Selective Oxidation of *N*-Alkyl Imines to Oxaziridines using UHP/Maleic Anhydride system

Jafar Asgarian Damavandi,^a Bahador Karami,^a Mohammad Ali Zolfigol*^b

^a Faculty of Chemistry, University of Teacher Training, Tehran, I. R. Iran

^b Chemistry Department, College of Science, Bu-Ali Sina University, Hamadan, Zip Code 65174, Post Box No. 4135, I. R. Iran E-mail: Zolfi@basu.ac.ir

Received 28 February 2002

Abstract: Several structurally differentiated N-alkyl imines were oxidized to their corresponding oxaziridines using UHP/maleic anhydride system. Oxidation reaction was performed under mild conditions and oxaziridines were obtained in good to excellent yields.

Key words: UHP, N-alkyl imines, oxaziridines

Oxaziridines are useful aprotic oxidizing reagents for a large variety of substrates. The aprotic nature of these reagents has made possible the facile synthesis of extremely acid-sensitive species such as α -siloxy epoxides¹ and sulfenic acids.² In recent years, the asymmetric oxidation of prochiral centers to the desired optically active products by using chiral oxaziridines have received considerable attention.³

Several methods have been employed for the oxidation of imines into the corresponding oxaziridines. The most general reagent is *m*-chloroperbenzoic acid.^{4,5} Other oxidizing agents such as buffered oxone[®] (2KHSO₅·KHSO₄·K₂SO₄)⁶, in situ generation of sulfonic or carboxylic peracids,⁷ and molecular oxygen in the presence of transition-metal complexes⁸ have been also used.

Although a variety of reagents are capable of affecting these oxidations,^{1–8} as far as we know this transformation is not so easy and is a tricky step because these compounds are very sensitive to the oxidizing agents and reaction conditions. However, most of the reported reagents produce by-products, which either destroy, or are difficult to remove from the sensitive oxaziridines. For example, *m*-chloroperbenzoic acid is expensive and large-scale oxidations are sometimes contaminated with bis-(m-chloroperbenzoyl) peroxide, which complicates product purification. Meanwhile, we also know that imines are susceptible to hydrolysis in aqueous media.^{1–8} For these reasons an oxidizing reagent that would avoid these difficulties was sought. Therefore, we were interested in finding a new reagent or reagent system to overcome the above limitations and we have investigated a number of different reaction conditions based upon the in situ generation of H₂O₂. In continuing our studies on the application of oxone[®] $(2KHSO_5 \cdot KHSO_4 \cdot K_2SO_4)^{9-11}$ and H_2O_2 we found that UHP^{12} [I an addition compound of hydrogen

peroxide and urea] is the best candidate for this purpose. A survey of the literature revealed that UHP I is an inexpensive, stable, and easy to handle source of pure H_2O_2 .¹³ In the last few years, several reports appeared on the use of UHP in the oxidations, namely for the conversion of amines to nitroalkane,¹⁴ Baeyer–Villiger oxidations of ketones to lactones,¹⁵ oxidations of sulfides to sulfones,¹⁶ oxidation of aromatic aldehydes,¹⁷ aromatization of 1,4-dihydropyridines,¹⁸ selective oxidation of uracil and adenine derivatives,¹⁹ epoxidation of alkenes,²⁰ and conversion of pyridines to pyridine *N*-oxides under different conditions.^{21,22} Thus, in this article we wish to report a simple, cheap and convenient method for the effective conversion of *N*-alkyl imines **1** to their corresponding oxaziridines **2** under mild conditions (Scheme).

