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Introduction

Azo compounds, some of the most important synthetic 
highly colored dyes, are widely distributed.1–3 At present, 
about 3000 azo dyes are known to be in use in various fields 
around the world.4 For instance, azo dyes are used in textile 
dyeing, histology dyeing, drug colorimetric analysis, cos-
metics, food, digital printing, photographic colorants, and 
so on.5–12 However, azo compounds also have excellent 
optical and photoelectric properties13,14 and can be used to 
diagnose Alzheimer’s disease.15 In addition, some azo com-
pounds have been reported to possess antibacterial and 
antifungal activities.16,17 Due to their broad applications, 
many reports have focused on the preparation of synthetic 
azo compounds.18–20

The traditional approach for the preparation of azo com-
pounds is usually divided into two steps: first, aromatic pri-
mary amines are diazotized to form diazonium salts using 
mineral acids, and then the so formed diazonium salts are 
coupled with active aromatic compounds under alkaline con-
ditions.21 This classical synthetic method is limited by the 
need for low reaction temperatures and, especially, the usage 
of acidic or alkaline reagents22,23 which violate the principles 
of green chemistry and cause permanent pollution to the envi-
ronment.24 Therefore, in recent years, many researchers have 
devoted themselves to exploring mild and green synthetic 

strategies, especially on developing novel catalysts for diazo-
tization–diazo coupling. For example, a nanomagnetic-sup-
ported sulfonic acid was developed by Kolvari to catalyze 
diazotization–diazo coupling reactions in the absence of  
solvents.25 Chermahini reported the synthesis of azo com-
pounds using modified montmorillonite K-10.26 According to 
Bagherzade’s research achievement, diethylamine function-
alized polyethylene glycol could be used as a catalyst in the 
process of preparing azo dyes.27 In addition, many investiga-
tions demonstrated that Fe(HSO4)3,

28 magnetic Fe3O4 nano-
particles,29 granular PTFE (polytetrafluoroethylene),30 and 
graphene quantum dots4 were also effective catalysts for the 
synthesis of azo compounds. However, the above-mentioned 
methodologies still suffer from some disadvantages, such as 
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tedious processes, high manufacturing costs, and the use of 
metals or mineral acids. In this study, we report a one-pot 
method for the synthesis of azo compounds at room tempera-
ture in the absence of any acidic or alkaline additive using 
tert-butyl nitrite as the nitrosonium source (Scheme 1).

Results and discussion

Initially, we carried out the reaction using β-naphthol (1) 
and p-toluidine (2) as model substrates, t-BuONO as the 
nitrosonium source, CuSO4.5H2O as the catalyst, and AcOH 
as the additive in DCM at room temperature for 24 h. This 
provided the desired azo products in 73% yield (Table 1, 
entry 1). Next, various acidic additives were screened. 
However, they all showed inferior results to AcOH (Table 1, 
entries 2–5). To our delight, when the loading of p-toluidine, 
t-BuONO, and AcOH increased to 1.5 equiv., the product 
could be obtained in 92% yield (Table 1, entry 6). 
Subsequently, several other solvents such as acetone, 
CH3CN, and CH3OH were investigated. Compared with 
DCM, they were less effective for this transformation (Table 
1, entries 7–9). Control experiments demonstrated that 
t-BuONO was indispensable for the reaction (Table 1, entry 
10), and the reaction could proceed efficiently in the absence 
of the catalyst CuSO4.5H2O (Table 1, entry 11). To our sur-
prise, when AcOH was excluded from the reaction, the azo 
products were obtained in an 88% yield (Table 1, entry 12).

