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Abstract

One-pot uncatalysed microwave-assisted 1,3-dipplaloaddition reactions between situ
generated nitrile oxides and alkynes bearing ptetecantioxidant substituents, were
regioselectively afforded 3,5-disubstituted isoxagoThe yields were moderate, based on the
starting aldehydes, while the reaction times warganeral shorter than those reported in the
literature.

The cytoprotective and anti-ageing effect of theafideprotected compounds was evaluated
in vitro, on cellular survival following oxidative challeegandin vivo, on organismal
longevity using the nematod&aenorhabditis elegans. The activity of the isoxazole analogues
depends on the nature and the number of the adéiokisubstituents. Analogu& bearing a
phenolic group and a 6-OH-chroman group is a promisanti-ageing agent, since it
increased survival of human primary fibroblastddwing treatment with bD, and extended

C. elegans lifespan.
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1. Introduction

Isoxazoles, have attracted an increasing reseatehnest, as non classical amide or ester
bioisosteres and potential pharmacophores endovitedawticancer [1], neuroprotective [2],
anti-obesity [3], antidepressant [4], insecticiffg] antidiabetic [6] and anti-inflammatory [7]
activities. The major synthetic strategies to construct thterieeycle are: i) condensation of a
1,3-dicarbonyl compound with hydroxylamine andlijB-dipolar cycloaddition of an alkyne
with a nitrile oxide, which is regioselective inethpresence of copper(l), giving 3,5-

disubstituted isoxazoles [8].

Nitrile oxides can react with simple terminal allegnwithout the need of a catalyst, because
of their increased reactivity, compared to azidksy recently, several groups [1a,c,d,3,5,6,9-
12] accessed 3,5-disubstituted isoxazoles througietal-free cycloaddition of alkynes with

nitrile oxides, usually in modest yields or longcgon times.

In general the 3,5-regioisomer was favored undecatatyzed conditions. Use of
organocatalysts [7] or hypervalent iodine [13] matg improved the yield/regioselectivity of
the reaction. Moreover, the regiospecific synthesisovel isoxazolines and isoxazoles of N-

substituted saccharin derivatives, using a micr@xaxen, was also reported [14].

Our group has been involved in the synthesis ofapmotective antioxidants and we reported
that the presence of isoxazole scafold resultsighdn in vitro neuroprotective activity,

compared to other nitrogen heteroaromatics. Isdgazmalogues were prepared by
conventional Cu catalyzed cycloadditions [2] or lkging dual-frequency ultrasound

irradiation [15].

Although the isoxazole pharmacophore has been pocated into a wide range of bioactive
agents, the effect of isoxazole analogues on tHelaeor organismal lifespan has not yet

been reported.

Ageing is an inevitable natural biological procésat is linked to the gradual deterioration of
organismal homeostasis and the increasing accuomlat damaged macromolecules [16].
The progression of ageing has been highly corrlaiéh increased levels of reactive oxygen
species (ROS) and the extent of ROS formation andatve damage has been inversely



correlated with longevity in different species [1Tcreased oxidative stress promotes the
deterioration of all biomolecules including DNApills and proteins thus leading to a global
failure of cellular and organismal homeostasis [I8]ere are various models used to study
ageingin vitro and in vivo. Human primary fibroblasts that age vitro, the so called
replicative senescence model constitute the besipsed model to study human ageing
vitro [19]. Moreover, human primary fibroblasts can easilyused in different assays to
reveal antioxidant properties on top of anti-agepmgperties of different compounds. The
nematodeCaenorhabditis elegans is also a prominent model to study organismalrapeue

to its short lifespan, the fast generation time #red multiple experimental applications [20,
21].

The discovery of agents which could slow down tleéekrious effects of ageing vitro
and/orin vivo has attracted an increasing research intereste Sigeing is associated with
increased incidence of diseases related to eleveweds of reactive oxygen species (ROS),
dietary phenolic antioxidants have emerged as iogpicandidates [22-27] while there is
one recent report on the anti-ageing propertiessyithetic compounds applying the
aforementionedn vivo model [28]. Therefore bioactive isoxazoles beaangoxidant groups
would represent an interesting approach towarddelrelopment of anti-ageing compounds.

Collectively, the aim of the present study washg green regiospecific microwave-assisted
one-pot synthesis of isoxazoles from in situ geteeranitrile oxides and alkynes, in the
presence or absence of Cu(l) as catalyst andei)rhestigation of the effects of the derived
compounds on the cellular survival following oxidat challenge and on organismal

longevity.

2. Results

We first investigated the cycloaddition reactiortwsen the in situ generated 4-methoxy-
phenyl nitrile oxide and phenyl acetylene under vemtional heating and microwave
irradiation in the presence or absence of Cu csttaljne reaction was performed in a mixture
of tert-butanol/water (Scheme 1). Specifically, 4-methbeypzaldehyde was first converted
to the corresponding aldoxime via reaction with roxglamine. Without isolation, the
aldoxime was converted to the corresponding nitokéde using chloramine-T trihydrate

which acts as both a halogenating agent and a Bheegesults are shown in Table 1.



Scheme 1
Tablel

The Cu catalyzed reaction at ambient temperatuwe 48% of the desired isoxazole after 24
h (entry 1). The yield was slightly improved whée ttemperature was increased to 90 °C
(entry 2) whereas the use of microwave irradiatsagnificantly improved the yield and
shortened the reaction time (entry 7).

Concerning the amount of the catalyst, the use .8f équivalents of CuSOand 0.6
equivalents of sodium ascorbate (entry 6) gave drighelds than lower catalyst loading
(entry 5).

On the contrary, the use of larger excess of chiore-T (1.5 equivalents, entry 8) did not
affect the yield of the reaction.

The best results of the Cu catalysed reaction wktained at 90 °C and 80 W. Lower (60 °C,
entry 6) or higher (100 and 110 °C) temperaturetrigs 13 and 14) gave lower yields. The
yield was further decreased when 120 °C and 100e/A¢ \applied (entry 15). Solid additives
[29] such as silica gel, AD;or NaCl had a detrimental effect on the reactiaidyi

Although washing with NEDH, ensures quantitative removal of the copper cialing the

reaction work-up, Cu-free cycloaddition strateggt mequiring metals and additives, is a
promising approach. Thus, we set out to examindghsibility and the regioselectivity of the
microwave-assisted 1,3-dipolar cycloaddition readi tert-butanol/water, under metal free

conditions.

Microwave irradiation increased the yield of thecatalysed reaction (entries 4 and 16). The
optimum reaction time at 90 °C and 80 W was 45 (eimtry 17) giving 68% of isoxazole.
Similar yields were obtained using 90 °C, 100 WZarmin (entry 20).

