Bioorganic Chemistry xxx (xxxx) xxxx

Contents lists available at ScienceDirect

Bioorganic Chemistry

journal homepage: www.elsevier.com/locate/bioorg

Evaluation of biological activities, and exploration on mechanism of action of matrine–cholesterol derivatives

Jianwei Xu^{a,1}, Zhiqiang Sun^{a,1}, Meng Hao^a, Min Lv^{a,*}, Hui Xu^{a,b,*}

^a College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China ^b Research Center of Natural Products & Medicinal Chemistry, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang Province, PR China

reductase in A. citricola.

ARTICLE INFO	A B S T R A C T
Keywords: Sophora flavescens Matrine Pesticidal activity qRT-PCR Mechanism of action	To develop new potential pesticides, a series of matrine–cholesterol derivatives were prepared by modifications of two non-food bioactive products matrine and cholesterol. Two <i>N</i> -phenylsulfonylmatrinic esters (5i and 5j) showed the most potent insecticidal activity against <i>Mythimna separata</i> Walker. Two <i>N</i> -benzylmatrinic esters (5e and 5g) exhibited the most promising aphicidal activity against <i>Aphis citricola Van der</i> Goot. Especially compound 5e showed good control effects in the greenhouse against <i>A. citricola</i> . Some interesting results of their structure-activity relationships were also observed. By reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time polymerase chain reaction (qRT-PCR) analysis of <i>HMG-CoA</i> reductase in apterous adults of <i>A. citricola</i> , it demonstrated that matrine and cholesterol may be the HMG-CoA reductase inhibitors, and the hydroxyl of cholesterol or the lactam ring of matrine may be important for acting with <i>HMG-CoA</i>

1. Introduction

Over the past decade, the repeat and massive use of synthetic pesticides has led to negative effects on the environment and human health, and insect pests resistance and rerampancy [1,2]. To develop new potential alternatives for efficient control insect pests, recently, naturally non-food bioactive substances have received much attention [3–5].

Matrine (1, Fig. 1) is an important plant secondary metabolite, extracted and isolated as a quinolizidine alkaloid from the roots of *Sophora flavescens* (Kushen) distributed in Asia, Oceanica, and the Pacific islands [6]. Matrine and its derivatives displayed a variety of medicinal activities such as antiviral activity [7], anti-inflammatory activity [8], anticancer activity [9], and so on. Additionally, although matrine and its derivatives (registered as a botanical pesticide in China) showed pesticidal activities for crop protection [10,11], their pesticidal activities are much lower in magnitude when compared with commercially chemical pesticides. Previously, we found some cholesterol-based hydrazones exhibiting potent insecticidal activity after modification of cholesterol (2, Fig. 1), a type of lipid molecule, which is transported in the blood plasma of all animals [12]. Consequently, we prepared a series of matrine–cholesterol derivatives (Fig. 1) by combining two molecules, matrine and cholesterol together. Their biological activities were tested against *Aphis citricola Van der* Goot and *Mythimna separata* Walker. Furthermore, their mechanism of action against *A. citricola* was investigated.

2. Materials and methods

2.1. Preparation of matrine-cholesterol derivatives (5a-n)

A mixture of compounds **4a–n** (0.5 mmol), cholesterol (**2**, 0.6 mmol), DCC (0.5 mmol), and DMAP (0.1 mmol) in 5 mL of dry dichloromethane was stirred at room temperature. After 48–96 h, the mixture was diluted with 20 mL of dichloromethane. Then the solution was washed with 0.1 M aq. HCl (10 mL), 5% aq. Na₂CO₃ (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, concentrated in *vacuo*, and purified by preparative thin-layer chromatography (PTLC) to afford target compounds **5a–n** in 9–31% yields. Data for compound **5a**: Yield: 21%, white solid; m.p. 146–148 °C; $[\alpha]_D^{20} = -7$ (*c* 2.4 mg/mL, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ : 7.32–7.34 (m, 2H, Ph-*H*), 7.28–7.30 (m, 2H, Ph-*H*), 7.19–7.22 (m, 1H, Ph-*H*), 5.33 (s, 1H, –CH = C), 4.55–4.61 (m, 1H, –OCH), 4.10 (d, J = 14.0 Hz, 1H), 3.10 (d, J = 13.5 Hz, 1H), 2.82–2.86 (m, 2H), 2.77 (d, J = 11.0 Hz, 1H), 2.62 (t, J = 12.0 Hz, 1H), 2.31–2.34 (m, 1H), 2.24–2.26 (m, 4H), 1.90–2.03 (m, 5H), 1.80–1.84 (m, 5H), 1.65–1.74 (m, 5H), 1.47–1.60 (m, 9H), 1.34–1.44