With the optimized conditions in hand, the scope of 
amines as the substrates was examined (Scheme 2). 
Initially, various substituted amines were reacted with β-
naphthol in the presence of t-BuONO in DCM at room 
temperature. Delightfully, both electron-donating and 
electron-withdrawing functional groups such as alkyl (3b, 
3c, 3m), methoxy (3h), fluoro (3d), chloro (3e, 3n), bromo 
(3f, 3o), iodo (3g), ester (3i), nitro (3j, 3l), and trifluoro-
methyl (3k) were well tolerated, affording the azo products 
in moderate to excellent yields. For instance, Sudan I (3a) 
and Para Red (3j) could be synthesized under the standard 
conditions in 87% and 86% yields, respectively. In addi-
tion, the substituent at the para-, ortho-, and meta-posi-
tions of the aromatic ring did not affect the reaction 
efficiency. Unfortunately, no desired azo product was 
detected when 4-aminopyridine or an alkyl amine was 
used as the substrate (3p, 3q).

Conclusion

In summary, we have developed a one-pot approach for the 
synthesis of azo compounds by the reaction of naphthol 
with aromatic amines at room temperature. This protocol 
was characterized by easily accessible raw materials, mild 
reaction conditions, and a simple operational procedure. 
Most importantly, the azo compounds could be synthesized 
in the absence of any acidic or alkaline additive, which is in 
line with the theme of green chemistry. We expect this 
method to find considerable potential for application in 
industry.

Experimental procedure

Commercially available chemicals were obtained from 
commercial suppliers and used without further purification 
unless otherwise stated. Proton NMR (1H) and carbon 

Table 1. Optimization of the reaction conditions.a

H2N

CH3 t-BuONO, acid

`solvent

OH
OH

N
N CH3

1 2 3

Entry 2/1 Acid (equiv.) Catalyst (equiv.) Solvent Yieldb (%)

1 1.2 AcOH (1.2) CuSO4.5H2O (0.2) DCM 73
2 1.2 CH3SO3H (1.2) CuSO4.5H2O (0.2) DCM 60
3 1.2 TfOH (1.2) CuSO4.5H2O (0.2) DCM 39
4 1.2 CF3CO2H (1.2) CuSO4.5H2O (0.2) DCM 62
5 1.2 TsOH.H2O (1.2) CuSO4.5H2O (0.2) DCM 32
6 1.5 AcOH (1.5) CuSO4.5H2O (0.2) DCM 92
7 1.5 AcOH (1.5) CuSO4.5H2O (0.2) Acetone 8
8 1.5 AcOH (1.5) CuSO4.5H2O (0.2) CH3CN 61
9 1.5 AcOH (1.5) CuSO4.5H2O (0.2) CH3OH 62
10c 1.5 AcOH (1.5) CuSO4.5H2O (0.2) DCM 0
11 1.5 AcOH (1.5) – DCM 90
12 1.5 – – DCM 88

aReaction conditions: 1 (0.5 mmol), 2 (0.6 mmol, 1.2 equiv.), t-BuONO (0.6 mmol, 1.2 equiv.), solvent (3.0 mL), acid, CuSO4.5H2O (0.1 mmol, 0.2 
equiv.), r.t., 24 h.
bIsolated yield.
cWithout t-BuONO.
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Scheme 1. One-pot synthesis of azo compounds.
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(13C) NMR spectra were recorded on an Ascend TM 
500 MHz NMR spectrometer. The following abbreviations 
are used for the multiplicities: s: singlet, d: doublet, t: tri-
plet, q: quartet, m: multiplet, and br s: broad singlet for 

proton spectra. Coupling constants (J) are reported in 
Hertz (Hz). Melting points (uncorrected) were determined 
on an automatic melting point apparatus (ZRD-1) from 
Tianjin optical instrument factory. Analytical thin-layer 
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Scheme 2. The scope of amines as substrates. Reagents and conditions: 1 (0.5 mmol, 1.0 equiv.), 2 (0.75 mmol, 1.5 equiv.), t-
BuONO (0.75 mmol, 1.5 equiv.), DCM (5.0 mL), r.t., 24 h, in air.
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chromatography was performed on Polygram SIL G/UV254 
plates. Visualization was accomplished with shortwave 
UV light, or by KMnO4 staining followed by heating. 
Flash column chromatography was performed using silica 
gel (200300 mesh) from Qingdao Haiyang Chemical Co., 
Ltd with solvents distilled prior to use.

