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Graphical Abstract 
 
Morpholine triflate promoted one-pot, four-component synthesis of dihydropyrano[2,3-c]pyrazoles 
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A one-pot, four-component reaction of ethyl acetoacetate, hydrazine hydrate, aldehydes, and malononitrile was discussed using 
Lewis acid catalyst morpholine triflate (MorT) to afford a series of dihydropyrano[2,3-c]pyrazoles, which were generally catalyzed by 
organic alkalis. Moderate to excellent yields, no chromatographic purification, and evasion of environmentally hazardous solvents in 
the reaction process make this protocol very useful for academia and industry. 
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1. Introduction 
 
Over the past decades, green chemistry has evoked increasing interest in new, environmentally benign procedures such as 

multicomponent reactions, solvent-free syntheses, and reusable catalysts to save resources and energy [1]. Among these, 
multicomponent reactions (MCRs) are a very useful tool in synthetic organic chemistry as well as in drug discovery programs. With 
the developing awareness of environmentally benign chemical syntheses among the scientific community, designing chemical 
reactions without hazardous chemical ingredients to reduce or eliminate toxic waste and byproducts is the utmost priority for synthetic 
chemists. As organic solvents (THF, DMSO, DMF, CHCl3, CCl4, etc.) are considered to be the highest contributors to environmental 
pollution, synthetic utility is further made more attractive when environmentally-friendly solvents such as ethanol or water are used. 
The discovery of novel synthetic methodologies to prepare compound libraries using MCRs without the use of hazardous solvents is a 
significant and pivotal focal point in industry and academia [2].  

The dihydropyrano[2,3-c]pyrazoles play an essential role as versatile synthetic building blocks and pharmacophores. Many of those 
compounds show different pharmacological effects such as antimicrobial [3], insecticidal [4], anti-inflammatory [5] and molluscicidal 
[6] activities. Furthermore, dihydropyrano[2,3-c]pyrazoles are reported as pharmaceutical ingredients, Chk1 inhibitors [7], and 
biodegradable agrochemicals [8]. 

In general, pyrano[2,3-c]pyrazoles have been synthesized via two-component reaction [9] involving pyran derivatives and hydrazine 
hydrate; three-component condensation [10] between N-methylpiperidone, pyrazolin-5-one and malononitrile in absolute ethanol; and 
more importantly four-component reactions of aldehyde, ethyl acetoacetate, hydrazine and malononitrile [11]. However, most of the 
protocols used nitrogenous based unrecoverable homogeneous catalysts like triethylamine [11a], piperidine [11b], L-proline [11c,d], 
per-6-amino-β-cyclodextrin [11e], hexadecyl dimethyl benzyl ammonium chloride [11f], basic ionic liquids [11g,h], disulfonic acid 
imidazolium chloroaluminate [11i], and meglumine [11j]. Several methods involving heterogeneous catalysts, such as amberlyst A21 
[11k], γ-alumina [11l], and SnO2 QDs [11m], have been reported. To the best of our knowledge, there are few methods available for 
the synthesis of highly functionalized dihydropyrano[2,3-c]pyrazoles frameworks in the presence of a Lewis acid. Thus, the 
development of a general MCR protocol using green Lewis acid catalyst leading to the pyrano[2,3-c]pyrazoles derivatives is highly 
desirable. 
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A one-pot, four-component reaction of ethyl acetoacetate, hydrazine hydrate, aldehydes, and 
malononitrile was discussed using Lewis acid catalyst morpholine triflate (MorT) to afford a 
series of dihydropyrano[2,3-c]pyrazoles, which were generally catalysed by organic alkalis. 
Moderate to excellent yields, no chromatographic purification, and evasion of environmentally 
hazardous solvents in the reaction process make this protocol very useful for academia and 
industry. 
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Organocatalysis is becoming an interesting area as it avoids the use of expensive and toxic metals. Ammonium triflate is a novel 
organocatalyst which has been applied in a variety of reactions and displayed great catalytic activity and efficiency [12]. Furthermore, 
ammonium triflate has many advantages, including easy separation, good reusability and environmental acceptability compared to 
traditional Lewis acid catalysts. In connection with our continuing studies on the development of one-pot multicomponent reactions 
catalyzed by ammonium triflates, we synthesized benzoxanthenes catalyzed by proline triflate (ProT) [12a] and 1,4-dihydropyridines 
catalyzed by diphenylammonium triflate (DPAT) [12b]. We also investigated some other reactions catalyzed by DPAT [12c] or ProT 
[12d]. Herein, we report an efficient and environmentally friendly method for the synthesis of dihydropyrano[2,3-c]pyrazoles catalyzed 
by MorT.  