Using the optimal conditions for the metal freectem, we synthesized the compounds
depicted in Scheme 2 and Table 2. Although readiime of 22 min and 100 W, did not
significantly affect the yield of the reaction imetcase of phenyl acetylene (Table 1 entry 20),
when aliphatic alkyne was used (Table 2, entrie$) ithe yield was decreased. The low yield
of the entry 6 of Table 2 (compoud@), is due to the removal of the 4-methoxybenzyugro
under these reaction conditions. After purificatpncolumn chromatography, compoubd

and 3-(3,4-dimethoxyphenyl)-5-isoxazolyl-methaneraisolated.



Scheme 2

Table 2

It should be noted that all the yields are basetheraldehydes and not on oximes or imidoyl
chlorides. Thus, the low to moderate yields of Gefree reactions are overall yields of a
three step reaction. As we have previously repofiéd, in our experiments then situ
generation of hydroximoyl chlorides and their casi@n to nitrile oxides was fast, followed
by addition of terminal alkynes which are trappaggents to avoid the dimerization of nitrile

oxides to furoxans.

In general, the reaction times of the metal fretiens were shorter of those reported in the
literature (max 45 min instead of hours). In theecaf analogu8 the yield of the microwave

(80W/90 °C/45 min) uncatalysed reaction was conigarto that we have reported [2] for

this compound using Cug®BH,O/copper turnings, overnight and based on the oxime

Since the synthesized methoxy analogues are netcteghto possess antioxidant activity and
keeping in mind that anti-oxidant properties araally linked to anti-ageing properties [23-
28], compoundq4, 2and6-9 were deprotected using BEMe, as previously described [2]. In
the case of derivative® and7 the known alcohol (3-phenylisoxazol-5-yl) methatdlwas
obtained due to the removal of the 4-methoxybenryhe 3,4-dimethoxybenzyl group under
these reaction conditions. The structures of thwatected analoguek?-17 are depicted in
Figure 1.

Figure 1

Ageing is associated with increased levels of reaaxygen species (ROS) thus, we sought
to test the anti-oxidant and/or anti-ageing prapsrbof the isoxazole derivative$Z17) in
two model systems; human primary fibroblasts\{tro model) and the nematod& elegans

(in vivo model). The first model was used to test cell safvfollowing oxidative stress,
while the second one was used to reveal possibigeloty-promoting effects of our
compounds in a eukaryotic multicellular organismor®l specifically, we subjected young
human primary fibroblasts to oxidative stress,;(f) in the presence or absence of our

compounds and we then tested their survival ability



Figure 2

As shown in Figure 2A, cells treated with compour®iexhibited significantly enhanced
viability after oxidative insult as compared to tt@ntrol cultures. In contrast, the rest of the
compounds 12-16) demonstrated low or no cytoprotective properti€sllowing the
identification of analogué&7 as the most potent, we then used a referenceasthtndmpound
namely quercetin, the most abundant dietary flal/tmat has been shown previously to be a
potent antioxidant by others [30] as well by us][26 compare its effects with the effects of
compoundl17. As shown in Figure 2B, compourd/ was more potent as compared to
quercetin at the same concentrations (2 apMp Therefore, then vitro model revealed that
compoundl? enhances the ability of the cells to cope bettigh wxidative stressors while,
more interestingly, it does so better as compaveal standard antioxidant compound such as
quercetin, at lower concentrations. We then exathwbether our antioxidant compounds
also exhibit anti-ageing properties in a multicliuorganism. To this end, we fed wild type
nematode worms with different concentrations ofheaompound and the relative diluent
(DMSO). Compound42-16 did not promote any differences in the lifespaihef nematodes
(data not shown), thus coinciding with the restiitan the cell survival assays where no
cytoprotective effects were scored. In bright casttr analoguel7 presented anti-ageing
activity. More specifically, as shown in FiguretBatment with various concentrations1agf
(ranging from 1uM to 20 uM) resulted in significant extension of animal §fan, with 20

uM being the most effective concentration.

Figure 3

Given that we had previously shown the anti-agegingperties of quercetin using human
fibroblasts [26] while others have revealed its-ageing effects irC. elegans [31], we have
also compared the anti-ageing effects of compduhfwdith the relative anti-ageing effects of
quercetin inC. elegans. We therefore fed wild type nematode worms wite thost potent
concentrations of compourid that we have identified in our initial experimemgmely 10

and 20uM, and with equal concentrations of quercetin.

Figure 4



As shown in Figure 4A, treatment of nematodes withuM compound17 resulted in
significant extension of animal lifespan while treant with 10uM quercetin did not
promote lifespan extension. Likewise, treatmenthematodes with 2@M compoundl17
resulted in significant lifespan extension that wasre enhanced as compared to the relative
extension induced by 2@M quercetin (Figure 4B). In total, compouhd was revealed to act
protectively against oxidative stress in human primfibroblasts and to promote lifespan
extension inC. elegans. More interestingly, 17 was identified to be more potent in lower

concentrations as compared to a well establishedalantioxidant such as quercetin.

3. Discussion

In this study, we have achieved the green regiopecicrowave-assisted one-pot synthesis
of bioactive isoxazoles bearing antioxidant groapd we have shown for the first time their
impact on cellular resistance to stress and onnisgaal ageing. More specifically, we have
revealed that the newly derived compounds poss#sageing properties depending on the
number and the nature of the antioxidant isoxasalestituents. The most potent of these
isoxazoles, namely analogue, confers resistance to oxidative stress in humamgpy
fibroblasts while in its presence an extended piéesof the wild typeC. elegans is observed.
The increased resistance to oxidative stress alatigthe anti-ageing effects are strongly

linked to the aforementioned antioxidant properties

Compoundsl2-15 and17 bear the 3-(4-hydroxyphenyl)isoxazole moiety. Phesence of an
alkyl group at 5-position of the isoxazole ring ifgmound13) or a phenyl group (compound
12) had no impact on the antioxidant activity of tenpounds. Isoxazold$ and17 can be
considered as derivatives G4#¥. The 4-hydroxyphenyl-substituted isoxazolg&4 and 15
exhibited similar activity in cells indicating th#étte protected chroman does not affect the
possible cytoprotective activity of these compourdsontrast, deprotection of the chroman
hydroxyl group gave the most active analodiédeThe significance of the antioxidant groups
is demonstrated by the fact that, the cytoprotec#utivity in the 6-OH-chroman derivative
16 that lacksa second antioxidant group is lost as comparedhéorelative activity of
compoundl17 that carries both antioxidant groups. Thus the gres of two antioxidant
moieties, a phenolic and a 6-OH-chroman group immmund17 results in significantly
elevated cell survival under oxidative stress. Hasvethe number of hydroxyl groups does
not seem to be the only requisite for the cytopbie properties against oxidative stress.