https://doi.org/10.1016/j.bioorg.2019.103439

Received 28 September 2019; Received in revised form 6 November 2019; Accepted 12 November 2019 0045-2068/ © 2019 Elsevier Inc. All rights reserved.

^{*} Corresponding authors at: College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China.

E-mail addresses: lvmin@nwsuaf.edu.cn (M. Lv), orgxuhui@nwsuaf.edu.cn (H. Xu).

¹ These authors contributed equally to this work.

Fig. 1. Chemical structures of toosendanin, imidacloprid, matrine (1), cholesterol (2) and target compounds.

(m, 10*H*), 1.25 (s, 1H), 1.05–1.18 (m, 8H), 0.96 (s, 3H), 0.90–0.91 (m, 3H), 0.85–0.87 (m, 6H), 0.67 (s, 3H).

2.2. Biological assay

The biological activities of compounds **1**, **2** and **5a–n** were evaluated against *M. separata* and *A. citricola*, respectively [13,14].

2.3. Mechanisms of action against Aphis citricola

Acetone solutions of compounds 1, 2, and 5e were prepared at 1.076, 2.878, and 0.609 mg/mL, respectively. The solution of imidacloprid (a positive control) was prepared in acetone at 0.248 µg/mL. The corresponding solution (0.04 µL) was added to the pronotum of aphids (120 healthy and size-consistency apterous adults of A. citricola for each compound). The aphids treated with acetone alone were used as CK. The experiment was carried out at 25 \pm 1 °C and 50 \pm 7% relative humidity (RH), and on 14 h/10 h (light/dark) photoperiod. After 48 h, 30 alive aphids of each treatment were selected out. The putative HMG-CoA reductase mRNAs of A. citricola were obtained from National Center for Biotechnology Information (NCBI) (https://www. ncbi.nlm.nih.gov/) and UniProt (https://www.uniprot.org/). The Nterminal ligand-binding conserved domain and the transmembrane regions (TM) were used by SMART program (http://smart.emblheidelberg.de/). The primers for qRT-PCR were design using primer 3 online (http://primer3.ut.ee/). The mechanism of action of compound 5e was explored through reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the mRNAs expression in A. citricola [6,13].

3. Results and discussion

3.1. Chemistry

In Scheme 1, first, *N*-benzylmatrinic methyl esters and *N*-phenylsulfonylmatrinic methyl esters (**3a**–**n**) were obtained by reaction of matrine (**1**) with 6 M aq. HCl, followed by MeOH, and benzyl bromides/ chlorides or phenylsulfonyl chlorides. Then hydrolysis of compounds **3a**–**n** in the presence of NaOH or HCl gave *N*-benzylmatrinic acids and *N*-phenylsulfonylmatrinic acids (**4a**–**n**). Finally, target compounds **5a**–**n** were obtained by reaction of compounds **4a**–**n** with cholesterol (**2**) in the presence of DCC and DMAP (Zhang et al., 2018). Their structures were characterized by optical rotation, IR, ¹H NMR, and mp (see Supplementary data).

