Efficient Solution-Phase Parallel Synthesis of 4-Substituted N-Protected Piperidines

Xiaoyang Wang,^[a] Anna M. Kauppi,^[a] Roger Olsson,^{*[b]} and Fredrik Almqvist^{*[a]}

Keywords: Copper / Hydrogenations / Nitrogen heterocycles / Zinc / Parallel synthesis

Practical conditions for the synthesis of 4-substituted *N*-protected piperidines through CuCN-2LiBr-catalyzed organozinc additions to 1-acylpyridinium salts and subsequent hydrogen-transfer hydrogenation have been established. The reaction sequence is performed at room temperature and provides 4-substituted *N*-protected piperidines in excellent overall yields without the isolation of intermediate dihydropyridines. In those cases in which the organozinc addition

Introduction

Substituted piperidines constitute one of the most studied heterocycles, owing to their ubiquitous nature in synthetically challenging alkaloids as well as in pharmaceutical research.^[1-3] As a result, numerous methods for the synthesis of piperidine derivatives have been reported.^[4-6] Goetz-Luthy reported an attractive synthetic strategy that takes advantage of the wealth of commercially available pyridines as starting materials, dihydropyridines being synthesized in low yields by direct alkylation of pyridines.^[7] Recent work by Comins et al., however, has shown that activation of the pyridines through the formation of N-acyl pyridinium derivatives prior to the nucleophilic addition provides dihydropyridines in good yields and with good regioselectivities.^[8,9] A wide range of organometallic reagents have also been used as nucleophiles in these reactions. Uncatalyzed Grignard^[10] and organotin^[11] reagents favor the formation of 2-substituted dihydropyridines, whereas the use of organotitanium reagents^[12,13] and lithium dialkylcuprates^[14] mainly results in 4-substituted dihydropyridines, which is also the case for Grignard reagents admixed with copper iodide.^[15] Organozinc reagents are reported to give mainly mixtures of 4- and 2-substituted dihydropyridines.^[16] Although not synthetically useful, owing to the formation of isomeric mixtures, the advantageous proper-

^[a] Organic Chemistry, Department of Chemistry, Umeå University, 201 87 University,

901 87 Umeå, Sweden

E-mail: fredrik.almqvist@chem.umu.se

- [b] Discovery Chemistry, ACADIA Pharmaceuticals A/S, Fabriksparken 58, 2600 Glostrup, Denmark
 E-mail: roger@acadia-pharm.com
- Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

the 2-substituted isomers are efficiently scavenged with maleic anhydride and subsequently removed by a mild extractive workup with NaHCO₃ (sat.). The *N*-acyl group can conveniently be exchanged from *N*-phenoxycarbonyl to *N*-*t*Boc, thus allowing orthogonal deprotection strategies. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

results in mixtures of 2- and 4-substituted dihvdropyridines.

ties of organozinc reagents – such as their compatibility with a wide range of functional groups (e.g., chlorides, nitriles, esters, amides, and ketones) and the potential to perform the reactions at room temperature - makes their use attractive in parallel synthesis.^[17-20] Therefore, to improve the regioselectivity it would be of great interest to investigate the possibilities of the use of organozinc reagents in combination with CuCN·2LiBr. A few scattered, individual examples of the use of organozinc reagents in combination with copper catalysis resulting in good regioselectivities have been reported. [21-24] Further investigation of the scope and limitations of these reactions is, however, necessary in the context of developing a reliable method for parallel synthesis. A practical Pd/C-catalyzed hydrogen-transfer reduction of the intermediate dihydropyridines, to provide the substituted piperidines efficiently, was also investigated. Here we report a practical and efficient procedure, also amenable for parallel synthesis, for the synthesis of 4-substituted N-protected piperidines.

Results and Discussion

To study the regioselective alkylation, a set of commercially available organozinc reagents, admixed with catalytic amounts (5 mol %) of CuCN·2LiBr were added to preformed *N*-acyl pyridinium salts (Table 1).

