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Abstract—Sodium dithionite reduction of a-substituted N-alkylpyridinium salts (derived from picolinic acid derivatives) afforded
the corresponding 1,4-dihydropyridines with a new substitution pattern, in which the electron-withdrawing group is at the a-posi-
tion. These compounds promote biomimetic reductions and are hence considered functional NADH analogues.
� 2005 Elsevier Ltd. All rights reserved.
NADH is the cofactor used by many reductases in
metabolism, and its reactive moiety is a 1,4-dihydropyr-
idine (DHP) unit. Compounds based on this heterocycle
play key roles in medicinal chemistry (as calcium chan-
nel blockers), organic synthesis (versatile intermediates)
and bioorganic chemistry (NADH analogues), and have
inspired several lines of research.1 Considerable efforts
have been devoted to the preparation of diversely substi-
tuted DHP derivatives, yet some substitution patterns
with potential applications in the aforementioned fields
remain elusive or simply unknown. This fact probably
reflects the complexity of the factors that control the sta-
bility and the reactivity of these heterocyclic systems.
The classic sodium dithionite reduction of N-alkylpyrid-
inium salts is perhaps the most simple and reliable meth-
od for the regioselective formation of the corresponding
1,4-DHP derivatives.2 These reactions are often con-
ducted in basic medium, whereby the key step involves
the nucleophilic attack of the sulfinic species upon the
c-position of the activated pyridinium salt.3 For this rea-
son, the process is restricted almost entirely to pyrid-
inium salts bearing electron-withdrawing substituents
at the b-position, as these salts are more electrophilic
at C-4, and the resulting DHPs benefit from the conju-
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gation of the nitrogen atom and the b-substituent.4

However, this situation may not be a sine qua non
requirement, and results of the reduction of pyridinium
salts with stabilizing electron-withdrawing groups at the
a-position are herein reported (Fig. 1). Albeit simple, the
variation strongly affects the electronic properties of
the heterocyclic system, consequently changing the
structural and reactivity parameters of the new DHPs.5

The first experiments involved the reactivity of the
N-methyl-2-methoxycarbonylpyridinium iodide (1a),
which was readily prepared by interaction of MeI with
methyl picolinate. The reduction of this compound
under standard conditions (excess of Na2S2O4 and Na-
HCO3, CH2Cl2–H2O, room temperature, 12 h) afforded
a mixture of the DHP 2a together with the piperidine
derivative 3a and unreacted salt. Modifications of
stoichiometry and reaction time ultimately provided
optimized protocols for the clean partial and total
reductions of the heterocyclic system. Thus, upon
Figure 1.
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Scheme 1. Sodium dithionite reduction of pyridinium salt 1a.
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treatment with reduced amounts of sodium dithionite
(2 equiv) for 24 h, the dihydropyridine 2a (44%) was
selectively obtained, whereas with a larger excess of
the reducing agent, in the absence of NaHCO3, piper-
idine 3a (96%) was isolated as the only product (Scheme
1).

The a-substituted DHP 2a was characterized spectro-
scopically. This compound is more prone to oxidation
and acid-catalyzed decomposition than the well known
b-substituted NADH analogues, nevertheless it could
be conveniently stored under inert atmosphere at low
temperature.6 Although the reduction works well with
different N-alkyl (methyl and benzyl) substituents at
the nitrogen, it seems to be highly dependent on the nat-
ure of the substituent at the a-position of the pyridine
ring. Thus, reduction under the usual conditions works
with a-CO2Me and CONH2 groups (Table 1, entries 1
and 2), but not with a-H, Cl or alkyl groups. This is
in agreement with the known requirements for the
Na2S2O4 of b-substituted pyridinium salts, however a
CHO group fails to yield detectable amounts of DHP
(Table 1, entry 3), probably due to its extended hydr-
ation under the reaction conditions.7 Pralidoxime (1d,
Table 1, entry 4) did not react under the same
conditions.8

The transformation of salt 1e under the usual conditions
afforded a more complex mixture, hence the correspond-
ing DHP (2e) was isolated in moderate yield (entry 5).
The reactivity of the cyano derivatives merits separate
commentary (vide infra).
Table 1. Reduction of a-substituted pyridinium salts 1

N
R1

N
R1

 H2O - CH2Cl2
 rt. 24h1 2

R2
+ R2

X - Na2S2O4
NaHCO3

Entry Pyridinium salt R1 R2 Product Yielda (%)

1 1a Me CO2Me 2a 44

2 1b Bn CONH2 2b 97

3 1c Me CHO — —

4 1d Me CH@NOH — —

5 1e Me CN 2e 58

a Isolated yield.