3.2. Pesticidal activities

3.2.1. Growth inhibitory activity of compounds 1, 2 and 5a-n against M. separata

As shown in the Table 1, the final mortality rates (FMRs) of these derivatives against *M. separata* after 35 days were generally higher than those after 10 or 20 days, so these derivatives displayed the delayed insecticidal activity against *M. separata*. On the other hand, the symptoms for all treated *M. separata* were observed as the same as our previous papers [6,13,14]. For instance, the thin and wrinkled dead larvae appeared at the larval stage (Fig. 2); some malformed and dead pupae were observed at the pupation period (Fig. 3); some malformed moths were found during the adult stage (Fig. 4). When compared with a botanical insecticide toosendanin (Fig. 1), compounds **5d**, **5g**, **5i**, **5j** and **5n** exhibited potent insecticidal activity against *M. separata*. The final

Scheme 1. Preparation of target compounds 5a-n.

mortality rates (FMRs) of compounds **5d**, **5g**, **5i**, **5j** and **5n** were 51.7%, 51.7%, 58.6%, 55.1%, and 51.7%, respectively. Especially compounds **5i** and **5j** showed the most promising insecticidal activity; whereas the FMRs of their lead compounds (matrine (1) and cholesterol (2)) were only 24.1% and 20.7%, respectively (Table 1). To *N*-benzylmatrinic esters (**5a–h**), compounds **5d** (R = 4-methylbenzyl) and **5g** (R = 4-methoxybenzyl) showed potent insecticidal activity. It suggested that compounds containing the electron-donating groups on their phenyl usually exhibited more potent insecticidal activity than those containing the electron-withdrawing ones. To *N*-phenylsulfonylmatrinic esters (**5i–n**), compounds **5i** (R = phenylsulfonyl), **5j** (R = 4-methylphenylsulfonyl) and **5n** (R = 4-fluorophenylsulfonyl) displayed pronounced insecticidal activity, however, the electron effect of the substituents R on the insecticidal activity was not obvious.

3.2.2. Aphicidal activity of compounds 1, 2 and 5a-n against Aphis citricola

As described in Table 2, compounds 5c, 5e, 5g and 5h showed potent aphicidal activity against *A. citricola*. The 48 mortality rates (MRs) of compounds 5c, 5e, 5g and 5h were 48.8%, 56.9%, 50.5%, and 44.1%, respectively. Especially compound 5e (R = 4-fluorobenzyl) displayed the most pronounced aphicidal activity with the 48 h MR of 56.9%; whereas the 48 h MRs of compounds 1 and 2 were only 31.8% and 19.3%, respectively. In general, derivatives 5a-h (R as the (un) substituted benzyl) exhibited more promising aphicidal activity than 5i-n (R as the (un)substituted phenylsulfonyl). To compounds 5a-h, introduction of the fluorine atom at the 4-position on the phenyl was important for the aphicidal activity (e.g., 5e (4-F) Vs. 5c (4-Br); 5e (4-F) Vs. 5h (2-F)).

Table 1

Growth inhibitory activity of compounds 1, 2 and 5a-n against *M. separata* at 1 mg/mL.

Compound	Corrected mortality rate (mean \pm SE, %)		
	10 days	20 days	35 days
1	6.7 ± 3.3	16.6 ± 3.3	24.1 ± 3.3
2	3.3 ± 3.3	13.3 ± 3.3	20.7 ± 6.6
5a	13.3 ± 3.3	13.3 ± 3.3	34.5 ± 6.6
5b	6.7 ± 6.6	6.7 ± 6.6	27.6 ± 5.7
5c	23.3 ± 6.6	26.6 ± 8.8	44.8 ± 8.8
5d	6.7 ± 3.3	20.0 ± 5.7	51.7 ± 8.8
5e	16.6 ± 6.6	23.3 ± 8.8	48.2 ± 5.7
5f	6.7 ± 6.6	13.3 ± 3.3	44.8 ± 3.3
5g	20.0 ± 5.7	23.3 ± 8.8	51.7 ± 3.3
5h	30.0 ± 5.7	43.3 ± 8.8	48.2 ± 5.7
5i	33.3 ± 6.6	46.6 ± 3.3	58.6 ± 5.7
5j	6.7 ± 3.3	16.6 ± 8.8	55.1 ± 8.8
5k	20.0 ± 5.7	30.0 ± 10.0	44.8 ± 3.3
51	10.0 ± 5.7	13.3 ± 3.3	44.8 ± 8.8
5m	10.0 ± 5.7	16.6 ± 6.6	34.5 ± 3.3
5n	20.0 ± 5.7	20.0 ± 5.7	51.7 ± 6.6
toosendanin	16.6 ± 3.3	$23.3~\pm~8.8$	48.2 ± 5.7

Fig. 2. The representative abnormal larvae pictures of compounds 5i (XJW-26), 5k (XJW-30), 5h (XJW-33), 5g (XJW-23), 5n (XJW-28), 5c (XJW-32), and 5m (XJW-35) against *M. separata* during the larval period (CK: blank control group).