A good range of N-alkyl imines **1** were subjected to the oxidation reaction in the presence of UHP **I**, and maleic anhydride in methanol. The oxidation reactions were performed under mild conditions at 0 °C with good to excellent yields (Scheme). The reactions were completed after 40–50 min. Highly pure oxaziridines **2** were finally obtained after removing of solvent.^{23,24}

$UHP = H_2N \bigvee_{NH_2 \cdots HO-OH}^{O}$									
	I								
R^{1} CH=N R^{2} $$ UHP, Maleic anhydr CH ₃ OH, 0 °C				\rightarrow R ¹	N_{R^2}				
	1				2				
1, 2	R^1	R^2	1, 2	\mathbf{R}^1	R^2				
а	Ph	CH_2Ph	d	2-Furyl	<i>n</i> -Bu				
b	$4\text{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$\mathrm{CH}_2\mathrm{Ph}$	e	<i>n</i> -Pr	<i>n</i> -Bu				
c	$4\text{-}CH_3C_6H_4$	<i>n</i> -Bu	f	<i>n</i> -Bu	iso-Pr				
		I	•						

Scheme

Unlike *N*-alkyl imines **1a–f**. (Table, entries 1–6) *N*-aryl imines (Table, entries 7 and 8) were converted to the corresponding nitrones. The remaining of conjugation in N-aryl imines may be the main reason why nitrones are formed instead of oxaziridines. We hope that the described method due to the its non-toxicity makes the UHP/

Synlett 2002, No. 6, 04 06 2002. Article Identifier: 1437-2096,E;2002,0,06,0933,0934,ftx,en;G03502ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

TableOxidation of N-Alkyl Imines 1 to the Corresponding Oxaziridines2 and of N-Aryl Imines to the Corresponding Nitrones with aCombination of UHP I and Maleic Anhydride in Methanol at 0 °C

Entry	Substrate	Product	Time (min)	Yield ^a (%)
1	1a	2a	40	95
2	1b	2b	40	95
3	1c	2c	45	93
4	1d	2d	50	90
5	1e	2e	50	80
6	1f	2f	50	80
7	PhCH=NPh	O I PhCH=NPh	40	85
8	O NPh	O O-NPh	40	95

^a Isolated yields.

maleic anhydride system a reagent of choice for replacing transition metals-based oxidants.^{25–27}

In conclusion, practical and efficient oxidation of *N*-alkyl imines was achieved using the present methodology. The UHP, with easy preparation and handling can act as a safe, stable and efficient reagent for this transformation under mild conditions. We believe that the present methodology is an important addition to existing methodologies.

Acknowledgement

Financial support for this work by the research affairs of University of Teaching Training, Tehran, I. R. Iran, and also Bu-Ali Sina University, Hamadan, I. R. Iran, are gratefully acknowledged.

References

- (1) Davis, F. A.; Sheppard, A. C. J. Org. Chem. 1987, 52, 954.
- (2) Davis, F. A.; Billmers, R. H. J. Am. Chem. Soc. **1981**, 103, 7016.
- (3) (a) Davis, F. A.; Jenkines, R. H. Jr. Asymmetric Synthesis: Synthesis and Utilization of Compounds with Chiral Nitrogen Centers; Academic Press, INC.: New York, 1985, Chap. 4, 313–345. (b) Davis, F. A.; Sheppard, A. C. Tetrahedron 1989, 45, 5703.
- (4) Kidwai, M.; Dave, B.; Kohli, S. Indian J. Chem. 1999, 38B, 728.
- (5) Davis, F. A.; Stringer, O. D. J. Org. Chem. 1982, 47, 1774.

