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Graphical Abstract
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A one-pot, four-component reaction of ethyl acettaie, hydrazine hydrate, aldehydes, and maloiilenitas discussed using
Lewis acid catalyst morpholine triflate (MorT) téfad a series of dihydropyrano[2¢3pyrazoles, which were generally catalyzed by
organic alkalis. Moderate to excellent yields, mooenatographic purification, and evasion of envinemtally hazardous solvents in
the reaction process make this protocol very ugefuhcademia and industry.
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1. Introduction

Over the past decades, green chemistry has evokeeaging interest in new, environmentally benigncpdures such as
multicomponent reactions, solvent-free synthesas] eeusable catalysts to save resources and erfélgyAmong these,
multicomponent reactions (MCRs) are a very usefal in synthetic organic chemistry as well as ingddiscovery programs. With
the developing awareness of environmentally beniganmical syntheses among the scientific communigsighing chemical
reactions without hazardous chemical ingredientedoice or eliminate toxic waste and byproductsesutimost priority for synthetic
chemists. As organic solvents (THF, DMSO, DMF, CKH®@CI, etc.) are considered to be the highest contributoenteronmental
pollution, synthetic utility is further made moréractive when environmentally-friendly solvents Buas ethanol or water are used.
The discovery of novel synthetic methodologies reppre compound libraries using MCRs without theafdeazardous solvents is a
significant and pivotal focal point in industry aadademia [2].

The dihydropyrano[2,8}pyrazoles play an essential role as versatilehstitt building blocks and pharmacophores. Manyhokée
compounds show different pharmacological effecth agantimicrobial [3], insecticidal [4], anti-iafhmatory [5] and molluscicidal
[6] activities. Furthermore, dihydropyrano[XByrazoles are reported as pharmaceutical ingréglie@hkl inhibitors [7], and
biodegradable agrochemicals [8].

In general, pyrano[2,8}pyrazoles have been synthesizéa two-component reaction [9] involving pyran derivat and hydrazine
hydrate; three-component condensation [10] betviéemethylpiperidone, pyrazolin-5-one and malonoretiit absolute ethanol; and
more importantly four-component reactions of aldihyethyl acetoacetate, hydrazine and malonon[ttil¢é However, most of the
protocols used nitrogenous based unrecoverable gemeous catalysts like triethylamine [11a], pipeed[11b], L-proline [11c,d],
per-6-amings-cyclodextrin [11e], hexadecyl dimethyl benzyl ammon chloride [11f], basic ionic liquids [11g,h]jsdlfonic acid
imidazolium chloroaluminate [11i], and meglumin€eljjl Several methods involving heterogeneous catslysuch as amberlyst A21
[11K], y-alumina [11]], and Sn©QDs [11m], have been reported. To the best of oomedge, there are few methods available for
the synthesis of highly functionalized dihydropysf?y3c]pyrazoles frameworks in the presence of a Lewis .a€igus, the
development of a general MCR protocol using greewit acid catalyst leading to the pyrano[2]@yrazoles derivatives is highly
desirable.

OCorresponding author.
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Organocatalysis is becoming an interesting area agids the use of expensive and toxic metals. Amum triflate is a novel
organocatalyst which has been applied in a varietgactions and displayed great catalytic actiaityl efficiency [12]. Furthermore,
ammonium triflate has many advantages, includimgy eseparation, good reusability and environmentakptability compared to
traditional Lewis acid catalysts. In connection wadtlr continuing studies on the development of onerpolticomponent reactions
catalyzed by ammonium triflates, we synthesized beazthenes catalyzed by proline triflate (ProT)d[Land 1,4-dihydropyridines
catalyzed by diphenylammonium triflate (DPAT) [12BJe also investigated some other reactions catalipgeDPAT [12c] or ProT
[12d]. Herein, we report an efficient and environnadigtfriendly method for the synthesis of dihydrogyo[2,3€]pyrazoles catalyzed
by MorT.

2. Experimental

Analytical grade solvents and commercially availatdagents were used without further purification. Mgl points were
determined on a Biichi B-540 capillary melting papparatus and uncorrected. 4l NMR and**C NMR spectra were recorded on a
VARAIN-400 using DMSO#d, as the solvent with tetramethylsilane (TMS) as rternal standard. Chemical shifts are giverd in
relative to TMS; the coupling constants J are giuerHz. Mass spectra were measured with a Thermo gannLC Advantage
(Agilent 1100). High resolution mass spectrometry (HRMvas performed on an Agilent 6210 TOF LC/MS usir§) Br El
(electrospray ionization) techniques.

