimum RMSECV Fig. 3.

ANN

The large number of nodes in input layer of the network
(wavelength readings) increases the CPU time for ANN modeling,
the absorbance matrix was reduced either by Genetic Algorithm
(variable selection procedure) to about 36–46% of the original ma-
trix or Principal Component Analysis (PCA) (variable compression
procedure) to three principal components. Thus three ANNs
(ANN, GA-ANN and PC-ANN) were applied in our work. The output
layer is the concentration matrix of one component. The hidden
layer consists of just single layer which has been considered suffi-
cient to solve similar or more complex problems. Moreover, more
hidden layers may cause overfitting [25].

The values of the optimized ANN parameters for each drug are
shown in Table 3. From the most important parameters that should
be optimized carefully, transfer function pair. Choosing of transfer
function depends on the nature of data you work on. In our case,
purelin–purelin transfer function was implemented in our models
due to linear correlation between absorbance and concentration.

After optimization of architectures and parameters of the ANNs,
the training step was done. ANN was trained by different training
functions and there was no difference in performance (no decrease
in Mean Square Error MSE). Levenberg–Marquardt back propaga-
tion (TRAINLM) [42] was thus preferred as it is time saving. To
avoid overfitting of our model, the validation set was encountered
in training step and ANN stops when MSE of calibration set de-
creased and that of validation set increased. Analysis from raw
data, Genetic Algorithm model and Principal Component Analysis
was implemented to test for improvement of predictions.

The proposed chemometric methods were run on the calibra-
tion data using optimal parameters. The concentrations of the
three drugs in the calibration set (15 mixtures) were calculated.
By plotting predicted concentrations of each component versus
actual concentrations, a straight line was obtained (Table 1, Sup-
plementary Material). In order to validate the proposed methods,
the validation set (10 mixtures) was analyzed with the proposed
methods (Table 4).

The proposed PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN
methods were successfully applied for the determination of AML,
VAL and HCT in Exforge HCT� tablets, Table 5. The validity of the
proposed methods was further assessed by applying the standard
addition technique (Table 2, Supplementary Material).

The results obtained for the analysis of AML, VAL and HCT in Ex-
forge HCT� tablets by the suggested methods were statistically
compared with those obtained by applying the reported HPLC
method [16] and no significant difference between the results
was obtained as shown in Table 6.

GA reduced the optimal number of latent variables of PLS-1
model for AML from three into two factors. Also, recoveries and
RMSEP (Root Mean Square Error of Prediction) were decreased
indicating a better resolution power of GA-PLS model than PLS-1
model (Table 4).

GA allowed the use of less number of neurons (shorter training
time) for AML than those used in the network utilized the raw data.
While PCA-ANN did not show any improvement than ANN, even
the results were worse (Table 4). These results indicate that vari-
able selection models (GA) are more suitable than data compres-
sion procedure (PCA), when preceding ANN, for the analysis of
this ternary mixture. This result may be attributed to the fact
that GA introduces the most relevant wavelengths to the drug
concentration.



AML-1 AML-2

VAL-1 VAL-2

HCT-1 HCT-2

Fig. 3. The optimum number of LV for AML, VAL and HCT concentration prediction from (1) raw data and from (2) GA model.

Table 3
Optimized parameters of ANNs.

Method ANN GA-ANN PCA-ANN

Drug AML VAL HCT AML VAL HCT AML VAL HCT

Architecture 170-10-1 90-10-1 130-1-1 62-7-1 42-10-1 54-1-1 3-3-1 3-3-1 3-3-1
Hidden neurons number 10 10 1 7 10 1 3 3 3
Transfer functions Purelin–Purelin
Learning coefficient 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Learning coefficient decrease 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Learning coefficient increase 100 100 100 100 100 100 100 100 100

748 H.W. Darwish et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 122 (2014) 744–750



Table 4
Determination of AML, VAL and HCT in validation set by the proposed chemometric methods.

Concentration (lg/mL) PLS-1 GA-PLS ANN GA-ANN PCA-ANN

Recovery %a

AML VAL HCT AML VAL HCT AML VAL HCT AML VAL HCT AML VAL HCT AML VAL HCT

10 28 15.625 99.8 100.6 99.4 99.2 99.9 99.3 100.2 99.3 98.8 100.3 99.3 99.4 99.0 101.1 97.7
10 32 6.25 98.8 100.3 100.4 99.0 100.0 101.5 98.7 99.7 100.1 98.6 99.8 100.1 98.8 100.4 102.9
4 36 15.625 99.8 99.7 99.2 99.2 99.5 99.4 99.7 98.7 99.4 100.0 99.3 99.3 101.6 99.7 99.8
8 40 12.5 98.6 100.6 101.0 99.3 100.6 100.9 99.3 99.5 100.7 99.8 100.0 100.9 98.6 101.2 101.2
10 36 9.375 98.9 99.0 101.4 98.9 99.4 100.4 98.9 99.3 100.8 99.0 99.3 101.1 97.3 99.6 101.4
8 32 15.625 99.2 98.8 100.9 99.2 99.1 101.0 99.3 99.2 100.0 99.9 99.3 100.0 98.6 98.5 100.9
10 40 3.125 98.9 99.6 100.9 99.4 99.0 101.0 99.2 99.7 101.1 99.6 99.6 100.7 99.0 98.6 101.0
8 24 9.375 102.4 98.6 99.2 102.0 99.9 100.0 99.6 99.8 98.8 99.5 99.8 99.2 102.4 98.6 99.4
8 36 6.25 98.6 98.7 100.9 99.8 99.3 100.0 101.0 100.4 100.4 100.4 100.3 100.3 99.4 98.5 102.1
8 28 3.125 99.6 99.0 100.9 100.3 99.1 100.4 100.7 99.4 100.9 100.7 99.3 100.2 98.0 97.9 100.5