The 48 h LD₅₀ values of some potent derivatives against *A. citricola* were shown in Table 3. The LD₅₀ values of **5c**, **5e**, **5g** and **5h** were between 0.041 and 0.047 μ g/larvae. Compounds **5e** and **5g** exhibited > 2.4 folds more pronounced aphicidal activity than compound **1** (LD₅₀ value: 0.101 μ g/larvae), and compounds **5e** and **5g** exhibited > 4.5-fold more potent aphicidal activity than compound **2** (LD₅₀ value: 0.191 μ g/larvae). Moreover, compounds **1** and **5e** were tested for their control effects against *A. citricola* at 1.0 mg/mL in the greenhouse (Table 4). Compound **5e** exhibited good control effects when compared with that of compound **1**. The control effects of compound **5e** on the 3rd, 5th and 7th day were 55.0%, 58.7%, and 59.1%, respectively; whereas the control effects of compound **1** were 26.5%,

Bioorganic Chemistry xxx (xxxx) xxxx

Fig. 3. The representative malformed pupae pictures of compounds 5d (XJW-21), 5g (XJW-23), 5l (XJW-24), 5j (XJW-25), 5k (XJW-30), 5f (XJW-31), and 5m (XJW-35) against *M. separata* during the pupation period (CK: blank control group).

Fig. 4. The representative malformed moth pictures of compounds 5d (XJW-21), 5g (XJW-23), 5j (XJW-25), 5i (XJW-26), 5e (XJW-27), 5n (XJW-28), and 5h (XJW-33) against *M. separata* during the adult emergence period (CK: blank control group).

32.9%, and 34.4%, respectively. The pictures of control efficiency of compounds **1** and **5e** against *A. citricola* were shown in Fig. 5.

3.3. Mechanisms of action against A. citricola

HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase) is the rate-controlling enzyme for cholesterol biosynthesis [15]. In insects pest, HMG-CoA reductase can regulate insect juvenile hormones (JH) biosynthesis [16,17]. Cholesterol derivaties alone or in combination with statin can be used as inhibitors reducing HMG-CoA reductase protein accumulation in CHO-7 cells to treat cardiovascular disease in mammals [18]. So compounds 1, 2, and 5e were investigated targeting on HMG-CoA reductase of *A. citricola*. The primers of HMG-

J. Xu, et al.

Table 2

Aphicidal activity of compounds 1, 2 and 5a-n against apterous adults of A. citricola treated at 0.04 µg/larvae ^aAt 0.8 ng/larvae.

Compound	Corrected mortality rate (mean \pm SE, %)		
	24 h	48 h	
1	13.4 ± 2.9 67 + 11	31.8 ± 5.0 193 + 29	
5a	8.0 ± 1.1	27.0 ± 2.9	
5b 5c	3.5 ± 0 25.0 ± 1.9	29.4 ± 1.9 48.8 ± 4.0	
5d 5e	6.9 ± 1.9 13.6 ± 2.2	35.2 ± 2.9 56.9 ± 2.9	
5f 5g	9.2 ± 1.1 137 + 19	34.1 ± 2.9 50 5 + 3.8	
5g 5h	19.3 ± 4.0	44.1 ± 1.9	
51 5j	3.4 ± 1.1 14.9 ± 2.9	32.5 ± 1.1 32.9 ± 3.3	
5k 5l	8.0 ± 1.9 11.4 ± 2.9	19.7 ± 1.9 37.6 ± 4.0	
5m 5n	11.3 ± 3.8 68 + 11	31.3 ± 2.9	
imidacloprid ^a	64.0 ± 1.1	88.6 ± 1.1	