General procedure for synthesis of dihydropyranefp§razoles §) (Scheme 1): To a pre-stirred mixture of ethyltaaeetate X)
(0.26 mL, 2.0 mmol), hydrazine hydrat® (0.13 mL, 2.5 mmol) in EtOH/}O (v/v = 9:1, 6 mL) was added aldehyd8s (2.0 mmol)
and malononitrile 4) (0.13 g, 2.0 mmol) followed by MorT (10 mol%). Thesulting mixture was stirred under reflux. After
completion of the reaction (monitored by TL&hexane/ethyl acetate = 3:1), the precipitated yproavas filtered and washed with
aqueous ethanol (10 mL). The crude residue wasatiiget from ethanol/water (v/v = 9.5:0.8H NMR and**C NMR spectra for all
compounds are available in Supporting information.

NH,NH,
o 2a CN catalyst
N < EtOH-H,0, refl 7 N
SO Gcro ON EermOm ]
E N
1 3a 4 H O NH,

5a
Scheme 1. General procedure for synthesis of dihydropyrar@¢Ppyrazoles.

Typical spectral data of some compounds are lisedow, others are deposited in Supporting inforomati

6-Amino-3-methyl-4-phenyl-1,4-dihydropyrano[2¢Byrazole-5-carbonitrile5a): Mp: 247-248°C. 'H NMR (DMSO-ds, 400 MHz):
5 12.07 (s, 1H), 7.32-7.28 (m, 2H), 7.22-7.19 (m, IH)5 (d, 2H,J = 7.2 Hz), 6.86 (s, 2H), 4.58 (s, 1H), 1.77 (s, 3K NMR
(DMSO-ds, 100 MHz):6 160.5, 154.4, 144.1, 135.2, 128.1, 128.1, 12722,2], 126.4, 120.5, 97.4, 57.2, 36.2, 9.7; MS (E®I}
251.3 [M-HJ.

6-Amino-4-(4-fluorophenyl)-3-methyl-1,4-dihydropymaji2,3c]pyrazole-5-carbonitrile5b): Mp: 223-224°C. 'H NMR (DMSO-ds,
400 MHz):6 12.09 (s, 1H), 7.21-7.17 (m, 2H), 7.12 (t, 2t 8.8 Hz), 6.89 (s, 2H), 4.62 (s, 1H), 1.78 (s, 3f; NMR (DMSO+;,
100 MHz):0 161.8, 160.5, 159.4, 154.4, 140.4, 135.3, 1220,4, 115.0, 114.8, 97.3, 57.1, 35.4, 9.7; MS (58 269.3 [M-H]J.

6-Amino-3-methyl-4-p-tolyl)-1,4-dihydropyrano[2,3]pyrazole-5-carbonitrile §): Mp: 208-209°C. 'H NMR (DMSO-ds, 400
MHz): § 12.05 (s, 1H), 7.10 (d, 2H,= 8.0 Hz), 7.03 (d, 2H) = 8.0 Hz), 6.82 (s, 2H), 4.53 (s, 1H), 2.26 (s, 1HJ81(s, 3H);"*C
NMR (DMSO-ds, 100 MHz):6 160.4, 154.5, 141.2, 135.4, 135.3, 128.7, 128.7,112127.1, 120.6, 97.6, 57.4, 35.9, 20.7, 9.8; MS
(ESI): m/z 265.3 [M-H].

6-Amino-3-methyl-4-(4-nitrophenyl)-1,4-dihydropyrd¢8-c]pyrazole-5-carbonitrile §n): Mp: 250-251°C. *H NMR (DMSO-ds,
400 MHz):6 12.17 (s, 1H), 8.19 (d, 2H, = 8.8 Hz), 7.45 (d2H, J = 8.8 Hz), 7.04 (s, 2H), 4.82 (s, 1H), 1.80 (s, 3K NMR
(DMSO-ds, 100 MHz):6 160.8, 154.4, 151.7, 146.1, 135.6, 128.6, 128.8,612123.6, 120.2, 96.4, 55.9, 35.9, 9.8; MS (ESIk
296.3 [M-HJ.