Both dialkylzinc reagents and secondary and primary alkylzinc halides almost exclusively gave the 4-addition products, with only trace amounts of the 2-substituted isomers being detectable by NMR spectroscopy (Table 1, entries 1-5). The tertiary alkylzinc nucleophile *tert*-butylzinc bromide similarly afforded a high isomeric ratio of 98% of the desired 4-substituted dihydropyridine **2**, and only 2% of

$N \xrightarrow{R'} PhO \xrightarrow{O} CI \xrightarrow{N} PhO \xrightarrow{R'} RZnX \text{ or } R_2Zn \xrightarrow{O} N \xrightarrow{R'} PhO R$							
Entry	Pyridines	\mathbf{I} RZnX or R ₂ Zn ^[a]	2 R Yield ^[b] (%)	S Ratio ^[c] (2/3)			
1	pyridine	(CH ₂) ₂ Zn	96	>99:trace			
2	pyridine	$(CH_3CH_2)_2Zn$	97	>99:trace			
3	pyridine	$CH_3(CH_2)_3ZnBr$	91	>99:trace			
4	pyridine	$(CH_2)_4 CHZnBr$	95	>99:trace			
5	pyridine	(CH ₃) ₂ CH(CH ₂) ₂ ZnBr	92	>99:trace			
6	pyridine	(CH ₃) ₃ CZnBr	90	98:2			
7	pyridine	2-methoxyphenylZnI	72	65:35			
8	pyridine	4-fluorophenylZnBr	84	75:25			
9	pyridine	3,5-difluorophenylZnBr	94	>99:trace			
10	pyridine	4-cyanophenylZnBr	95	>99:trace			
11	pyridine	2-methylphenylZnBr	92	>99:trace			
12	2-ethylpyridine	2-methylphenylZnBr	90	92:8			
13	2-ethylpyridine	$(CH_3CH_2)_2Zn$	90	>99:trace			
14	2-methoxypyridine	CH ₃ (CH ₂) ₃ ZnBr	0				
15	2-methoxypyridine	2-methylphenylZnBr	0				
16	2-fluoropyridine	$(CH_3CH_2)_2Zn$	0				
17	3-fluoropyridine	$(CH_3CH_2)_2Zn$	87	97:3			
18	2,3,5-collidine	CH ₃ (CH ₂) ₃ ZnBr	90	85:15			
19	2,3,5-collidine	$(CH_3CH_2)_2Zn$	84	83:17			
20	2,3,5-collidine	(CH ₃) ₃ CZnBr	82	73:27			
21	2,3,5-collidine	2-methylphenylZnBr	92	70:30			
22	2,6-lutidine	CH ₃ (CH ₂) ₃ ZnBr	0				
23	2,6-lutidine	(CH ₃ CH ₂) ₂ Zn	0				
24	4-picoline	$(CH_3CH_2)_2Zn$	94	trace:>99			

Table 1. Conversion of pyridines into dihydropyridines 2 and 3

^[a] Admixed with (5 mol%) CuCN·2LiBr. ^[b] Isolated yield. ^[c] Ratio determined by ¹H NMR spectroscopy of the crude isolate.

the 2-isomer **3** was isolated from a total yield of 90% (Table 1, entry 6). With the exceptions of the 2-methoxyphenyl- and the 4-fluorophenylzinc halides (Table 1, entries 7 and 8), high regioselectivities were observed for most of the aromatic zinc halides tested (Table 1, entries 9–11). Reduced yields – of 72% and 84%, respectively – were also noticed in the two former cases, whereas the yields in all the other examples were excellent (\geq 90%).