 
2. Experimental 
 

Analytical grade solvents and commercially available reagents were used without further purification. Melting points were 
determined on a Büchi B-540 capillary melting point apparatus and uncorrected. All 1H NMR and 13C NMR spectra were recorded on a 
VARAIN-400 using DMSO-d6 as the solvent with tetramethylsilane (TMS) as an internal standard. Chemical shifts are given in δ 
relative to TMS; the coupling constants J are given in Hz. Mass spectra were measured with a Thermo Finnigan LC Advantage 
(Agilent 1100). High resolution mass spectrometry (HRMS) was performed on an Agilent 6210 TOF LC/MS using ESI or EI 
(electrospray ionization) techniques. 

General procedure for synthesis of dihydropyrano[2,3-c]pyrazoles (5) (Scheme 1): To a pre-stirred mixture of ethyl acetoacetate (1) 
(0.26 mL, 2.0 mmol), hydrazine hydrate (2) (0.13 mL, 2.5 mmol) in EtOH/H2O (v/v = 9:1, 6 mL) was added aldehydes (3) (2.0 mmol) 
and malononitrile (4) (0.13 g, 2.0 mmol) followed by MorT (10 mol%). The resulting mixture was stirred under reflux. After 
completion of the reaction (monitored by TLC, n-hexane/ethyl acetate = 3:1), the precipitated product was filtered and washed with 
aqueous ethanol (10 mL). The crude residue was crystallized from ethanol/water (v/v = 9.5:0.5). 1H NMR and 13C NMR spectra for all 
compounds are available in Supporting information. 
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Scheme 1. General procedure for synthesis of dihydropyrano[2,3-c]pyrazoles. 
 
Typical spectral data of some compounds are listed below, others are deposited in Supporting information.  

6-Amino-3-methyl-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5a): Mp: 247-248 oC. 1H NMR (DMSO-d6, 400 MHz): 
δ 12.07 (s, 1H), 7.32-7.28 (m, 2H), 7.22-7.19 (m, 1H), 7.15 (d, 2H, J = 7.2 Hz), 6.86 (s, 2H), 4.58 (s, 1H), 1.77 (s, 3H); 13C NMR 
(DMSO-d6, 100 MHz): δ 160.5, 154.4, 144.1, 135.2, 128.1, 128.1, 127.2, 127.2, 126.4, 120.5, 97.4, 57.2, 36.2, 9.7; MS (ESI): m/z 
251.3 [M-H]-. 

6-Amino-4-(4-fluorophenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5b): Mp: 223-224 oC. 1H NMR (DMSO-d6, 
400 MHz): δ 12.09 (s, 1H), 7.21-7.17 (m, 2H), 7.12 (t, 2H, J = 8.8 Hz), 6.89 (s, 2H), 4.62 (s, 1H), 1.78 (s, 3H); 13C NMR (DMSO-d6, 
100 MHz): δ 161.8, 160.5, 159.4, 154.4, 140.4, 135.3, 129.0, 120.4, 115.0, 114.8, 97.3, 57.1, 35.4, 9.7; MS (ESI): m/z 269.3 [M-H]-.  

6-Amino-3-methyl-4-(p-tolyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5j): Mp: 208-209 oC. 1H NMR (DMSO-d6, 400 
MHz): δ 12.05 (s, 1H), 7.10 (d, 2H, J = 8.0 Hz), 7.03 (d, 2H, J = 8.0 Hz), 6.82 (s, 2H), 4.53 (s, 1H), 2.26 (s, 1H), 1.78 (s, 3H); 13C 
NMR (DMSO-d6, 100 MHz): δ 160.4, 154.5, 141.2, 135.4, 135.3, 128.7, 128.7, 127.1, 127.1, 120.6, 97.6, 57.4, 35.9, 20.7, 9.8; MS 
(ESI): m/z 265.3 [M-H]-. 

6-Amino-3-methyl-4-(4-nitrophenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5n): Mp: 250-251 oC. 1H NMR (DMSO-d6, 
400 MHz): δ 12.17 (s, 1H), 8.19 (d, 2H, J = 8.8 Hz), 7.45 (d, 2H, J = 8.8 Hz), 7.04 (s, 2H), 4.82 (s, 1H), 1.80 (s, 3H); 13C NMR 
(DMSO-d6, 100 MHz): δ 160.8, 154.4, 151.7, 146.1, 135.6, 128.6, 128.6, 123.6, 123.6, 120.2, 96.4, 55.9, 35.9, 9.8; MS (ESI): m/z 
296.3 [M-H]-. 