6-Amino-4-(2,4-dichlorophenyl)-3-methyl-1,4-dihydimano[2,3€]pyrazole-5-carbonitrile5r ): Mp: 220-221°C. *H NMR (DMSO-
ds, 400 MHz):6 12.14 (s, 1H), 7.57 (d, 1H,= 2.0 Hz), 7.39 (ddlH, J = 8.4 Hz), 7.20 (d, 1H] = 8.0 Hz), 7.00 (s, 2H), 5.05 (s, 1H),
1.78 (s, 3H);°C NMR (DMSO4ds, 100 MHz):6 161.0, 154.6, 139.8, 135.2, 132.6, 131.9, 131.8,6,2127.8, 120.0, 96.2, 55.3, 33.1,
9.4; MS (ESI):m/z 319.2 [M-H].

6-Amino-4-(3,4-dimethylphenyl)-3-methyl-1,4-dihydiymano[2,3€]pyrazole-5-carbonitrile §s): Mp: 201-202 °C. 'H NMR
(DMSO-ds, 400 MHz):8 12.02 (s, 1H), 7.04 (d, 1H,= 7.6 Hz), 6.88-6.85 (m, 2H), 6.80 (s, 2H), 4.481(d), 2.17 (s, 6H), 1.78 (s,
3H); ¥C NMR (DMSO4s, 100 MHz):6 160.4, 154.4, 141.6, 135.8, 135.3, 134.2, 129.8,2,2124.7, 120.6, 97.6, 57.5, 35.9, 19.5,
19.0, 9.8; MS (ESIm/'z 303.5 [M+Na]. HRMS (EST , m/z): [M+H]", calcd. for GgH,/N,O: 281.1397, found: 281.1399.

6-Amino-3-methyl-1,4-diphenyl-1,4-dihydropyrano[XJpyrazole-5-carbonitrile5aa): Mp: 168-169°C. 'H NMR (DMSO-ds, 400
MHz): 6 7.78 (d, 2H,J = 7.6 Hz), 7.50-7.46 (m, 2H), 7.34-7.26 (m, 3H), 772B4 (m, 3H), 7.22 (s, 2H), 4.67 (s, 1H), 1.78 (s, 3fD;
NMR (DMSO-ds, 100 MHz):6 159.1, 144.9, 143.6, 143.3, 137.3, 129.0, 129.8,202.28.2, 127.5, 127.5, 126.7, 125.8, 119.7,7,19.
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119.7, 98.4, 58.2, 36.7, 12.6; MS (ES¥)z 329.4 [M+H]. HRMS (ESI, nvz): [M+H]", calcd. for GoH;-N,O: 329.1397, found:
329.1406.

6-Amino-4-(4-isopropylphenyl)-3-methyl-1-phenyl-1géhydropyrano[2,3]pyrazole-5-carbonitrile Faf): Mp: 149-151 °C. 'H
NMR (DMSO-dg, 400 MHz):6 7.77 (d, 2HJ = 7.6 Hz), 7.49-7.45 (m, 2H), 7.32-7.28 (m, 1H), 7(&1 2H), 7.19 (s, 2H), 7.15-7.13
(m, 2H), 4.63 (s, 1H), 2.90-2.83 (m, 1H), 1.79 (s, 3H}9 (d, 6H,) = 7.2 Hz);"*C NMR (DMSO+4g, 100 MHz):6 159.1, 146.6, 144.9,
143.5, 140.7, 137.3, 129.0, 129.0, 127.3, 127.8,112126.1, 125.8, 119.8, 119.7, 119.7, 98.6, 5823, 33.0, 23.8, 23.8, 12.6; MS
(ES):m/z371.5 [M+H]. HRMS (EST , m/2): [M+H]", calcd. for G3H,3N,O: 371.1866, found: 371.1866.

3. Resultsand discussion

We started our investigation by choosing differmmimonium triflates (Fig. 1) for the optimizationrefaction conditions catalyzing
this four-component condensation using EtOj@Hs solvent (Table 1).

Ne crsq

LD Y o ° o
HOO o ®NH,CF,S0, H3CO—@NH3CFQSQ

ProT DPAT p-MOAT

\/\;//J o ® © o /@ o
N CFsS0s OzN@NHaCFasQ O ® CRSO, Q NH, CES
H NHCT Q b CF3S0,

TBAT p-NAT 1-PEAT MorT
Fig. 1. Different kinds of ammonium triflates.