More specifically, quercetin which bears five flggroxyl groups that contribute to its strong



antioxidant activity, was nevertheless less acthan compound? at the cellular levelif

vitro model).

Resistance to oxidative stress has been linkedngelity inC. elegans. More specifically,
many long-lived mutants exhibit increased resistanca variety of stressors i.e. oxidants [32]
or heat [33]. Therefore, given that we detectedstasce to oxidative stress in our cellular
model we sought to investigate the possible effettair compounds on the lifespan of the
elegans. In accordance to the results reported in the asdhys, compountiZ was the only
one that exhibited lifespan-extending properti¢sist further advocating for a conserved
positive effect of this isoxazole among speciesv Ratural antioxidants have been revealed
previously to promote extension of lifespanGnelegans, i.e. epigallocatechin gallate [23],
the flavonoids myricetin, quercetin, kaempferol aradtingenin [24] and tyrosol [25] among
others. However, it is noteworthy that our synthettmpound was able to promote longevity
at significantly lower doses as compared to theages of natural antioxidants that have been
shown to be necessary to exert beneficial effectthe ageing process @ elegans [23-25,
31]. Therefore, compound?7 is more potent and efficient than other known retu
antioxidants bothn vitro andin vivo, a highly advantageous characteristic in caseadyct

application.

Our results suggest that the antioxidant activiie®ur compounds are responsible for the
cellular stress resistance and the extension @nsgal lifespan. Nonetheless, it is possible
that these isoxazole analogues may differentidfctvarious cellular signal cascades. Thus,
further studies are needed to determine the eftddtse synthesized compounds on signalling

cascadem vivo.

4. Conclusion

A series of 3,5-disubstituted isoxazoles were sgited by microwave-assisted, Cu free, 1,3-
dipolar cycloaddition reaction betweém situ generated nitrile oxides and alkynes bearing
protected antioxidant substituents. Uncatalysedcti@as, in tert-butanol/water, were
regioselective giving low to moderate yields of tiieee step reaction, based on starting
aldehydes. The reaction times were significantigreer compared to those reported in the

literature.



The biological evaluation of the deprotected conmutsu showed a correlation of their
antioxidant properties with stress resistance mdnu primary fibroblastarg vitro model) and
with the extended longevity of the nematdtleslegans (in vivo model). Clearly, the activity

of our isoxazole analogues at the cellular and risgaal level depends on the nature and the
number of the antioxidant substituents. Compolndearing a phenolic group and a 6-OH-
chroman group was revealed to be a potent antiokigigainst oxidative stress at a very low
dose in human primary fibroblasts and a promisimigrageing agent as shown in timevivo
model used. Additional studies using various sgramh C. elegans bearing mutations in
molecular pathways that are key to the progressfaygeing are required to reveal the exact
pathway through which analoga& functions as an anti-ageing agent.

5. Experimental

5.1. Chemistry

5.1.1. Materials and methods

All starting materials and common laboratory chatsovere purchased from commercial
sources and used without further purificatidd. NMR spectra were recorded on Varian
spectrometers operating at 300 MHz or 600 MHz Hadspectra were recorded at 75 MHz
using CDC} or (CDs).CO as solvent. Silica gel plates Macherey-NagelGS#5 UV,s4 were
used for thin layer chromatography. Chromatographicfication was performed with silica
gel (200-400 mesh). Mass spectra were obtained RIICHMS' Fleet-Thermo, in the ESI
mode. HRMS spectra were recorded, in the ESI modeUPLC-MS Orbitrap Velos-
Thermo. The microwave-assisted experiments wenmgedaout with a CEM Discover 300W
monomode microwave instrument. The closed vesseld were special glass tubes with self-
sealing septa that controlled pressure with apmtgpsensors on the top (outside the vial).
The temperature was monitored through a non-coritdcared sensor centrally located
beneath the cavity floor. Magnetic stirring was \pded to assure complete mixing of the

reactants.

5.1.2. General procedure for preparation of 3,5-digbstituted isoxazoles

To a solution of aldehyde (1 eq) and hydroxylantigdrochloride (1.05 eq) in a mixture ©f
BuOH and HO (1:1) was added 1M aqueous NaOH (1.05 eq). Thetiom mixture was
stirred at ambient temperature until thin-layerochatography indicated consumption of the
aldehyde. After completion of oxime formation, 1€& of chloramine-T [TsN(Cl)Na- 309]
was added, followed (after 3 min) by the approprakyne (1.05 eq), the pH of the reaction



medium was adjusted to 6 (by addition of few drop&M aqueous NaOH) and the mixture
was microwave irradiated as indicated in Tablesid 2 The reaction mixture was extracted
with AcOEt, the organic layer was washed with sateest NaCl, dried over N8O, and
concentratedn vacuo. The crude residue was purified by column chrogaohy (pet.
ether/ethyl acetate, 90:10 to 80:20 affording potslas colorless oils.

Compoundsl, 2, 8 were prepared according to the procedure descrdbede and their

analytical data are in accordance with those prshoreported [15].

5.1.2. 1.5-(4-Methoxybenzyloxy)methyl-3-(4-methoxyenyl)-isoxazole (6)

TLC (pet. ether/ethyl acetate, 85:1%)= 0.2,’"H NMR (600 MHz, CDC}) J: 7.73 (d,J=8.7
Hz, 2H, AH), 7.29 (d,J=8.5 Hz, 2H, AH), 6.96 (d,J=8.7 Hz, 2H, AH), 6.89 (d,J=8.5 Hz,
2H, ArH), 6.50 (s, 1HH-isoxazole), 4.61 (s, 2H,H3), 4.56 (s, 2H, E>), 3.84(s, 3H, OH3),
3.80 (s, 3H, OE3), *C NMR (75 MHz, CDGJ) 6: 169.7, 162.0, 161.0, 159.5, 129.7, 129.2,
128.2, 121.5, 114.3, 113.9, 100.8, 72.6, 62.5,,58632, MS m/z: 326.36 (M+H) 348.35
(M+Na)", 672.96 (2M+Na), HRMS: calcd for @H2NO,; (M+H)" 326.1387, GoH1sNOsNa
(M+Na)" 348.1206; found: 326.1381, 348.1200

5.1.2. 2. 5-(3,4-Dimethoxybenzyloxy)methyl-3-(4-miebxyphenyl)-isoxazole (7)