CoA reductase gene of A. citricola used for qRT-PCR were described in Table 5, and the schematic diagram of HMG-CoA reductase in A. citricola was shown in Fig. 6a. The mRNA expressions changes of HMG-CoA reductase in A. citricola against compounds 1, 2, 5e and imidacloprid (a

Table 3 values of some compounds at 48 h against A citricola

positive control) were tested by qRT-PCR and RT-PCR (Fig. 6b-c). Compounds 1 and 2 down-regulated HMG-CoA reductase to 0.08 and 0.13 folds, respectively; whereas imidacloprid up-regulated HMG-CoA reductase to 11.43 folds. It suggested that compounds 1 and 2 may be inhibitors of HMG-CoA reductase. The result of compound 2 was the same as the previous reports [18]. Interestingly, cholesterol-matrine derivative 5e had no effect on the mRNA expression changes of HMG-CoA reductase in A. citricola. That is, opening the lactam ring of compound 1 or esterization of hydroxyl of compound 2 may lead to no action with HMG-CoA reductase in A. citricola. It demonstrated the hydroxyl of compound 2 or the lactam ring of compound 1 may be necessary for acting with HMG-CoA reductase in A. citricola.

4. Conclusion

A series of matrine-cholesterol derivatives were prepared by modifications of two non-food bioactive products, matrine and cholesterol. Especially two N-phenylsulfonylmatrinic esters (5i and 5j) showed the most promising insecticidal activity against M. separata. Two N-benzylmatrinic esters (5e and 5g) exhibited the most pronounced aphicidal activity against A. citricola. It demonstrated that N-benzylmatrinic esters generally showed more promising aphicidal activity than N-phenylsulfonylmatrinic ones; on the contrary, N-phenylsulfonylmatrinic esters generally exhibited more potent insecticidal activity than Nbenzylmatrinic ones. Compound 5e displayed good control effects against A. citricola. By RT-PCR and qRT-PCR analysis of HMG-CoA reductase in apterous adults of A. citricola, it suggested that compounds 1

Compound	Regression equation	LD ₅₀ (µg/larvae)	Confidence interval 95% (μg/larvae)	r
1	Y = 1.411 + 1.417X	0.101	0.079-0.159	0.979
2	Y = 1.711 + 2.381X	0.191	0.168-0.229	0.944
5c	Y = 4.181 + 3.102X	0.045	0.041-0.050	0.988
5e	Y = 3.254 + 2.342X	0.041	0.036-0.047	0.987
5g	Y = 3.926 + 2.848X	0.042	0.038-0.047	0.987
5h	Y = 2.980 + 2.247X	0.047	0.041-0.057	0.990
imidacloprid	Y = 3.822 + 0.869X	0.00004	0.000026-0.000062	0.972

^a Regression analysis by IBM SPSS Statistics 23.0, P < 0.05.

Table 4

Control efficiency of compounds 1 and 5e against A. citricola in greenhouse tested at 1.0 mg/mL.

Compound	Control efficiency (mean ± SE, %)			
	1st day	3rd day	5th day	7th day
1	7.7 ± 1.6	26.5 ± 1.4	32.9 ± 1.7	34.4 ± 1.2
5e	11.0 ± 1.2	55.0 ± 1.6	58.7 ± 1.7	59.1 ± 2.6
Imidacloprid ^a	68.2 ± 1.6	98.0 ± 0.4	99.4 ± 0.4	$100.0~\pm~0$

^a At 10 mg/L.

Bioorganic Chemistry xxx (xxxx) xxxx

Fig. 5. Pictures of control efficiency of matrine (1), and compound 5e (XJW-27) against Aphis citricola in the greenhouse.

Table 5	
Primers of HMG-CoA reductase of A.	citricola used for qRT-PCR.

Gene	Sequence (5′–3′) ^b	Annealing temperature (°C)	Product size (bp)
Ef1-a	F-agcctggtatggttgtcgtt R-ctgtgaaatcagcagctccc	60	207
HMG-CoA reductase ^a	F-cagagaggggtgttggtctt R-gtccagcaactccaacaggt	60	165

^a HMG-CoA reductase: 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. ^bF: forward primer; R: reverse primer.