2a,b A

a: R1 = Me, R2  = CO2Me
b: R1 = Bn, R2  = CONH2

Scheme 2. Pyridinium salt reduction to piperidines 3.

Figure 2.
In some experiments of the previous series, the form-
ation of small amounts of the corresponding piperidines
3 was observed when extended reaction times were
used.9 The full reduction of the starting heterocyclic
systems was found to proceed more efficiently in the
absence of NaHCO3. In this way, piperidines 3a (96%)
and 3b (45%) were prepared and positively identified.10

We may consider, as a reasonable mechanistic hypothe-
sis, that under these conditions, the initially formed
DHPs (2) may undergo protonation from the increas-
ingly acidic reaction medium to generate iminium ions,
which would be reduced by the dithionite, to yield the
reactive tetrahydropyridine intermediates, for instance
A. These species, which could not be detected or iso-
lated, would in turn undergo further reduction via
conjugate dithionite addition to the activated double
bond and subsequent protonolysis (see Scheme 2).

The reduction of the cyanopyridinium salt 1e under
these conditions surprisingly afforded the 2,6-dicyanopi-
peridine 4 (35%),11 as a 7:1 mixture of cis/trans stereo-
isomers (see Fig. 2). Although no rigorous mechanistic
studies were performed, a plausible explanation for this
result might involve the formation of the expected
a-cyanopiperidine, which, being an iminium ion precur-
sor,12 could expel a cyanide anion capable of adding to
the protonated form of a DHP intermediate (type 2,
Scheme 2). Reduction of the resulting species would
yield the dicyano structure 4.

Interestingly, water acts as the hydrogen source in these
reductive processes, which apart from environmental
considerations,13 enables the deuteration of the DHPs
2 and the piperidines 3, simply by using D2O. In this
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way the deuterated analogues of 2a14,15 and 3b16 were
efficiently prepared (Fig. 2). Remarkably, the last reac-
tion allows the simultaneous incorporation of up to
seven deuterium atoms (five C–D and two N–D bonds).

Finally, the ability of the new DHPs 2 to promote bio-
mimetic reductions was preliminarily tested. Thus under
standard conditions [Mg(II), CH3CN]14a 2b was capable
of reducing methyl benzoylformate to form methyl man-
delate. Additionally, a reductive amination,17 (p-methyl-
aniline, ethyl glyoxalate) was carried out with DHP 2b
in the presence of Sc(OTf)3 (Scheme 3). Interestingly
these compounds seem to be comparatively more
efficient reducing agents than the classic b-susbtituted
1,4-DHPs, as the latter behave as enamine derivatives
leading to multicomponent reactions under the afore-
mentioned conditions (see Scheme 3).18 These results
illustrate the dramatic influence of the substituent loca-
tion at the DHP ring on its reactivity. The overall yield
of these processes is moderate (�60%) presumably be-
cause of the fragility of the DHPs and their tendency
to spontaneously oxidize.19 To the best of our knowl-
edge, this is the first non-Hantzsch dihydropyridine,
which promotes the biomimetic reductive amination.

In conclusion, access to a novel class of stable DHPs
with an altered substitution pattern has been described.
The synthetic process is simple, employs a cheap reduc-
ing agent and uses water as the proton source. In addi-
tion, modification of the reaction conditions permits the
straightforward preparation of the corresponding
piperidines and deuterated derivatives. The DHPs thus
prepared can be considered as functional NADH ana-
logues, as they promote the same type of biomimetic
carbonyl and imine reductions as NADH. Further
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Scheme 3. Biomimetic reductions promoted by the new DHPs 2.
applications of these DHPs are currently under
investigation.
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Chem. 1993, 21, 423; (b) Zhu, X.-Q.; Cao, L.; Liu, Y.;
Yang, Y.; Lu, J.-Y.; Wang, J.-S.; Cheng, J.-P. Chem. Eur.
J. 2003, 9, 3937.

15. Incidentally, the spontaneous (oxygen promoted) oxid-
ation of the deuterated DHP 2a (4-D), afforded a nearly
quantitative yield of the corresponding pyridinium salt,
bearing a deuterium atom at the c-position [1a (4-D)],
which could be considered as a labeled NAD+ analogue.

16. Presumably as a mixture of isotopomers. For the deute-
rium transfer reduction of pyridines using deuterated
ammonium formate, see: Derkau, V. Tetrahedron Lett.
2004, 45, 8889.

17. For a recent example of reductive aminations using
Hantzsch dihydropyridines, see: Itoh, T.; Nagata, K.;
Miyazaki, M.; Ishikawa, H.; Kurihara, A.; Ohsawa, A.
Tetrahedron 2004, 60, 6649.

18. Carranco, I.; Dı́az, J. L.; Jiménez, O.; Vendrell, M.;
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