- (6) Davis, F. A.; Chattopadhyay, S.; Towson, J. C.; Lal, S.; Reddy, T. R. J. Org. Chem. 1988, 53, 2087.
- (7) (a) Kluge, R.; Schulz, M.; Liebsch, S. *Tetrahedron* 1996, *52*, 5773. (b) Schirmann, J. P.; Weiss, E. F. *Tetrahedron Lett.* 1972, 633.
- (8) (a) Martiny, L.; Jorgensen, K. A. J. Chem. Soc. Perkin Trans. 1 1995, 699. (b) Auret, B. J.; Boyd, D. R.; Coulter, P. B. J. Chem. Soc., Chem. Commun. 1984, 463.
- (9) Zolfigol, M. A.; Bagherzadeh, M.; Madrakian, E.; Ghaemi, E.; Taqian-nasab, A. J. Chem. Res. (S) **2001**, 140.
- (10) Zolfigol, M. A.; Bagherzadeh, M.; Chehardoli, G.; Mallakpour, S. E. Synth. Commun. 2001, 31, 1149.
- (11) Zolfigol, M. A.; Bagherzadeh, M.; Ghorbani Choghamarani, A.; Keypour, H.; Salehzadeh, S. Synth. Commun. 2001, 31, 1661.
- (12) Zolfigol, M. A.; Bagherzadeh, M.; Chehardoli, G.;
 Mallakpour, S. E.; Mamaghani, M. J. Chem. Res. (S) 2001, 390.
- (13) Cooper, M. S.; Heaney, H.; Newbold, A. J.; Sanderson, W. R. *Synlett* **1990**, 533.
- (14) Ballini, R.; Marcantoni, E.; Petrini, M. *Tetrahedron Lett.* 1992, *33*, 4835.
- (15) (a) Astodillo, L.; Galindo, A.; Gonzalez, A. G.; Mansilla, H. *Heterocycles* 1993, *36*, 1075. (b) Uchida, T.; Katsuki, T. *Tetrahedron Lett.* 2001, *42*, 6911.
- (16) Balicki, R. Synth. Commun. 1999, 29, 2235.
- (17) Heaney, H.; Newbold, A. J. *Tetrahedron Lett.* 2001, 42, 6607.
- (18) Perez, J. M.; Lopez-Alvardo, P.; Pascual-Alfonso, E.; Avendano, C.; Menendez, J. C. *Tetrahedron* 2000, *56*, 4575.
 (10) Salandina, R.; Caducci, R.; Danti, M. C.; Crastini, C.;
- (19) Salandino, R.; Carlucci, P.; Danti, M. C.; Crestini, C.; Mincione, E. *Tetrahedron* 2000, *56*, 10031.
- (20) (a) Pietikainen, P. J. Mol. Cat. A: Chem. 2001, 165, 73.
 (b) Kureshy, R. I.; Khan, N. H.; Abdi, S. H. R.; Patel, S. T.; Jasra, R. V. Tetrahedron: Asymmetry 2001, 12, 433.
- (21) Varma, R. S.; Naicker, K. P. Org. Lett. 1999, 1, 189.
- (22) Caron, S.; Do, N. M.; Sieser, J. E. *Tetrahedron Lett.* **2000**, *41*, 2299.
- (23) Yields refer to isolated pure products. The oxidation products were characterized by comparison of their spectral (IR, ¹H NMR, and ¹³C NMR) and physical data with the authentic samples.
- (24) Oxidation of *N*-benzylphenyl imine(**1a**) to 2-benzyl-3phenyl oxaziridine(**2a**) with UHP/maleic anhydride system. A typical procedure: A suspension of compound **1a** (0.390 g, 2 mmol), **I** (0.188 g, 2 mmol), maleic anhydride (0.176 g, 2 mmol) in methanol (8 mL) was stirred at 0 °C. The progress of the reaction was monitored by TLC (eluent, EtOAc–*n*hexane, 1:5). The reaction was completed after 40 min. The reaction mixture was filtered and the filtrate was passed through a short pad of silica gel. Methanol was removed under reduced pressure. Highly pure oxaziridine(**2a**) was obtained in 95% yield (0.354 g). (FT-NMR 500 MHz) CDCl₃: δ_{ppm} 4.03–4.22 (dd, 2 H), 4.8 (s, 1 H), 7.45–7.6 (m, 10 H).^{7a}
- (25) Cicchi, S.; Marradi, M.; Goti, A.; Brandi, A. *Tetrahedron Lett.* **2001**, *42*, 6503.
- (26) Nakama, K.; Seki, S.; Kanemasa, S. Tetrahedron Lett. 2001, 42, 6719.
- (27) Long, A.; Baldwin, S. W. Tetrahedron Lett. 2001, 42, 5343.