Bioorganic Chemistry xxx (xxxx) xxxx

Fig. 6. The expression patterns of HMG-CoA reductase in apterous adults of A. citricola collected 48 h post-treatment with matrine (43.04 ng/larvae), cholesterol (115.12 ng/ larvae), compound 5e (24.36 ng/larvae), and imidacloprid (0.00992 ng/larvae), respectively. (a): The schematic diagram of the HMG-CoA reductase in A. citricola. TM: the transmembrane regions. (b): The HMG-CoA reductase mRNA expressions were evaluated by qRT-PCR. HMG-CoA reductase mRNA expressions were normalized to $ef1-\alpha$ expression (mean \pm SD, n = 3). Asterisks indicate significant differences (*P < 0.05; **P < 0.01) compared with CK. CK: blank control group. (c): HMG-CoA reductase was evaluated through RT-PCR.

and **2** may be the HMG-CoA reductase inhibitors, and hydroxyl of compound **2** or the lactam ring of compound **1** may be necessary for acting with *HMG-CoA reductase* in *A. citricola*.

Acknowledgements

The work was supported by National Natural Science Foundation of China (No. 21877090), and Special Funds of Central Colleges Basic Scientific Research Operating Expenses, Northwest A&F University (No. 2452018110).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2019.103439.

References

[1] F. Gould, Z.S. Brown, J. Kuzma, Science 360 (2018) 728.

- [2] Z. Sun, M. Lv, X. Yu, H. Xu, A.C.S. Sust, Chem. Eng. 5 (2017) 3945.
- [3] J.N. Seiber, J. Coats, S.O. Duke, A.D. Gross, J. Agric. Food Chem. 62 (2014) 11613.
- [4] X. Yu, Z. Che, H. Xu, Chem. Eur. J. 23 (2017) 4467.
- [5] Y. Zuo, Q. Wu, S. Su, C. Niu, Z. Xi, G. Yang, J. Agric. Food Chem. 64 (2016) 552.
- [6] B. Zhang, Z. Sun, M. Lv, H. Xu, J. Agric. Food Chem. 66 (2018) 12898.
- [7] Y. Ding, N. Li, J. Sun, L. Zhang, J. Guo, X. Hao, Y. Sun, Virol. Sin. 34 (2019) 78.
- [8] P. Dong, X. Ji, W. Han, H. Han, Inter. Immunopharm. 74 (2019) 105686.
- [9] Y.Y. Jung, M.K. Shanmugam, A.S. Narula, C. Kim, J.H. Lee, O.A. Namjoshi,
- B.E. Blough, G. Sethi, K.S. Ahn, Cancers 11 (2019) 49.
- [10] Z.Z. Odimar, D.P.R. Leandro, F.A. Thiago, S.S. Monica, P.B. Gabriela, T.Y. Pedro, D.V. Jose, Crop Prot. 67 (2015) 160.
- [11] B.Z. Zhong, C.J. Lu, X.D. Sun, W.Q. Qin, Z.Q. Peng, Agrochemicals 49 (2010) 924.
 [12] C. Yang, Y. Shao, X. Zhi, H. Qu, X. Yu, X. Yao, H. Xu, Bioorg. Med. Chem. Lett. 23 (2013) 4806.
- [13] S. Li, Z. Sun, B. Zhaung, M. Lv, H. Xu, Ind. Crop Prod. 131 (2019) 134.
- [14] M. Lv, G. Liu, M. Jia, H. Xu, Bioorg. Chem. 81 (2018) 88.
- [15] L.A. Schuler, M.E. Toaff, J.F. Strauss, Endocrinology 108 (1981) 1476.
- [16] E.S. Istvan, J. Deisenhofer, Science 292 (2001) 1160.
- [17] D.J. Monger, W.A. Lim, F.J. Kézdy, J.H. Law, Biochem. Bioph. Res. Co. 105 (1982) 1374.
- [18] S. Jiang, H. Li, J. Tang, J. Wang, J. Luo, B. Liu, J. Wang, X. Shi, H. Cui, J. Tang, F. Yang, W. Qi, W. Qiu, B. Song, Nat. Commun. 9 (2018) 5138.