General procedure for the synthesis of azo 
compounds

To a solution of β-naphthol (1.0 mmol, 1.0 equiv.) in DCM 
(5.0 mL) was added the aryl amine (1.5 mmol, 1.5 equiv.) 
and t-BuONO (1.5 mmol, 1.5 equiv.). The reaction mixture 
was stirred in air at room temperature for 24 h and then con-
centrated in vacuum. The crude mixture was purified by 
column chromatography on silica gel with a mixture of 
petroleum ether and ethyl acetate as eluent to afford the 
target compounds.

1-(phenyldiazenyl)naphthalen-2-ol (3a):26 Red powder; 
yield 87%; m.p. 130–132 °C (lit.26128–130 °C); 1H NMR 
(500 MHz, Chloroform-d): δ 8.56 (d, J = 8.2 Hz, 1H), 7.76-
7.70 (m, 3H), 7.60 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.7 Hz, 
1H), 7.48 (t, J = 7.9 Hz, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.30 (t, 
J = 7.4 Hz, 1H), 6.87 (d, J = 9.4 Hz, 1H).

1-(p-tolyldiazenyl)naphthalen-2-ol (3b):29 Red powder; 
yield 88%; m.p. 132–133 °C (lit.29130–132 °C); 1H NMR 
(500 MHz, Chloroform-d): δ 8.62 (d, J = 8.3 Hz, 1H), 7.73 
(d, J = 9.3 Hz, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.63 (d, 
J = 7.9 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.5 Hz, 
1H), 7.29 (d, J = 8.1 Hz, 2H), 6.93 (d, J = 9.3 Hz, 1H), 2.42 
(s, 3H); 13C NMR (126 MHz, Chloroform-d): δ 168.6, 
143.7, 139.0, 138.5, 133.7, 130.3, 129.9, 128.7, 128.6, 
128.2, 125.5, 124.1, 121.8, 119.3, 21.4.

1-({4-[tert-butyl]phenyl}diazenyl)naphthalen-2-ol (3c): Red 
solid; yield 92%; m.p. 87–89 °C (lit.3186–88 °C); 1H NMR 
(500 MHz, Chloroform-d): δ 8.60 (d, J = 8.3 Hz, 1H), 7.73-
7.70 (m, 3H), 7.62 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.7 Hz, 
1H), 7.51 (d, J = 8.7 Hz, 2H), 7.39 (t, J = 6.9 Hz, 1H), 6.92 
(d, J = 9.4 Hz, 1H), 1.37 (s, 9H); 13C NMR (126 MHz, Chlo-
roform-d): δ 169.4, 151.6, 143.3, 139.2, 133.7, 130.0,128.8, 
128.7, 128.2, 126.7, 125.5, 124.4, 121.8, 119.0, 34.9, 31.5.

1-({4-fluorophenyl}diazenyl)naphthalen-2-ol (3d): Red floc-
cule; yield 90%; m.p. 144–146 °C (lit.28143–145 °C); 1H 
NMR (500 MHz, Chloroform-d): δ 15.80 (s, 1H), 8.57 (d, 
J = 8.2 Hz, 1H), 7.77-7.70 (m, 3H), 7.62 (d, J = 7.9 Hz, 1H), 
7.54 (t, J = 7.7 Hz, 1H), 7.38 (t, J = 6.9 Hz, 1H), 7.16 (t, 
J = 8.6 Hz, 2H), 6.93 (d, J = 9.3 Hz, 1H); 13C NMR (126 MHz, 
Chloroform-d): δ 166.5, 162.5 (d, J = 249.3 Hz), 143.0 (d, 
J = 2.9 Hz), 138.9, 133.5, 129.9, 128.7, 128.6, 128.3, 125.5, 
123.4, 121.7, 121.3 (d, J = 8.5 Hz), 116.6 (d, J = 23.2 Hz).