TLC (pet. ether/ethyl acetate, 80:8)= 0.15,"H NMR (600 MHz, CDC}) §: 7.72 (d,J=8.8
Hz, 2H, AH), 6.96 (d,J=8.8 Hz, 2H, AH), 6.92-6.89 (m, 2H, A), 6.83 (d,J=8.0 Hz, 1H,
ArH), 6.50 (s, 1HH-isoxazole), 4.62 (s, 2H,HK3), 4.56 (s, 2H, E,), 3.88 (s, 3H, 0OH3),
3.86 (s, 3H, O@5), 3.84 (s, 3H, O83), *C NMR (75 MHz, CDC)) 6: 169.6, 162.0, 161.0,
149.1, 148.9, 129.6, 128.2, 121.4, 120.7, 114.3,211111.0, 100.9, 72.9, 62.4, 55.9, 55.8,
55.3, MS m/z: 356.25 (M+H) 378.28 (M+Na), 732.91 (2M+Na), HRMS: calcd for
Ca0H22NOs (M+H)" 356.1492, GoH2:NOsNa (M+Na) 378.1312; found: 356.1492, 378.1307

5.1.2.3. 5-{[(3,4-Dihydro-6-methoxy-2,5,7,8-tetrantkyl-2H-1-benzopyran-2-yl) methoxy]
methyl}-3-(4-fluorophenyl)-isoxazole (9)

TLC (pet. ether/ethyl acetate, 90:1R)=0.3,"H NMR (600 MHz, CDC}) ¢6: 7.77-7.75 (m,
2H, ArH), 7.13 (t,J=8.6 Hz, 2H, AH), 6.46 (s, 1HH-isoxazole), 4.74 (ABq, 2H\vas=12.9
Hz, Js=13.9 Hz -O-®,-), 3.61 (s, 3H, -O83), 3.58 (ABq, 2HAvAs=27.7 Hz, 4g=10 Hz -
CH,-0O-), 2.58 (t,J=6.8 Hz, 2H, -EG1,), 2.17 (s, 3H, Ar-El3), 2.12 (s, 3H, Ar-El3), 2.08 (s,
3H Ar-CHs), 2.02-1.97 (m, 1H, -BH), 1.79-1.76 (m, 1H, -BH), 1.30 (s, 3H, -E3), *C
NMR (75 MHz, CDC}) o: 170.2, 162.1, 161.4, 149.8, 147.3, 128.8, 12828.0, 125.9,

10



125.2, 122.8, 117.4, 116.2, 115.9, 100.7, 74.9%,680.4, 28.4, 22.0, 20.2, 12.6, 11.9, 11.7,
YF NMR §: -110.6, MS m/z: 426.17 (M+H) 872.75 (2M+Na), HRMS: calcd for
CosH2oFNO; (M+H)™ 426.2075, GsHosFNOsNa (M+Na) 448.1895; found: 426.2079,
448.1895

5.1.2. 4. 5-(4-Methoxybenzyloxy)methyl-3-(3,4-diathoxyphenyl)-isoxazole (10)

TLC (pet. ether/ethyl acetate, 85:1%)= 0.1,'H NMR (600 MHz, CDC}) &: 7.40 (s, 1H,
ArH), 7.31-7.28 (m, 1H, Af), 6.91 (d,J=8.3 Hz, 1H, AH), 6.52 (s, 1HH-isoxazole), 4.61
(s, 2H, -QH,-0-), 4.57 (s, 2H, -0OH8,-), 3.93 (s, 3H, 083), 3.91 (s, 3H, 083), 3.80 (s, 3H,
OCHj3), **C NMR (75 MHz, CDCJ) 6: 169.8, 162.1, 159.5, 150.6, 150.2, 149.3, 12[29,1,
126.4, 121.6, 119.9, 113.9, 111.0, 109.3, 100.%,82.5, 56.1, 56.0, 55.9, MS m/z: 356.31
(M+H)*, 378.28 (M+Na), 732.84 (2M+Na), HRMS: calcd for GH,oNOs (M+H)*
356.1492, GoHo1NOsNa (M+Na) 378.1312; found: 356.1489, 378.1307

5.1.3. General procedure for deprotection of methgxgroups

A solution of the appropriate protected compoufid Z and 6-9, 1 equiv) in anhydrous
CHyCI, (3 mL), was cooled at 0 °C and 86Me (10 equiv for each methoxy group) was
added. After stirring for 24 h, the solvent and esscreagent were evaporated under argon
stream. The residue was taken up in EtOAc and wdashin H,O and saturated NaCl. The

organic layer was dried over p&0O, and concentrateith vacuo.

5.1.3.1. 3-(4-Hydroxyphenyl)-5-phenyl-isoxazole 2} [34]

Compoundl was treated as described in the general procedumefication by column
chromatography (pet. ether/ethyl acetate, 90:185t45), Yield: 84%, white solid, mp 178-
180 °C, TLC (pet. ether/ethyl acetate, 85:R5¥ 0.2,"H NMR (600 MHz, CDC}) J: 7.87 (d,
J=7.1 Hz, 2H, AH), 7.77 (dJ=8.7 Hz, 2H, AH), 7.51-7.45 (m, 3H, Ad), 6.95 (d,J=8.7 Hz,
2H, ArH), 6.78 (s, 1HH-isoxazole), 5.20 (bs, 1H, H), **C NMR (75 MHz, CDGC)) é:
170.1, 162.8, 158.5, 130.1, 128.9, 128.3, 127.5,8,2120.6, 115.8, 97.3, MS m/z: 236.08
(M-H)", HRMS: calcd for @H1oNO, (M+H)" 238.0863, GH1iNO,Na (M+Na) 260.0682;
found: 238.0860, 260.0680

5.1.3.2. 3-(4-Hydroxyphenyl)-5-propyl-isoxazole @)

Compoundl13 was obtained by deprotection 8f Purification by column chromatography
(pet. ether/ethyl acetate, 80:20), Yield: 75%, wh#olid, mp 107-109 °C, TLC (pet.