6-Amino-4-(2,4-dichlorophenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5r): Mp: 220-221 oC. 1H NMR (DMSO-
d6, 400 MHz): δ 12.14 (s, 1H), 7.57 (d, 1H, J = 2.0 Hz), 7.39 (dd, 1H, J = 8.4 Hz), 7.20 (d, 1H, J = 8.0 Hz), 7.00 (s, 2H), 5.05 (s, 1H), 
1.78 (s, 3H); 13C NMR (DMSO-d6, 100 MHz): δ 161.0, 154.6, 139.8, 135.2, 132.6, 131.9, 131.9, 128.6, 127.8, 120.0, 96.2, 55.3, 33.1, 
9.4; MS (ESI): m/z 319.2 [M-H]-. 

6-Amino-4-(3,4-dimethylphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5s): Mp: 201-202 oC. 1H NMR 
(DMSO-d6, 400 MHz): δ 12.02 (s, 1H), 7.04 (d, 1H, J = 7.6 Hz), 6.88-6.85 (m, 2H), 6.80 (s, 2H), 4.48 (s, 1H), 2.17 (s, 6H), 1.78 (s, 
3H); 13C NMR (DMSO-d6, 100 MHz): δ 160.4, 154.4, 141.6, 135.8, 135.3, 134.2, 129.2, 128.2, 124.7, 120.6, 97.6, 57.5, 35.9, 19.5, 
19.0, 9.8; MS (ESI): m/z 303.5 [M+Na]+. HRMS (ESI+ , m/z): [M+H] +, calcd. for C16H17N4O: 281.1397, found: 281.1399. 

6-Amino-3-methyl-1,4-diphenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5aa): Mp: 168-169 oC. 1H NMR (DMSO-d6, 400 
MHz): δ 7.78 (d, 2H, J = 7.6 Hz), 7.50-7.46 (m, 2H), 7.34-7.26 (m, 3H), 7.26-7.24 (m, 3H), 7.22 (s, 2H), 4.67 (s, 1H), 1.78 (s, 3H); 13C 
NMR (DMSO-d6, 100 MHz): δ 159.1, 144.9, 143.6, 143.3, 137.3, 129.0, 129.0, 128.2, 128.2, 127.5, 127.5, 126.7, 125.8, 119.7, 119.7, 
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119.7, 98.4, 58.2, 36.7, 12.6; MS (ESI): m/z 329.4 [M+H]+. HRMS (ESI+, m/z): [M+H] +, calcd. for C20H17N4O: 329.1397, found: 
329.1406. 

6-Amino-4-(4-isopropylphenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5af): Mp: 149-151 oC. 1H 
NMR (DMSO-d6, 400 MHz): δ 7.77 (d, 2H, J = 7.6 Hz), 7.49-7.45 (m, 2H), 7.32-7.28 (m, 1H), 7.21 (m, 2H), 7.19 (s, 2H), 7.15-7.13 
(m, 2H), 4.63 (s, 1H), 2.90-2.83 (m, 1H), 1.79 (s, 3H), 1.19 (d, 6H, J = 7.2 Hz); 13C NMR (DMSO-d6, 100 MHz): δ 159.1, 146.6, 144.9, 
143.5, 140.7, 137.3, 129.0, 129.0, 127.3, 127.3, 126.1, 126.1, 125.8, 119.8, 119.7, 119.7, 98.6, 58.2, 36.3, 33.0, 23.8, 23.8, 12.6; MS 
(ESI): m/z 371.5 [M+H]+. HRMS (ESI+ , m/z): [M+H] +, calcd. for C23H23N4O: 371.1866, found: 371.1866. 

3. Results and discussion 

We started our investigation by choosing different ammonium triflates (Fig. 1) for the optimization of reaction conditions catalyzing 
this four-component condensation using EtOH/H2O as solvent (Table 1). 

CF3SO3N
H

CF3SO3NH2

O2N NH3 CF3SO3

H3CO NH3CF3SO3

CF3SO3 CF3SO3
NH3

O NH2

N
H2

HOOC
CF3SO3

p-MOAT

MorT1-PEATTBAT p-NAT

DPATProT

 
Fig. 1. Different kinds of ammonium triflates. 