1-({4-chlorophenyl}diazenyl)naphthalen-2-ol (3e):26 Red 
floccule; yield 64%; m.p. 153–155 °C (lit.26158–160 °C); 
1H NMR (500 MHz, Chloroform-d): δ 16.03 (s, 1H), 8.53 
(d, J = 8.2 Hz, 1H), 7.72 (d, J = 9.4 Hz, 1H), 7.67 (d, 
J = 8.9 Hz, 2H), 7.60 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.7 Hz, 
1H), 7.45-7.38 (m, 3H), 6.87 (d, J = 9.4 Hz, 1H).

1-([4-bromophenyl]diazenyl)naphthalen-2-ol (3f):29 Red 
powder; yield 74%; m.p. 168–170 °C (lit.32169–170 °C); 1H 
NMR (500 MHz, Chloroform-d): δ 16.06 (s, 1H), 8.53 (d, 
J = 8.2 Hz, 1H), 7.73 (d, J = 9.4 Hz, 1H), 7.62-7.54 (m, 6H), 
7.41 (t, J = 7.0 Hz, 1H), 6.86 (d, J = 9.4 Hz, 1H).

1-({4-iodophenyl}diazenyl)naphthalen-2-ol (3g):33 Dark red 
powder; yield 69%; m.p. 164–166 °C; 1H NMR (500 MHz, 
Chloroform-d): δ 16.05 (s, 1H), 8.46 (d, J = 8.1 Hz, 1H), 
7.74 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 9.4 Hz, 1H), 7.56 (d, 
J = 7.8 Hz, 1H), 7.54-7.50 (m, 1H), 7.41 (d, J = 8.7 Hz, 2H), 
7.38 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 9.4 Hz, 1H); 13C NMR 
(126 MHz, Chloroform-d): δ 172.6, 144.5, 140.7, 138.7, 
133.5, 130.4, 129.1, 128.8, 128.3, 126.1, 124.9, 121.9, 
120.2, 91.8.

1-({4-methoxyphenyl}diazenyl)naphthalen-2-ol (3h):29 Red 
powder; yield 80%; m.p. 136–138 °C (lit.29137–138 °C); 1H 
NMR (500 MHz, Chloroform-d): δ 15.72 (s, 1H), 8.70 (d, 
J = 8.3 Hz, 1H), 7.82 (d, J = 9.0 Hz, 2H), 7.76 (d, J = 9.2 Hz, 
1H), 7.69 (d, J = 7.9 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1H), 7.40 (t, 
J = 7.5 Hz, 1H), 7.03 (dd, J = 10.4, 9.1 Hz, 3H), 3.88 (s, 3H).

Ethyl-4-({2-hydroxynaphthalen-1-yl}diazenyl)benzoate 
(3i): Red powder; yield 66%; m.p. 139–141 °C (lit.34149 °C); 
1H NMR (500 MHz, Chloroform-d): δ 8.43 (d, J = 8.1 Hz, 
1H), 8.12 (d, J = 8.6 Hz, 2H), 7.67-7.64 (m, 3H), 7.58-7.51 
(m, 2H), 7.40 (t, J = 7.4 Hz, 1H), 6.73 (d, J = 9.6 Hz, 1H), 
4.41 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H); 13C NMR 
(126 MHz, Chloroform-d): δ 178.0, 166.1, 146.8, 142.3, 
133.5, 131.4, 131.1, 129.5, 129.0, 128.4, 127.8, 126.8, 
126.2, 122.2, 116.9, 61.2, 14.5.

1-({4-nitrophenyl}diazenyl)naphthalen-2-ol (3j):4 Red pow-
der; yield 86%; m.p. 250–252 °C (lit.4249–250 °C); 1H NMR 
(500 MHz, Chloroform-d): δ 16.13 (s, 1H), 8.42 (d, J = 8.0 Hz, 
1H), 8.32 (d, J = 9.1 Hz, 2H), 7.71-7.68 (m, 3H), 7.60-7.51 
(m, 2H), 7.44 (t, J = 7.4 Hz, 1H), 6.70 (d, J = 9.6 Hz, 1H).