11



ether/ethyl acetate, 90:18) = 0.25,"H NMR (600 MHz, (CR),CO) J: 8.85 (bs, 1H, -@),
7.70 (d,J=8.0 Hz, 2H, AH), 6.93 (d,J=8.0 Hz, 2H, AH), 6.50 (s, 1HH-isoxazole), 2.74 (t,
J=7.5 Hz, 2H, CHCH,CH,-), 1.75-1.72 (m, 2H, C}CH,CH,-), 0.98 (t,J=7.4 Hz, 3H,
CH3sCH,CHs-), *C NMR (75 MHz, (CR),CO) d: 173.6, 161.8, 158.9, 128.1, 120.9, 115.8,
98.3, 28.2, 20.8, 13.1, MS m/z: 204.12 (M¥HX28.80 (2M+Nd), HRMS: calcd for
C12H14aNO, (M+H) " 204.1019, @H1sNO-Na (M+Na) 226.0838; found: 204.1018, 226.0839

5.1.3.4. 3-(4-Hydroxyphenyl isoxazol-5-yl)methand[L4)[35]

Compound6 was treated as described in the general procedRusefication by column
chromatography (pet. ether/ethyl acetate, 85:1%|dY 18%, white solid, mp 148-150 °C,
TLC (pet. ether/ethyl acetate, 90:1R)= 0.2,'H NMR (600 MHz, (CR),CO) ¢: 8.87 (bs,
1H, -OH), 7.71 (d,J=8.7 Hz, 2H, AH), 6.93 (d,J=8.7 Hz, 2H, AH), 6.66 (s, 1H,H-
isoxazole), 4.70 (s, 2H, ¥3OH), *C NMR (75 MHz, (CR),CO) 6: 173.1, 161.7, 128.1,
120.7, 115.7, 99.1, 55.5, MS m/z: 190.09 (M;B0.79 (2M), HRMS: calcd for GoH1oNOs
(M+H)" 192.0655; found: 192.0657

5.1.3.5. 5-{[(3,4-Dihydro-6-methoxy-2,5,7,8-tetrapthyl-2H-1-benzopyran-2-
yl)methoxy] methyl}-3-(4-hydroxyphenyl)-isoxazole 15) [2]

Compound was treated according to the general procedureidedcabove giving a mixture
of analoguesl5 and 17 which was purified by column chromatography (pether/ethyl
acetate, 70:30). Yield: 27% yellowish foaftj NMR (600 MHz, CDC}) ¢: 7.67 (d,J=8.3
Hz, 2H, AH), 6.90 (d,J = 8.3 Hz, 2H, AH), 6.46 (s, 1HH-isoxazole), 5.53 (bs, 1H, H),
4.72 (ABq, 2H,Avag=14.9 Hz, 45=13.9 Hz, -O-Ei,-), 3.63 (s, 3H, OHj3), 3.57 (ABq, 2H,
Avag=29.9 Hz, Jg=9.8 Hz -@H,-O-), 2.60 (t,J=6.7 Hz, 2H, -Ci,-), 2.18 (s, 3H, Ar-Ely),
2.13 (s, 3H, Ar-El3), 2.09 (s, 3H, Ar-El3), 2.03-1.98 (m, 1H, -BH), 1.80-1.75 (m, 1H, -
CHH), 1.31 (s, 3H, -B3), *C NMR (75 MHz, CDCJ) §: 169.8, 161.9, 157.3, 149.7, 147.3,
128.4, 128.0, 125.9, 122.8, 121.5, 117.5, 115.8,7,(06.2, 75.0, 64.6, 60.4, 28.3, 22.1, 20.1,
12.6, 11.9, 11.7, MS m/z: 422.14 (M-H344.31 (2M) HRMS: calcd for GsHzoNOs (M+H)*
424.2118; found: 424.2103

5.1.3.6. 2-{[(3-(4-Fluorophenyl)isoxazol-5-yl)metbxy]-methyl}-2,5,7,8-tetramethyl-2H-
1-benzopyran-6-ol (16)

Compound16 was obtained by deprotection 8f Purification by column chromatography
(pet. ether/ethyl acetate, 90:10 to 80:20), Yi&@%, yellowish oil, TLC (pet. ether/ethyl
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acetate, 90:10% = 0.1,"H NMR (600 MHz, CDC}) §: 7.77-7.75 (m, 2H, At), 7.13 (t,J =
8.7 Hz, 2H, AH), 6.45 (s, 1HH-isoxazole), 4.73 (ABq, 2HAvas=12.5 Hz, g=14 Hz, -O-
CHy-), 4.20 (bs, 1H, -6), 3.58 (ABq, 2H,Avag=22.1 Hz, Js=10 Hz, -GH,-O-), 2.59 (t,
J=6.8 Hz, 2H, -®l2-), 2.17 (s, 3H, Ar-Gl3), 2.12 (s, 3H, Ar-Els), 2.08 (s, 3H, Ar-Els),
2.03-1.97 (m, 1H, -BH), 1.79-1.75 (m, 1H, -BH), 1.30 (s, 3H, -B3), **C NMR (75 MHz,
CDCl) d: 170.3, 161.4, 145.0, 144.9, 128.8, 128.7, 12p23,2, 118.6, 117.2, 100.6, 76.2,
74.7, 64.6, 28.6, 22.0, 20.3, 12.2, 11.9, 1¥B,NMR §: -110.6, MS m/z: 412.17 (M+H)
434.33 (M+Naj, 457.08 (M+2Na) 844.92 (2M+Na) HRMS: calcd for GHxFNO,
(M+H)"412.1919, GH,¢FNO;Na (M+Na) 434.1738; found: 412.1916, 434.1731

5.1.3.7. 2-{[(3-(4-Hydroxyphenyl)isoxazol-5-yl)metbxy]-methyl}-2,5,7,8-tetramethyl-
2H-1-benzopyran-6-ol (17)

Yield: 57% white foamH NMR (600 MHz, CDC}) ¢: 7.64 (d,J=8.7 Hz, 2H AH), 6.90 (d,
J = 8.7 Hz, 2H, AH), 6.44 (s, 1HH-isoxazole), 5.03 (bs, 1H, H), 4.72 (ABq, 2H,
Avag=13.4 Hz, 4g=13.9 Hz, -O-El,-), 4.20 (bs, 1H, -6), 3.57 (ABq, 2H,Avag=23.5 Hz,
Jas=10 Hz, -CH,-0-), 2.62 (t,J=6.8 Hz, 2H, -G1,-), 2.15 (s, 3H, Ar-El3), 2.11 (s, 3H, Ar-
CHs), 2.10 (s, 3H, Ar-Els), 2.02-1.95 (m, 1H, -BH), 1.80-1.75 (m, 1H, -BH), 1.30 (s, 3H,
-CH3), *C NMR (75 MHz, CDCJ) : 169.8, 162.0, 157.4, 145.1, 144.9, 128.4, 121253,
118.6, 117.3, 115.9, 100.6, 76.2, 74.7, 64.6, 28%0, 20.3, 12.2, 11.9, 11.3,, MS m/z:
408.16 (M-H), 816.44 (2M) HRMS: calcd for G4H2eNOs (M+H)" 410.1962; found:
410.1959

5.2. Biology

5.2.1. Cell culture

HFL-1 human embryonic fibroblasts were obtained tbg European Collection of Cell
Cultures and were maintained in Dulbecco's modikegle's medium (DMHM; Invitrogen)
supplemented with 10% fetal bovine serum (v/v; timgen), 2 mM glutamine, and 1% non-
essential amino-acids. HFL-1 cells were subcultate87°C, 5% CQ and 95% humidity and

were fed approximately 16 h prior to each assay.

