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Figure 1. Anti-TB agents.
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The structure of a novel indigoid component was characterized by X-ray crystallography. This compound
exhibited excellent anti-tuberculosis activity against Mycobacterium tuberculosis H37Rv in whole cell
culture showing a submicromolar minimum inhibitory concentration (MIC). A synthesis of this molecule
was designed and carried out to produce sufficient material for further testing. The in vitro profile,
structure, and first synthesis of this indigoid component is reported.
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There exists great demand for new agents capable of combating
infections associated with Mycobacterium tuberculosis (M.tb), the
causative bacterium of tuberculosis (TB). This organism afflicts
over a third of the world’s population with an annual death rate
in excess of 2 million.1 Current first-line therapy involves use of
a combination of isoniazid, rifampicin, pyrazinamide, and etham-
butol or streptomycin (Fig. 1). These drugs were identified decades
ago, and while a number of molecules are currently under study as
new agents2 (e.g., PA-824, OPC-67683), only one (TMC-207)3 has
successfully completed phase III clinical-stage development.

A standard therapeutic course4 of 6–8 months is required to kill
this slow-growing bacteria and to allow for sterilization of the per-
sistent phenotype of M.tb. Furthermore, the infected populations
are generally found in developing countries where such dosing
dynamics and logistics often lead to poor patient compliance. As
a result, the non-compliance can exacerbate development of drug
resistance; for example, in 2006, 500,000 cases of multi-drug resis-
tant TB (MTR-TB) were estimated with 6.6% of these cases carrying
the extensively-drug resistant TB (XTR-TB) strains.5 Considering all
infectious diseases, TB is the #1 cause of death of HIV-infected
populations, and the epidemic has now become an urgent global
health problem.

High-throughput screening (HTS) of compound libraries in
search of new anti-TB actives is fraught with problems related to
the unique lipophilic cell wall6 of M.tb serving as a barrier to some
structural types, along with the relative abundance of cytochrome
P450 enzymes7 (20 isoforms) which inactivate functionalized
molecules.
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Table 1
In vitro profile of compound 1 (lM)

Assaya (1) Isoniazid Rifampin

1 MIC H37Rv 0.57 0.22 0.038
2 Cytotoxicity Vero cell >32 >100 >182
3 LORA MIC 5.3 >100 0.49
4 Protein shift MIC (4% BSA) 2.1 0.45 0.089
5 Protein shift MIC (10% FBS) 0.57 0.24 0.21
6 MIC M. smegmatis >50 18.9 16.7
7 MIC C. albicans >50 ND ND
8 MIC S. aureus >50 ND ND
9 MIC E. coli >50 ND ND

a Description of these assays are listed in Supplementary data section. Figure 3. X-ray structure of indigoid 1 (CCDC 919159).
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Scheme 1. Indoxyl route to indigoids.

N
H

O

O8

PCl5
Benzene,
reflux,
1-2 h 81%

HO

N
H

O

O

4

N

O

Cl
6a

N

O

NO

Cl

ClCH2Cl2
RT 1-2 h
32%

O N
O

HO

L. L. Klein et al. / Bioorg. Med. Chem. Lett. 24 (2014) 268–270 269
Recently, scientists from The Shaw Group, Inc. have successfully
employed genetic engineering to modify the active site of the oxi-
dative enzyme, toluene-4-monooxygenase(T4MO).8 The wild type
T4MO enzyme is able to hydroxylate a wide range of aromatic
and aliphatic chemicals, and through their efforts, the substrate
range has been expanded by creating new isoforms with different
substrate specificities and product distributions. This approach,
termed ‘combinatorial biocatalysis’,9 proceeds by incubating the
organism (Escherichia coli) expressing the cloned T4MO isoform,
with the substrate(s), and the resultant microbial processing of
these substrates is followed by HPLC analysis. Indole-based sub-
strates were selected for this experiment due to their status as a
privileged core in medicinal chemistry, their propensity for oxida-
tion and subsequent dimerization under these culture conditions.
Following the microbial processing of this modified oxidative sys-
tem, novel secondary metabolites were produced and isolated.22

Upon screening these indigoid libraries from the aforementioned
bacterial culture for antimicrobial bioactivities, several structural
sub-sets typified by compound 1 were found to exhibit potent
anti-TB activity.10 Herein, we report the anti-TB profile, structural
characterization of 1,12 and the first chemical synthesis of this
compound.11

The in vitro profile of 1 is listed in Table 1 along with that of the
anti-TB agents, isoniazid and rifampin. The biocatalytic reaction
described above utilized indole and anthranil as the lone sub-
strates (Fig. 2) and produced multiple components from which 1
was isolated. Compound 1 exhibits good potency and is not greatly
affected by protein-shift assays 4 and 5 (Table 1) showing a 1- and
3.7-fold increase in the MIC, respectively. This compound has
excellent selectivity in the breadth of spectrum assays (6–9) with
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Figure 2. Biocatalytic formation of 1 in E. coli and structure of indirubin (2).
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Scheme 2. Chemical synthesis of compound 1.
all MICs >50 lM. The Low Oxygen Recovery Assay (LORA),
designed to test those mycobacteria in the non-replicating pheno-
type, shows approximately a 10-fold effect.

Single crystal X-ray analysis,13 of 1 confirmed its novel struc-
ture (Fig. 3). Compound 1 is structurally related to indirubin (2),
a dye-like indole dimer, such that both share a 3-indolone core;
however, as indirubin lacked anti-TB activity,14 both the structural
and biological novelty of 1 was established.15

In order to determine the viability of compound 1 as an anti-TB
agent, we required quantities much greater than the scale-limited
cellular system could provide. Initially, synthetic routes were
based upon the classical synthesis16 of indirubin utilizing 3-acet-
oxylindole (3) as the nucleophilic partner and isatin (4) as the
electrophile (Scheme 1; Eq. 1). In a similar manner, coupling of 3
with the putative quinone 5 (attempted prep of 5 via oxidation17
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of 5-hydroxybenzisoxazole; Scheme 1; Eq. 2) led to a complex mix-
ture of reaction products none of which was the desired product.

Alternatively, through the use of the polarity inversion concept,
the 5-hydroxybenzisoxazole (7) was utilized as the nucleophilic
partner with the indole-related fragment serving as the electro-
phile via its corresponding 2-chloroindolen-3-one (6a/b)
(Scheme 2). As previously reported, treatment of isatin (4) with
phosphorus pentachloride actually leads to dimeric structure
6b.18 Although this dimer is isolable via rapid chromatographic
purification techniques, its instability to moisture encouraged di-
rect use of the crude material in subsequent reactions. The addition
of 6 to other aromatic systems has precedent; for example, reac-
tion of 6 with 2-naphthol afforded adduct 819 which did not exhibit
any anti-TB activity. Direct combination of 6 with 5-hydroxyben-
zisoxazole (7) at 25 �C produced 1.20 Generally, these products
were obtained in a pure state by filtration from the dichlorometh-
ane (DCM) reaction mixtures. Further purification, if necessary,
was accomplished via silica gel chromatography using methano-
lic-DCM as eluting solvents.

These compounds exhibit poor water solubility and are unsta-
ble in the presence of secondary amines. The possibility of this
chemical instability being related to the poor metabolic stability21

is presently under investigation. Efforts to modify the solubility
and stability characteristics and expand the structure–activity
relationship is presently underway using new chemical approaches
for functionalization. The excellent potency, ease of access, and low
molecular weight of this novel anti-TB hit provides the encourage-
ment for these efforts.
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