1-({3-(trifluoromethyl)phenyl}diazenyl)naphthalen-2-ol 
(3k): Bright red powder; yield 88%; m.p. 159–160 °C 
(lit.35193–195 °C); 1H NMR (500 MHz, Chloroform-d): δ 
16.06 (s, 1H), 8.47 (d, J = 8.5 Hz, 1H), 7.93 (s, 1H), 7.79 (d, 
J = 8.0 Hz, 1H), 7.69 (d, J = 9.5 Hz, 1H), 7.61-7.49 (m, 4H), 
7.39 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 9.5 Hz, 1H); 13C NMR 
(126 MHz, Chloroform-d): δ 173.9, 145.1, 141.4, 133.4, 
132.3 (q, J = 32.9 Hz), 130.7, 130.3, 129.4, 128.9, 128.4, 
126.5, 125.1, 123.9 (q, J = 272.6 Hz), 123.3 (q, J = 3.6 Hz), 
122.1, 121.4, 114.9 (q, J = 4.0 Hz).

1-({3-nitrophenyl}diazenyl)naphthalen-2-ol (3l):32 Red pow-
der; yield 90%; m.p. 194–196 °C (lit.32194–196 °C); 1H 
NMR (500 MHz, Chloroform-d): δ 16.03 (s, 1H), 8.54 (s, 
1H), 8.50 (d, J = 8.2 Hz, 1H), 8.08 (d, J = 8.1 Hz, 1H), 7.91 
(d, J = 8.0 Hz, 1H), 7.73 (d, J = 9.5 Hz, 1H), 7.65-7.53 (m, 
3H), 7.43 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 9.5 Hz, 1H).

1-({2,4-dimethylphenyl}diazenyl)naphthalen-2-ol (3m):  
Dark red solid; yield 93%; m.p. 149–150 °C (lit.36159–
160 °C); 1H NMR (500 MHz, Chloroform-d): δ 8.59 (d, 
J = 8.2 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.70 (d, J = 9.4 Hz, 
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1H), 7.59 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 8.2 Hz, 1H), 7.37 
(t, J = 7.4 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1H), 7.07 (s, 1H), 
6.90 (d, J = 9.4 Hz, 1H), 2.50 (s, 3H), 2.36 (s, 3H).

1-({3-chloro-4-methylphenyl}diazenyl)naphthalen-2-ol 
(3n):37 Red powder; yield 78%; m.p. 133–135 °C; 1H NMR 
(500 MHz, Chloroform-d): δ 15.92 (s, 1H), 8.52 (d, 
J = 8.2 Hz, 1H), 7.75 (d, J = 2.0 Hz, 1H), 7.69 (d, J = 9.4 Hz, 
1H), 7.58 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 8.2 Hz, 1H), 7.45 
(dd, J = 8.2, 2.0 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.28 (d, 
J = 8.2 Hz, 1H), 6.86 (d, J = 9.4 Hz, 1H), 2.39 (s, 3H); 13C 
NMR (126 MHz, Chloroform-d): δ 169.8, 144.6, 139.9, 
135.7, 133.5, 131.7, 130.2, 129.0, 128.7, 128.2, 125.8, 
124.2, 121.9, 118.9, 117.8, 20.0.

1-({3-bromo-4-methylphenyl}diazenyl)naphthalen-2-ol 
(3o):38 Dark red powder; yield 74%; m.p. 217–218 °C 
(lit.38217–218 °C); 1H NMR (500 MHz, Chloroform-d): δ 
15.91 (s, 1H), 8.53 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 2.1 Hz, 
1H), 7.70 (d, J = 9.4 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.55 
(t, J = 7.7 Hz, 1H), 7.51 (dd, J = 8.1, 1.9 Hz, 1H), 7.38 (t, 
J = 7.4 Hz, 1H), 7.29 (d, J = 8.2 Hz, 1H), 6.87 (d, J = 9.4 Hz, 
1H), 2.42 (s, 3H); 13C NMR (126 MHz, Chloroform-d): δ 
169.7, 144.7, 139.9, 137.5, 133.5, 131.5, 130.2, 129.0, 
128.7, 128.2, 125.9, 125.9, 124.2, 122.2, 121.9, 118.4, 
22.9.
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