5.2.2. Cell survival

Cell survival was assessed by counting the numbeelts after treatment with 3@V H,0,
for 2.5 h. Briefly, 10 HFL-1 cells were plated in 6-well plates and 24ater were treated
with 2 uM compoundl7 and quercetin (Sigma Aldrich) and®1 compoundsl2-17 and
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quercetin or DMSO (solvent control) for 24 h. Cellere then incubated with 300V
hydrogen peroxide (#D,) for 2.5 h in the presence of each compound and Wen washed
thoroughly with PBS. Treated cultures were lefrécover in complete medium for 5 days
and their numbers were determined in triplicatesgia Coulter Z counter. Each experiment
was performed at least two times with the excepbibguercetin that was repeated once in 5-

plicates.

5.2.3. C. eleganstrains, culture conditions and compounds treatments

The N2 (wt Bristol isolate) strain was used. It vpasvided by the Caenorhabditis Genetics
Center, supported by the NIH National Center fosddech Resources (NCRR). We followed
standard procedures f@. elegans strain maintenance at 20 °C. The nematodes wexgngr
on solid nematode growth medium (NGM) seeded véthcoli (OP50) for food. For
compounds treatments, UV-irradiated NGM/OP50 platese supplemented with different
compounds concentrations (solubilized in DMSO) radicated. DMSO was included as a
solvent control in control cultures. UV-killing wased to avoid any adverse effects of ke
coli on the compounds. The compounds or DMSO wereedilut M9 reaching a volume of
200 ul and added over the agar and dead bacteria ritgrtthe UV irradiation. Plates were

allowed to dry for 24 h before use.

5.2.4. Lifespan analysis

Gravid N2 worms were allowed to lay eggs for 3iptoduce synchronized populations. At
L4 larval stage, 80-120 animals/condition weregfarred to fresh plates containing either the
compound or DMSO. Day 1 of adulthood was set as Aximals were maintained at 20 °C,
were transferred to fresh plates containing thepmmd or DMSO every 2 days to avoid
confounding of generation and starvation and wegemened every day for touch-provoked
movement and pharyngeal pumping until death. Anipggdulations were maintained in the
respective compounds throughout their lifespanghEaurvival assay was repeated at least
twice unless otherwise indicated and represent@ssays are shown. Survival curves were
created using the product-limit method by Kaplad Bfeier. The log-rank (Mantel-Cox) test
was used to evaluate differences between survaralso determine P values for all available
independent data. The n in lifespan figures isnlmaber of animals that died/total where total
equals the animals number that died plus the numbeensored animals (due to internally
hatched eggs, extruded gonad or desiccation daeataing off the plates). Median lifespan

values are expressed as mean+SEM.
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5.2.5. Statistical analysis
Statistical analyses were performed using Prisnag@Pad Software, San Diego, California
USA) and Microsoft Office 2003 Excel (Microsoft Qaration) software packages.
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Table 1

Entry Chloramine-T  Catalyst Method Time Yield %"
1 1.05 eq a’ room temperature 24h 45
2 1.05 eq a’ 90 °C 24h 55
3 1.05 eq a” 90 °C 30 min 35
4 1.05 eq Cufree 90 °C 30 min a7
5 1.05 eq a MW(60 °C, 80 W) 30 min 30
6 1.05 eq a” MW(60 °C, 80 W) 30 min 68
7 1.05 eq a” MW(90 °C, 80 W) 30 min 72
8 1.5 eq a” MW(90 °C, 80 W) 30 min 72

; +Silica gel _
9 1.05 eq a 30 min Traces
MW(90 °C, 80 W)
+Al,0
10 1.05 eq a* G 30 min 45
MW(90 °C, 80 W)
1.05eq “ )
11 AL a MW(90 °C, 80 W) 30 min 45
+AI203
12 1.05 eq a’+NaCl  MW(90°C,80W) 30 min 50
13 1.05 eq a’ MW(100 °C, 80 W) 30 min 58
14 1.05 eq a’ MW(110 °C, 80 W) 30 min 62
15 1.05 eq a” MW(120 °C, 100 W) 30 min 53
16 1.05 eq Cufree MW(90 °C, 80 W) 30 min 57
17 1.05 eq Cu free MW(90 °C, 80 W) 45 min 68
18 1.05eq Cufree MW(90 °C, 80 W) 60 min 62
Cu free _
19 1.05 eq MW(90 °C, 80 W) 30 min 26
+NaCl
20 1.05 eq Cufree  MW(90°C,100 W) 22 min 65
21 1.05 eq Cufree MW(90 °C, 100 W) 30 min 45

Solvent: t-BuOH:H,O (1:1), () CuSQ-5H,0/Sodium ascorbate (0.05 eq/0.1 €{).3
eq/0.6eqf.isolated yields based on 4-methoxy-benzaldehyder;, edlumn chromatography
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Scheme AJncatalysed synthesis of isoxazoles
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3 Rj: 4-methoxy-benzyl 6 Ri: OMe, Ry H, R3: 4-methoxy-benzyl
4 Rgj: 3,4-dimethoxy-benzyl 7 R4 OMe, Ry H, R3: 3,4-dimethoxy-benzyl
5§ Rz 6-methoxy chroman 8 R;: OMe, Ry: H, R3: 6-methoxy chroman
9 R4 F, Ry H, R3: 6-methoxy chroman
10 R4: OMe, R,:OMe, R3: 4-methoxy-benzyl

Table 2 Copper free examples of the optimized conditiof@®\(890 °C/ 45 min§

Entry Aldehyde Acetylene Isoxazole Yield (%)
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Figure 1: Structures of the tested compounds
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Figure 2: Treatment with compound 17 increases cellar resistance to oxidative stress.
Number of cells treated with (A) 2M compound17 or 5 uM of compoundsl?2 - 17 or
DMSO (solvent control) and (B) 2 anduB1 compoundl7 or quercetin or DMSO (solvent
control) for 24 h following treatment with 3QM H,O, for 2.5 h and a five-day recovery
period. Results witlp-values,p < 0.05,p < 0.01 orp < 0.001 are denoted in graphs by a
single (*), double (**) or triple (***) asterisk,a@spectively.
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Figure 3: Treatment with compound 17 extends the fiesspan of wt C. elegans. (A-C)
Survival curves of wt N2 worms treated with) luM, (B) 10 uM and C) 20 uM compound