 

When the reaction was conducted without catalyst, only a low yield of product was obtained even after 12 h (Table 1, entry 1). 
This result suggested that catalyst played a critical role in this reaction. A number of ammonium triflate catalysts were examined to 
promote this reaction under reflux (Table 1, entries 2–8). MorT proved to be the most efficient one that gave the highest yield (92%) 
within 9 h (Table 1, entry 8). Morphine and HOTf were also examined to promote this transformation, as they can react with each other 
to afford MorT (Table 1, entries 9 and 10). It seemed that the catalytic activity of MorT was much better than HOTf but close to 
morphine. There are many papers related to the synthesis of dihydropyrano[2,3-c]pyrazoles catalysed by Lewis acid. Here, MorT was 
introduced as the Lewis acid catalyst leading to the pyrano[2,3-c]pyrazoles. 

Table 1 
Influence of different catalysts. a 

EtOH-H2O, reflux

O

CN

NH2

N
N
H

O

O
EtO

+

1 2a 3a 4 5a

+NH2NH2

catalyst
C6H5CHO +

CN

CN

 
Entry Catalyst Time (h) Yield (%)b 

1 / 12 33 
2 ProT 12 36 
3 DPAT 12 12 
4 p-MOAT 12 18 
5 TBAT 12 36 
6 p-NAT 12 38 
7 1-PEAT 12 20 
8 MorT 9 92 
9 HOTf 12 13 
10 Morpholine 9 83 

a Experimental conditions: benzaldehyde (2 mmol), hydrazine hydrate (2 mmol), malononitrile (2 mmol), ethyl acetoacetate (2 mmol), catalyst 
(10 mol %), reflux, EtOH-H2O (9:1, 6 mL).  
b Isolated yield based on 1. 

 
With regard to the choice of catalyst, we carried out the above reaction in various solvents. As shown in Table 2, when the 

reaction was performed under solvent-free conditions, low product yield was obtained (Table 2, entry 1). To find the best solvent for 
this transformation, the present four-component reaction was screened in H2O, THF, DMSO, DMF, MeOH, EtOH, iPrOH and ethanol-
water mixture. Among all these solvents, ethanol-water (9:1) was found to be the best one and afforded the highest yield (Table 2, 
entry 11). Therefore, ethanol-water was selected as the solvent system for the subsequent reaction. 
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Table 2 
Optimization of reaction conditions. a  
Entry Solvent Temp. (oC) Time (h) Yield of 5a (%) b 

1 / 85 c 12 33 
2 H2O 85 c 12 66 
3 THF reflux 12 31 
4 DMSO 85 c 12 22 
5 DMF 85 c 12 34 
6 MeOH reflux 12 79 
7 iPrOH reflux 12 75 
8 EtOH reflux 12 70 
9 EtOH/H2O (1:1) reflux 9 72 
10 EtOH/H2O (5:1) reflux 9 85 
11 EtOH/H2O (9:1) reflux 9 92 

a Experimental conditions: benzaldehyde (2 mmol), hydrazine hydrate (2 mmol), malononitrile (2 mmol), ethyl acetoacetate (2 mmol), solvent 
(6 mL), MorT (10 mol %).  
b Isolated yield based on 1.  
c Oil bath temperature. 

 
Encouraged by the efficiency of the reaction protocol described above, the scope and specificity of this protocol were further 

investigated. A library of dihydropyrano[2,3-c]pyrazoles were constructed under the optimized reaction conditions (Table 3). A broad 
range of structurally diverse aldehydes were treated with hydrazine hydrate, malononitrile, and ethyl acetoacetate, and the results are 
depicted in Table 3. All reactions proceeded efficiently, and the desired products were obtained in moderate to excellent yields. 

Irrespective of the presence of electron withdrawing or donating substituents in the ortho, meta, or para positions on the aromatic 
ring of aldehydes, the reactions proceeded smoothly to furnish the desired products in high yields (5a-5z). The reaction was relatively 
sensitive to the steric environment of the aromatic aldehydes, and longer reaction time was required for benzaldehyde containing 
substituents at 2-position (Table 3, entries 3, 5, 7, 17 and 18). A relatively low yield was observed when the aromatic aldehydes were 
occupied by two or more substituents (Table 3, entries 18-21). The reaction worked well for the aliphatic aldehydes under similar 
reaction conditions without the unwanted byproducts via side reactions such as aldo condensation and the Cannizzaro reaction (Table 
3, entries 21-24). Heteroaromatic aldehydes, such as furan-2-carbaldehyde and pyridine-3-carboxaldehyde readily participated in this 
transformation, affording the pyranopyrazoles in high yields (Table 3, entries 25 and 26). In general, all the reactions listed in Table 3 
were moderate to high-yielding (54%–95%) and in non-hazardous solvents (EtOH-H2O) and the products could be recrystallized from 
ethanol to avoid column chromatography purification.  