Mean 99.5 99.5 100.4 99.6 99.6 100.4 99.7 99.5 100.1 99.8 99.6 100.1 99.3 99.4 100.7
RSD% 1.1 0.8 0.8 0.9 0.5 0.7 0.8 0.4 0.8 0.6 0.4 0.7 1.6 1.2 1.5
RMSEPb 0.10 0.29 0.09 0.08 0.22 0.08 0.07 0.23 0.08 0.06 0.17 0.07 0.14 0.41 0.16

a Average of three determinations.
b Root Mean Square Error of Prediction.

Table 5
Determination of AML, VAL and HCT in Exforge HCT� tablets by the proposed ANN and GA-ANN methods.

Product Drug PLS-1a GA-PLSa ANNa GA-ANNa PCA-ANNa

Exforge HCT� 5/160/12.5 AML 99.9 ± 0.8 100.1 ± 0.4 99.7 ± 1.0 99.9 ± 0.7 100.2 ± 1.1
VAL 100.1 ± 0.9 100.1 ± 0.6 100.1 ± 0.6 100.1 ± 0.7 99.6 ± 0.9
HCT 99.7 ± 0.9 100.0 ± 0.8 100.8 ± 0.6 100.2 ± 0.6 100.0 ± 0.6

Exforge HCT� 5/160/25 AML 100.0 ± 0.8 99.6 ± 1.0 99.7 ± 1.2 99.8 ± 0.8 99.7 ± 0.8
VAL 100.0 ± 1.0 100.2 ± 0.8 100.5 ± 0.9 100.1 ± 0.8 100.0 ± 0.9
HCT 99.7 ± 0.8 99.6 ± 0.6 100.3 ± 1.0 99.8 ± 0.7 99.6 ± 1.0

Exforge HCT� 5/160/25 AML 100.7 ± 1.1 100.7 ± 1.1 100.6 ± 1.1 100.3 ± 1.0 100.5 ± 1.1
VAL 99.5 ± 1.2 99.7 ± 1.1 99.7 ± 0.8 99.7 ± 1.0 99.7 ± 1.3
HCT 99.8 ± 0.9 99.6 ± 1.3 99.9 ± 0.8 99.9 ± 1.0 99.9 ± 1.8

a Average of three determinations.

Table 6
Statistical comparison for the results obtained by the proposed methods and the reported method [16] for the analysis of AML, VAL and HCT in Exforge HCT� tablets.

Value Mean RSD% n Variance Student’s t testa (2.12) F valuea (3.44)

PLS-1 AML 100.2 0.9 9 0.790 0.032 1.472
VAL 99.9 1.0 9 0.904 0.899 1.697
HCT 99.8 0.7 9 0.533 0.822 1.109

GA-PLS AML 100.1 0.9 9 0.855 0.164 1.593
VAL 100.0 0.8 9 0.601 0.700 1.128
HCT 99.7 0.8 9 0.680 0.803 1.416

ANN AML 100.0 1.0 9 1.031 0.457 1.920
VAL 100.1 0.7 9 0.558 0.401 1.047
HCT 100.3 0.8 9 0.657 0.866 1.369

GA-ANN AML 100.0 0.8 9 0.594 0.618 1.107
VAL 100.0 0.8 9 0.586 0.693 1.099
HCT 99.9 0.7 9 0.511 0.257 1.064

PCA-ANN AML 100.1 0.9 9 0.856 0.198 1.596
VAL 99.8 0.9 9 0.885 1.177 1.661
HCT 99.8 1.1 9 1.224 0.543 2.547

Reported Methodb AML 100.2 0.7 9 0.537 – –
VAL 100.2 0.7 9 0.533
HCT 100.0 0.7 9 0.480

a The values in the parenthesis are the corresponding theoretical values of t and F at P = 0.05.
b HPLC method using Luna C18 column, a mobile phase consisting of methanol – phosphate buffer (30 mM, pH 5.5) (62:38 by volume) at a flow rate of 1 mL/min and UV

detection at 234 nm.
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ANN gave better recoveries & RMSEP than PLS-1 (Table 4),
which may be due to the fact that ANN is a type of artificial
intelligence and that in ANN there is no chance for overfitting that
may occur in PLS calibrations.
The proposed chemometric methods show higher sensitivity
over the sequential spectrophotometric method [22] and better
mean recovery and RMSEP than the traditional methods applied
in our previous work [20] being advanced methods using artificial
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intelligence and preceded by variable selection or data compres-
sion procedures.

Conclusion

Five chemometric methods (PLS-1, GA-PLS, ANN, GA-ANN and
PCA-ANN) have been presented as powerful chemometric methods
to resolve the ternary mixture of AML, VAL and HCT in their
powder and pharmaceutical dosage forms. The effect of GA and
PCA as preceding step for chemometrics was studied. The results
in this paper suggested that the proposed methods can be
classified among accurate and sensitive methods. These merits
show the possibility to use the proposed methods in quality
control analysis of AML, VAL and HCT in laboratories lacking liquid
chromatographic instruments.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.saa.2013.11.045.
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