17 as compared to the relative control cultures (DM$Re percentage of animals remaining

alive is plotted against animal age. (A) Controlean=15+0.85n=471/489 (number of
animals that died/total; sedaterials and Methods), compoundl7 1 uM: mean=18%0.33,
n=304/313, P<0.00011,7 10 uM: mean=18+0.5n=319/325, P<0.00011,7 20 uM, 20+0.33,

n=297/308, P<0.0001.
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Figure 4. Comparative treatment of C. elegans with compound 17 and quercetin(A-B)
Survival curves (1 experiment) of wt N2 worms teshtvith (A) 10 uM and (B) 20uM of
compoundl17, quercetin or the relevant amount of DMSO (contrdlhe percentage of
animals remaining alive is plotted against aningg.gA-B) Control: mean=1/%/=106/109
(number of animals that died/total; skkterials and Methods), (A) compoundl7 10 pM:
mean=19,n=107/111, P<0.0001 compared with control, i quercetin: mean=18,
n=106/108, P=0,1927 compared with control, P<0.0001M compoundl7 compared with

10 uM quercetin: (B) 2QuM compoundl?7: mean=20n=111/121, P<0.0001 compared with
control, 20uM quercetin: mean=1%=111/115, P=0,0051 compared with control, P= 0,0004
20 uM compoundl?7 compared with 2@M quercetin.
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Table 1

Entry Chloramine-T  Catalyst Method Time Yield %"
1 1.05 eq a’ room temperature 24h 45
2 1.05 eq a’ 90 °C 24h 55
3 1.05 eq a” 90 °C 30 min 35
4 1.05 eq Cufree 90 °C 30 min a7
5 1.05 eq a MW(60 °C, 80 W) 30 min 30
6 1.05 eq a” MW(60 °C, 80 W) 30 min 68
7 1.05 eq a” MW(90 °C, 80 W) 30 min 72
8 1.5 eq a” MW(90 °C, 80 W) 30 min 72

; +Silica gel _
9 1.05 eq a 30 min Traces
MW(90 °C, 80 W)
+Al,0
10 1.05 eq a* G 30 min 45
MW(90 °C, 80 W)
1.05eq “ )
11 AL a MW(90 °C, 80 W) 30 min 45
+AI203
12 1.05 eq a’+NaCl  MW(90°C,80W) 30 min 50
13 1.05 eq a’ MW(100 °C, 80 W) 30 min 58
14 1.05 eq a’ MW(110 °C, 80 W) 30 min 62
15 1.05 eq a” MW(120 °C, 100 W) 30 min 53
16 1.05 eq Cufree MW(90 °C, 80 W) 30 min 57
17 1.05 eq Cu free MW(90 °C, 80 W) 45 min 68
18 1.05eq Cufree MW(90 °C, 80 W) 60 min 62
Cu free _
19 1.05 eq MW(90 °C, 80 W) 30 min 26
+NaCl
20 1.05 eq Cufree  MW(90°C,100 W) 22 min 65
21 1.05 eq Cufree MW(90 °C, 100 W) 30 min 45

Solvent: t-BuOH:H,O (1:1), () CuSQ-5H,0/Sodium ascorbate (0.05 eq/0.1 €{).3
eq/0.6eqf.isolated yields based on 4-methoxy-benzaldehyder;, edlumn chromatography



Table 2 Copper free examples of the optimized conditiof@®\(890 °C/ 45 min§

Entry Aldehyde Acetylene Isoxazole Yield (%)
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Highlights

» Green, one-pot mw assisted, regioselective synthesis of 3,5-disubstituted isoxazoles
»  Short reaction times of the uncatal ysed reactions, compared to conventional methods
» Evauation of cytoprotective and anti-ageing activity in vitro and in vivo

e Chroman analogue 17, was the most active compound at cellular and organismal level



Microwave-assisted synthesis of 3,5-disubstituted isoxazoles and evaluation

of their anti-ageing activity

Maria Koufaki*#, Theano Fotopoulou, Marianna Kapetanou, Georgios A. Heropoulos#,

Efstathios S. Gonos, Niki Chondrogianni#

Synthesis and analytical data of compounds 3-5 and 11

General procedure for propargylation of (3-5)

A suspension of NaH (60% dispersion in mineral oil, 5 eq) or ‘BuOK (95% w/w, 2 eq) in dry
THF (5 mL) was cooled to 0 °C and the corresponding alcohol (1 eq) was slowly added. The
mixture was stirred for 60 min and propargyl bromide (80% in toluene, 5 eq) was then added
dropwise at 0 °C. Stirring was continued at room temperature overnight. The solvent was
evaporated and the residue was extracted with ethyl acetate. The organic layer was washed
with brine, dried over Na,SO,4 and concentrated in vacuo. The crude residue was purified by
column chromatography (pet. ether/ethyl acetate, 90:10 to 85:15) to give the desired product

as a colorless oil.

4-(Methoxyphenyl)methyl-propargyl ether (3) [1]

‘BuOK was used as a base. Yield: 73%, TLC (pet. ether/ethyl acetate, 85:15) R = 0.6, 'H
NMR (600 MHz, CDCl;) ¢: 7.28 (d, J=8.6 Hz, 2H, ArH), 6.88 (d, J=8.6 Hz, 2H, ArH), 4.54
(s, 2H, Ar-CH,-0O-), 4.13 (d, J=2.3 Hz, 2H, -O-CH>-), 3.80 (s, 3H, -OCH3), 2.45 (t, J =2.3 Hz,
1H, -CH), >C NMR (75 MHz, CDCl3) J: 159.4, 129.8, 129.3, 113.8, 79.8, 74.5, 71.1, 56.7,
55.2, MS m/z: 199.13 (M+Na)", 374.66 (2M+Na)"

3,4-(Dimethoxyphenyl)methyl-propargyl ether (4)

NaH was used as a base. Yield: 86%, TLC (pet. ether/ethyl acetate, 85:15) Ry = 0.3, '"H NMR
(600 MHz, CDCls) J: 6.86 (s, 1H, ArH), 6.84 (d, J=1.5 Hz, 1H, ArH), 6.78 (d, J=8.1 Hz, 1H,
ArH), 4.49 (s, 2H, Ar-CH»,-0O-), 4.10 (d, J=2.3 Hz, 2H, -O-CH;-), 3.84 (s, 3H, -OCHj3), 3.82
(s, 3H, -OCHs), 2.43 (t, J =2.3 Hz, 1H, -CH), >*C NMR (75 MHz, CDCl3) §: 149.0, 148.8,
129.7, 120.8, 111.3, 110.8, 79.7, 74.7, 74.5, 71.4, 56.7, 55.9, MS m/z: 229.06 (M+Na)®,
434.80 (2M+Na)*



3,4-Dihydro-6-methoxy-2,5,7,8-tetramethyl-2-(prop-2-ynyloxymethyl)-2H-1-benzopyran
)