 
Table 3 
Synthesis of dihydropyrano[2,3-c]pyrazole 5 from carbonyl compounds. a 

EtOH-H2O, ref lux
O

CN

NH2

N
N
H

CN

CN

O

O
EtO

+

R1

+

1 2a 3 4 5a-5z

+ R1CHONH2NH2
MorT

 
Entry R1 Time 

(h) 
Product Yield 

(%) b 
1 C6H5- 9 5a 92 
2 4-FC6H4- 8 5b 71 
3 2-ClC6H4- 9 5c 94 
4 4-ClC6H4- 7 5d 95 
5 2-BrC6H4- 10 5e 82 
6 4-BrC6H4- 7 5f 90 
7 2-HOC6H4- 10 5g 92 
8 3-HOC6H4- 8 5h 92 
9 3-CH3C6H4- 8 5i 87 
10 4-CH3C6H4- 9 5j 58 
11 3-CH3OC6H4- 7 5k 85 
12 4-CH3OC6H4- 8 5l 78 
13 4-CF3C6H4- 9 5m 63 
14 4-NO2C6H4- 6 5n 92 
15 4-iPrC6H4- 8 5o 65 
16 4-(CH3)2NC6H4- 8 5p 62 
17 2-F-6-Cl-C6H3- 12 5q 91 
18 2,4-Cl2C6H3- 10 5r 59 
19 3,4-(CH3)2C6H3- 8 5s 74 
20 2,4,5-(CH3O)3C6H2- 9 5t 75 
21 3-C6H5O-4-F-C6H3- 8 5u 67 
22 CH3CH2CH2- 7 5v 54 
23 (CH3)2CH- 7 5w 87 
24 (CH3)3C- 9 5x 72 
25 2-Furan- 7 5y 79 
26 3-Pyridine- 8 5z 84 
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a Experimental conditions: aldehyde (2 mmol), hydrazine hydrate (2 mmol), malononitrile (2 mmol), ethyl acetoacetate (2 mmol), solvent 
(6 mL), MorT (10 mol %), reflux.  

b Isolated yield based on 1. 
 

Additionally, the reaction went well when hydrazine hydrate was replaced with phenylhydrazine. We observed that it was a 
little sensitive to the steric environment of the hydrazine as a slightly longer reaction time was required for the reaction 
compared with Table 3 (Table 4, entries 1-6). 

Table 4 
Synthesis of dihydropyrano[2,3-c]pyrazole 5 from phenylhydrazine and carbonyl compounds. a 

 

Entry R1 Time (h) Product Yield (%) b 
1 C6H5- 10 5aa 84 
2 4-FC6H4- 12 5ab 57 
3 4-ClC6H4- 12 5ac 70 
4 4-NO2C6H4- 12 5ad 87 
5 4-CH3C6H4- 10 5ae 82 
6 4-iPrC6H4- 12 5af 89 

a Experimental conditions are same as that in Table 3. 
 b Isolated yield based on 1. 

 
The formation of product 5 is proposed to involve the following tandem reactions (Scheme 2): Firstly, pyrazolone 6 was 

formed by the reaction between 1 and 2. The Knoevenagal condensation between 3 and 4 was carried out in the presence of 
MorT. Then, after Michael addition of 6 and 7, followed by cyclization and tautomerization, the title product 5 was formed. 

NC

NC

+

N
N O

R2

R2

CN

C
N

H

R2

CN

C
NH

N
N O O

CN

NH2

N
N

R2

MorTO
H

5

1 2

34

6

7

8

H
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NH2
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N
NH

R1
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EtOH
 

Scheme 2. Proposed mechanism for the formation of pyrano[2,3-c]pyrazoles. 

4. Conclusion 

In summary, we have developed an efficient method for the synthesis of a diverse range of dihydropyrano[2,3-c]pyrazoles 
using Lewis acid MorT as an eco-friendly catalyst. No chromatography, no hazardous organic solvents, and moderate to 
excellent yield of the products are the major achievements of this reaction protocol, which has potential to be extremely useful 
for synthetic applications. This method using Lewis acid is a useful supplement to the reported methods. 
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