With these results in hand, the focus was turned to substituted pyridines as starting materials. Since the activated species 1 has to be formed in order for the nucleophilic addition to proceed, the anticipation was that the presence of substituents at the 2- and/or 6-positions in the pyridine ring could be problematic. Surprisingly, 2-ethylpyridine worked equally well as pyridine itself, resulting in a 2/3 ratio of 92:8 when 2-methylphenylzinc bromide was used (Table 1, entry 12) and of > 99:1 in favor of the 4-substituted product when diethylzinc was used (Table 1, entry 13). On the other hand, if the pyridine was substituted in both the 2- and 6-positions, as in 2,6-lutidine, no reaction took place (Table 1, entries 22 and 23). 2-Methoxypyridine and 2-fluoropyridine also afforded no product under these conditions (Table 1, entries 14-16). The presence of a 3-fluoro substituent, as in 3-fluoropyridine, gave excellent results in terms both of yield and of regioselectivity (Table 1, entry 17), affording mainly the 4-isomer (2/3, 97:3) in 87% yield. The presence of additional substituents in the ring, as exemplified by 2,3,5-collidine, caused reduced regioselectivity; when 2-methylphenylzinc bromide was used as nucleophile, for example, the 2/3 ratio went down to 70:30 (Table 1, entries 18-21), although the yields remained high. As would be expected, treatment of a 4-substituted pyridine with phenyl chloroformate, Et₂Zn, and CuCN·2LiBr resulted in exclusively the 2,4-disubstituted dihydropyridine 3, with no 4,4'-disubstituted derivative 2 detectable (Table 1, entry 24).

Decomposition of the dihydropyridines occurred during storage in the freezer. Consequently, to accomplish high overall yields, it was important to reduce the dihydropyridines quickly to the corresponding piperidines. Previously, these substrates had mostly been reduced by hydrogenation with H₂ gas as the hydrogen source in the presence of a catalyst^[25-27] (e.g. 10% Pd/C, 45 psi, 8-10 h or PtO₂, 6 h). Since parallel synthesis with pressurized hydrogen gas demands advanced equipment, the option to use a hydrogentransfer reduction would be particularly attractive. Advantageously, both for avoiding the use of special equipment and for the time-saving aspect in the reduced reaction times, ammonium formate in absolute methanol reduced the dihydropyridines to piperidines within one hour at room temperature under Pd/C catalysis conditions (Table 2).^[28,29] It should be noted, though, that restricting the reaction temperature to room temperature meant that aromatic substi-

$\frac{P_{\text{ho}}}{2} = \frac{R}{2} - \frac{NH_4^+HCOO^-}{Pd/C, MeOH} = \frac{O}{PhO} - R$								
Entry	Product	R	R'	(Pd/C, equiv.)	Yield ^[a] (%)			
1	4.1	CH ₃	Н	0.05	95			
2	4.2	CH ₃ CH ₂	Н	0.05	93			
3	4.3	$CH_3(CH_2)_3$	Н	0.05	92			
4	4.4	(CH ₃) ₃ C	Н	0.05	92			
5	4.5	$(CH_3)_2CH(CH_2)_2$	Н	0.05	90			
6	4.6	CH ₃ CH ₂	$2-CH_2CH_3$	0.05	91 ^[b]			
7	4.7	(CH ₂) ₄ CH	Н	0.05	90			
8	4.8	3,5-difluorophenyl	Н	0.5	90			
9	4.9	2-methylphenyl	Н	0.5	92			

Table 2. Conversion of 4-substituted dihydropyridines 2 into the corresponding piperidines 4

^[a] Isolated yield from pyridine. ^[b] Ca. 1:1 mixture of *cis* and *trans* isomers.

tuted dihydropyridines required 10 times more Pd/C than analogues with an aliphatic substituent (Table 2, entries 8 and 9). No reduction of the aromatic moiety was observed and the yields were excellent in all cases.