When the reaction was conducted without catalysty arlbw yield of product was obtained even after 1d&ble 1, entry 1).
This result suggested that catalyst played a alificle in this reaction. A number of ammonium &iél catalysts were examined to
promote this reaction under reflux (Table 1, est@e8). MorT proved to be the most efficient onat thave the highest yield (92%)
within 9 h (Table 1, entry 8). Morphine and HOTf welsaexamined to promote this transformation, ag ttam react with each other
to afford MorT (Table 1, entries 9 and 10). It seenthat the catalytic activity of MorT was muchtbetthan HOTf but close to
morphine. There are many papers related to théneyist of dihydropyrano[2,8lpyrazoles catalysed by Lewis acid. Here, MorT was
introduced as the Lewis acid catalyst leading topiyrano[2,3€]pyrazoles.

Tablel
Influence of different catalysts.

CN catalyst

+ NHyNH, + CgHsCHO  + < EIOH-H,0, reflux > CN
o CN N |
EtO H 0" "NH,
1 2a 3a 4 5a
Entry Catalyst Time (h)  Yiel@®)
1 / 12 33
2 ProT 12 36
3 DPAT 12 12
4 p-MOAT 12 18
5 TBAT 12 36
6 p-NAT 12 38
7 1-PEAT 12 20
8 MorT 9 92
9 HOTf 12 13
10 Morpholine 9 83

& Experimental conditions: benzaldehyde (2 mmoljiragine hydrate (2 mmol), malononitrile (2 mmoljy acetoacetate (2 mmol), catalyst
(10 mol %), reflux, EtOH-KD (9:1, 6 mL).
® |solated yield based dh

With regard to the choice of catalyst, we carried e above reaction in various solvents. As showilable 2, when the
reaction was performed under solvent-free condititms product yield was obtained (Table 2, entryTq.find the best solvent for
this transformation, the present four-componenttiea was screened in,8, THF, DMSO, DMF, MeOH, EtOHProH and ethanol-
water mixture. Among all these solvents, ethanol-wéet) was found to be the best one and affordechipleest yield (Table 2,
entry 11). Therefore, ethanol-water was selectetieasdlvent system for the subsequent reaction.
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Table2
Optimization of reaction condition3.

Entry Solvent Temp’C) Time (h) Yield of5a(%)°
1 / 85°¢ 12 33
2 H,O 85°¢ 12 66
3 THF reflux 12 31
4 DMSO 85 12 22
5 DMF 85¢ 12 34
6 MeOH reflux 12 79
7 'PrOH reflux 12 75
8 EtOH reflux 12 70
9 EtOH/HO (1:1) reflux 9 72
10 EtOH/HO (5:1) reflux 9 85
11 EtOH/HO (9:1) reflux 9 92

& Experimental conditions: benzaldehyde (2 mmoljiragine hydrate (2 mmol), malononitrile (2 mmotjy acetoacetate (2 mmol), solvent
(6 mL), MorT (10 mol %).

b |solated yield based dh

¢ Qil bath temperature.

Encouraged by the efficiency of the reaction protatescribed above, the scope and specificity &f photocol were further
investigated. A library of dihydropyrano[2¢3pyrazoles were constructed under the optimizedti@aconditions (Table 3). A broad
range of structurally diverse aldehydes were trewii¢tl hydrazine hydrate, malononitrile, and ethy@acetate, and the results are
depicted in Table 3. All reactions proceeded effitie and the desired products were obtained in matde¢o excellent yields.

Irrespective of the presence of electron withdrawinglonating substituents in tleetho, meta, or para positions on the aromatic
ring of aldehydes, the reactions proceeded smodtthiyrnish the desired products in high yiel8a-5z). The reaction was relatively
sensitive to the steric environment of the aromatéehydes, and longer reaction time was requicedbénzaldehyde containing
substituents at 2-position (Table 3, entries ¥,5,7 and 18). A relatively low yield was observed whenaromatic aldehydes were
occupied by two or more substituents (Table 3, entli8-21). The reaction worked well for the aliphaiidehydes under similar
reaction conditions without the unwanted byprodwisside reactions such as aldo condensation and theizzaro reaction (Table
3, entries 21-24). Heteroaromatic aldehydes, sudhras-2-carbaldehyde and pyridine-3-carboxaldehy@elily participated in this
transformation, affording the pyranopyrazoles ighhyields (Table 3, entries 25 and 26). In genetathe reactions listed in Table 3
were moderate to high-yielding (54%—95%) and in hamardous solvents (EtOH,®)) and the products could be recrystallized from
ethanol to avoid column chromatography purification