NaH was used as a base. Yield: 89%, TLC (pet. ether/ethyl acetate, 90:10) Ry = 0.8, '"H NMR
(600 MHz, CDCl3) o0: 4.23 (d of ABq, 2H, Avap=19.0 Hz, Jog=15.8 Hz, J = 2.3 Hz -O-CH>-),
3.62 (s, 3H, -OCH3), 3.59 (d, J = 9.7 Hz, 1H, -CHH-O-), 3.48 (d, J = 9.7 Hz, 1H, -CHH-0O-),
2.61-2.58 (m, 2H, -CH,), 2.41 (t, J = 2.3 Hz, 1H, -CH), 2.17 (s, 3H, Ar-CH3), 2.13 (s, 3H, Ar-
CHs3), 2.08 (s, 3H, Ar-CH3), 2.03-1.96 (m, 1H, -CHH), 1.78-1.73 (m, 1H, -CHH), 1.28 (s, 3H,
-CHs). °C NMR (75 MHz, CDCls) 6: 149.6, 147.3, 127.9, 125.8, 122.8, 117.6, 79.9, 75.0,
74.8, 74.4, 60.4, 58.9, 28.3, 22.3, 20.2, 12.6, 11.9, 11.7, MS m/z: 288.92 (M+H)", 311.07
(M+Na)*, 598.71 (2M+Na)"

tert-Butyl 3-(5-phenylisoxazol-3-yl)-1H-indole-1-carboxylate (11)

To a solution of 1H-indole-3-carbaldehyde (300 mg, 2.07 mmol) in anhydrous acetonitrile (7
mL) at room temperature was added DMAP (50 mg, 0.41 mmol) and then Boc,O (0.68 g,
3.10 mmol). The mixture was stirred at room temperature for 60 min and then solvent was
removed under reduced pressure. The residue was extracted with ethyl acetate and the organic
layer was washed with brine, dried over Na,SO, and concentrated in vacuo, affording 1-(tert-
Butoxycarbonyl)-1H-indole-3-carbaldehyde [2] (0.51 g, 100%) as a white solid, which was
used for the next step without further purification. TLC (pet. ether/ethyl acetate, 80:20) Ry =
0.53, '"H NMR (600 MHz, CDCl3) d: 10.09 (s, 1H, -CHO), 8.27 (d, J=7.7 Hz, 1H, ArH), 8.22
(s, 1H, ArH), 8.14 (d, J=7.7 Hz, 1H, ArH), 7.42-7.35 (m, 2H, ArH), 1.70 (s, 9H, 3xCH3 Boc),
C NMR (75 MHz, CDCls) 6: 185.7, 148.8, 136.5, 135.9, 126.1, 124.7, 124.5, 122.2, 121.6,
115.2,115.1, 85.6, 28.1, MS m/z: 267.92 (M+Na)*, 512.75 (2M+Na)* . Then, according to the
general procedure for preparation of 3,5-disubstituted isoxazoles tert-butyl 3-(5-
phenylisoxazol-3-yl)-1H-indole-1-carboxylate (11) was obtained in 26% yield. TLC (pet.
ether/ethyl acetate, 90:10) R, = 0.6, '"H NMR (600 MHz, CDCl;) o0: 8.22-8.12 (m, 2H, ArH),
7.99 (s, 1H, ArH), 7.80 (dd, J="7.9, 1.6 Hz, 2H, ArH), 7.44-7.39 (m, 3H, ArH), 7.35-7.19 (m,
2H, ArH) 6.79 (s, 1H, H-isoxazole), 1.65 (s, 9H, 3xCHs Boc), °C NMR (75 MHz, CDCl;) §:
169.5, 157.9, 149.4, 135.7, 130.2, 129.1, 128.9, 127.4, 125.9, 125.7, 122.1, 115.2, 110.7, 97.8,
84.6, 28.2, MS m/z: 361.00 (M+H)", 383.00 (M+Na)*, 742.83 (2M+Na)*, HRMS: calcd for
C»nHyN,O; (M+H)* 361.1547, CpHyN,OsNa (M+Na)® 383.1366; found: 361.1540,
383.1360



[1] a. L. Banfi, G. Guanti, A. Basso, B-Lactam-Fused Enediynes by Stereoselective Pinacol
Coupling, Eur. J. Org. Chem. (2000) 939-946,

b. F. Zhang, S. Zaidi, K. M. Haney, G. E. Kellogg, Y. Zhang, Regio- and Stereoselective
Syntheses of the Natural Product CCRS5 Antagonist Anibamine and its Three Olefin Isomers,
J. Org. Chem. 76 (2011) 7945-7952

[2] F. Giraud, R. Akué-Gédu, L. Nauton, N. Candelon, E. Debiton, V. Théry, F. Anizon, P.
Moreau, Synthesis and biological activities of 4-substituted pyrrolo[2,3-a]carbazole Pim

kinase inhibitors, Eur. J. Med. Chem. 56 (2012) 225-236.
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C NMR of compound 6
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Experimental (upper) and Simulated (lower) HRMS of compound 7
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C NMR of compound 9
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Experimental (upper) and Simulated (lower) HRMS of compound 12

238.0860 NL:
1007 6.06E6
J MK_134#57-101 RT:
807 0.46-0.77 AV:43 F:
| FTMS +p ESIFullms
60 [100.00-300.00]
40 260.0680
201 |239.0893 259.0852
od 240.0928 243.1263 245.1477 247.1214 252.0453 254.0666 257'?597 2610712 563 0721
" 238.0863 NL:
1007 8.43E5
© .| C1i5H11 Ny Oz +H:
% 80: Cw%Hweroz
° ] a Chrg 1
S 60 pa Chrg
Qo
< 7
2 40
&8 7
2 209 |239.0896
o] 240.0930 242.0972 244.1039
g 260.0682 NL:
1009 8.43E5
80 C15H11 Ny O2 +Na:
] C%P';MNvozNaw
4 a rg 1
60 pa Chrg
40
20 261.0716
B 262.0749
[ S R e S o e e L L L A A L B T B B e e e e e B B B T IS B
238 240 242 244 246 248 250 252 254 256 258 260 262 264
m/z
N’O
W
1
H NMR of compound 13
I\ ‘ i
i i ? ¥ Y 7 Y
o n n = N N @
(o2} o o o n N n
N ~ w o BN N ©
B S ~ o (2] o w
© S (4] o © B n
I N e e e e e
9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0




C NMR of compound 13
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Experimental (upper) and Simulated (lower) HRMS of compound 13
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Experimental (upper) and Simulated (lower) HRMS of compound 14
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3C NMR of compound 16
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'H NMR of compound 17
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Experimental (upper) and Simulated (lower) HRMS of compound 17
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