The outcome of the reduction of the 2,4-diethyl-1-acyldihydropyridine was hard to foresee, due to the possibility of forming a mixture of stereoisomers. The hydrogen-transfer reduction proved to be synthetically limited to monosubstituted dihydropyridines, since the reduction of **2.6** resulted in an almost 1:1 mixture of the *cis* and *trans* isomers **4.6** according to ¹H NMR spectroscopy.

Removal of the N-phenoxycarbonyl group was achieved by treatment of the N-phenoxycarbonyl-protected piperidines with a mixture of KOH and NH₂NH₂·H₂O in ethylene glycol for one hour,^[30] resulting in a series of 4-substituted piperidines 5.1-5.7 in 56-80% yield. Although this deprotection method turned out to work conveniently, for piperidines substituted either with aliphatic or with aromatic substituents, a milder procedure was preferable. NtBoc-protected piperidines can easily be deprotected by various mildly acidic methods and are therefore attractive as target molecules. However, the organozinc addition is not compatible with the use of tBocCl or tBoc anhydride as activating agents, as would be required for the production of tBoc-protected piperidines. We therefore treated the *N*-phenoxycarbonyl derivatives **2** with KOtBu, resulting in high yields of the N-tBoc-protected dihydropyridines 6 (Table 3).^[31,32]

For the development of a procedure amenable for highthroughput organic synthesis it was necessary to perform the reactions without cumbersome purification steps. Reducing the number of time-consuming purification steps was achieved without complications, thanks to the fact that all reaction steps had been high-yielding and had delivered fairly pure crude products. Thus, conversion of the pyridines into a variety of N-tBoc-protected piperidines was performed with only quick aqueous washings of intermediates **2** and **6**, followed by a simple silica gel filtration after

Table 3. Synthesis of 4-substituted N-tBoc-protected piperidines 7

N E	O CI, THF PhO 2) RZnX, CuCN•2LiBr	$\begin{array}{c c} R & R \\ \hline \\ N & THF \\ O \\ 2 \\ OPh \\ C \\ O \\ CPh \\ 6 \\ \hline \\ C \\ C$	
Entry	Product	R	Yield ^[a] (%)
1	7.1	2-methylphenyl-	90
2	7.2	$-CH(CH_3)CH_2CH_3$	92
3	7.3	$-CH(CH_2CH_3)_2$	93
4	7.4	$-CH_2(CH_2)_3CH_3$	88
5	7.5	$-CH(CH_2CH_3)(CH_2)_3CH_3$	91
6	7.6	$-CH(CH_2CH_3)(CH_2)_2CH_3$	89
7	7.7	$-C(CH_3)_2CH_2CH_3$	89
8	7.8	$-CH(CH_2CH_2CH_3)_2$	88
9	7.9	$-CH(CH_3)(CH_2)_3CH_3$	92
10	7.10	$-CH_2CH(CH_2CH_3)_2$	88

^[a] Isolated yield from pyridine.

the final step, affording the desired 4-substituted *N*-*t*Bocprotected piperidines 7.1-7.10 in excellent overall yields (88-93% in three steps, Table 3) and purities > 95%.

Another problem was the occasional occurrence of isomeric mixtures of the 2- and 4-substituted dihydropyridines. Even if excellent regioselectivities were observed in most of the examples, the exclusive isolation of the 4-substituted piperidine as the end product is necessary to make this procedure useful. Therefore, to avoid any substrate dependency, a scavenger step was added, demonstrated here by the 2methoxyphenyl and the 4-fluorophenyl derivatives, in which the most pronounced mixtures of 4- and 2-isomers (65:35 and 75:25, respectively) had been formed (Table 1, entry 7 and 8). Maleic anhydride was added to remove the conjugated 2-substituted dihydropyridines **3.7** and **3.8** in a [4+2] reaction, followed by washing with NaHCO₃ (sat.) (Scheme 1). Although no experimental details had been reported, this methodology had previously been used to remove unsubstituted conjugated dihydropyridines.^[33] Owing to the more sterically demanding substituents in the current examples, heating of the reaction mixture at reflux for 10 h with 4 equivalents of maleic anhydride was initially tried. This long reaction time turned out to be detrimental for the outcomes of the reactions, giving low yields of the 4substituted piperidines. A reduction of the reaction time to 2 h and an increase in the amount of maleic anhydride to 10 equivalents, however, afforded isomerically pure 4-substituted piperidines in excellent overall yields (Scheme 1). For the fluorine-containing derivative, ¹⁹F NMR spectroscopy was used to monitor the disappearance of the 2isomer.