Table3
Synthesis of dihydropyrano[2@pyrazole5 from carbonyl compound3.
Rl
CN CN
©  NHNH RICHO + { 4.E[OHMT - N
el ° CN FoO reflux N 07N,
1 2a 3 4 5a-5z
Entry R Time Product Yield
(h) )"
1 CeHs- 9 5a 92
2 4-FGH,- 8 5b 71
3 2-CIGH.- 9 5¢c 94
4 4-CIGH.- 7 5d 95
5 2-BrGH.- 10 5e 82
6 4-BrGHs 7 5f 90
7 2-HOGH,- 10 59 92
8 3-HOGH- 8 5h 92
9 3-CHCeHs- 8 5i 87
10 4-CHCeHs 9 5j 58
11 3-CHOCGCsH.- 7 5k 85
12 4-CHOGCsH,- 8 5l 78
13 4-CRCeHy- 9 5m 63
14 4-NQCeHs 6 5n 92
15 4PrCH4- 8 50 65
16 4-(CH):NCsH4- 8 5p 62
17 2-F-6-Cl-GHa- 12 5q 91
18 2,4-CJCeHs- 10 5r 59
19 3,4-(CH),CeHs- 8 5s 74
20 2,4,5-(CHO)CeHz- 9 5t 75
21 3-GHs0-4-F-GHs- 8 5u 67
22 CHCH,CH,- 7 5v 54
23 (CH),CH- 7 5w 87
24 (CHp)sC- 9 5% 72
25 2-Furan- 7 By 79
26 3-Pyridine- 8 5z 84
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@ Experimental conditions: aldehyde (2 mmol), hyédrazydrate (2 mmol), malononitrile (2 mmol), etlagletoacetate (2 mmol), solvent
(6 mL), MorT (10 mol %), reflux.
b |solated yield based dh

Additionally, the reaction went well when hydrazimgdrate was replaced with phenylhydrazine. We olegkthat it was a
little sensitive to the steric environment of thedfazine as a slightly longer reaction time wasunegl for the reaction
compared with Table 3 (Table 4, entries 1-6).

Table4
Synthesis of dihydropyrano[2@pyrazole5 from phenylhydrazine and carbonyl compourids.
Rl
CN
o, @NHNH2+ Rlcno « (- M\ ~
0 CN EtOH-H,0, reflux N 0" “NH,
EtO Ph
1 2b 3 4 Saa-5af
Entry R Time (h) Product Yield (96)
1 CeHs- 10 5aa 84
2 4-FGH4 12 5ab 57
3 4-CIGH,- 12 5ac 70
4 4-NO:CeHy 12 5ad 87
5 4-CHCeHa- 10 Sae 82
6 4-PrGsH,- 12 Saf 89

@ Experimental conditions are same as that in Table
® |solated yield based dh

The formation of produch is proposed to involve the following tandem reatsi (Scheme 2): Firstly, pyrazolofevas
formed by the reaction betwednand?2. The Knoevenagal condensation betw8esmd 4 was carried out in the presence of
MorT. Then, after Michael addition 6fand7, followed by cyclization and tautomerization, titee product5 was formed.

OEt AL NG R?
© NH )T
MorT, /" .\n NC O--MorT
O\~ 4 3

1 2 l
RZ
H
J\ 0 X CN
EtO . .MorT /' S H R2 R2

~, .

e N N7 CcN ) SN
_ NHR! N N LN ]

N N 0 NS N7 0" NH,

R! R!
8 5

51
EtOH Re H

Scheme 2. Proposed mechanism for the formation of pyranef®p$razoles.
4. Conclusion

In summary, we have developed an efficient mettwwdHe synthesis of a diverse range of dihydropyfa3-c]pyrazoles
using Lewis acid MorT as an eco-friendly catalydb chromatography, no hazardous organic solvemtd, raoderate to
excellent yield of the products are the major aghieents of this reaction protocol, which has poaénd be extremely useful
for synthetic applications. This method using Leaésd is a useful supplement to the reported method
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