Scheme 1. Synthesis of isomerically pure 4-substituted piperidines 7.11 and 7.12 by scavenging of the 2-substituted isomer by a [4+2] cycloaddition reaction with maleic anhydride followed by washing with NaHCO₃ (sat.)

Conclusions

A practical method suitable for the parallel synthesis of 4-substituted *N*-protected piperidines has been developed. Even though the substituted dihydropyridines were formed in high diastereomeric ratios, the developed strategy includes the option to remove undesired 2-substituted dihydropyridine to provide isomerically pure products. Furthermore, conditions for exchange of the *N*-phenoxycarbonyl to the *N*-tBoc protecting groups, which can be considered as orthogonal protecting groups, have been established. The high regioselectivities and yields achieved in the reaction, together with the practical synthetic and purification procedures, make this procedure attractive for library synthesis. The incorporation of these building blocks into more complex derivatives in a parallel manner will be reported in due course.

Experimental Section

General: All reactions were carried out under inert atmospheres with dry solvents under anhydrous conditions, unless otherwise stated. Pyridine was distilled before use. Methanol and ethylene glycol were dried over molecular sieves (3 Å) in a flask. THF was distilled from potassium. All the other chemicals were purchased from Aldrich and were used as received (it should be noted that some of the aliphatic zinc reagents contained traces of regioisomers, which was confirmed by treatment with benzoyl chloride followed by analysis by LCMS and NMR spectroscopy). TLC was performed on 60 F₂₅₄ silica gel (Merck) with detection by UV light and by staining with solutions of potassium permanganate (3 g), potassium carbonate (20 g), 5% aqueous sodium hydroxide (5 mL) in water (300 mL), or of 2% Ninhydrin in EtOH 95%. Flash column chromatography (eluents given in brackets) was performed on silica gel (Matrex, 60 Å, 35-70 µm, Grace Amicon). The ¹H and ¹³C NMR spectra were recorded on a Bruker DRX 400 instrument on solutions in CDCl₃ [residual CHCl₃ ($\delta_{\rm H} = 7.26$ ppm) or CDCl₃ $(\delta_{\rm C} = 77.00 \text{ ppm})$ as internal standard] or in [D₆]DMSO {residual $[D_5]DMSO (\delta_H = 2.50 \text{ ppm}) \text{ or } [D_6]DMSO (\delta_C = 40.0 \text{ ppm}) \text{ as}$ internal standard} at 298 K. First-order chemical shifts and coupling constants were obtained from one-dimensional spectra. Proton and carbon resonances were assigned from appropriate combinations of COSY and ¹H-¹³C HMQC. IR spectra were recorded on an ATI Mattson Genesis Series FTIRTM spectrometer. LCMS analysis was performed with a Waters micromass ZO spectrometer [ES], and high-resolution mass spectra [EI or FAB] were recorded on a Jeol JMS-SX 102 spectrometer. All organic extracts were dried with solid Na₂SO₄ unless otherwise stated.

General Procedure for the Preparation of Substituted Phenyl Dihydropyridine-1-carboxylates 2 and 3: Pyridine (0.6 mL, 7.5 mmol), CuCN (45 mg, 0.5 mmol), and LiBr (86 mg, 1 mmol) were dissolved in THF (20 mL) at room temperature, which resulted in a yellow-green solution. Upon the dropwise addition of phenyl chloroformate (0.63 mL, 5 mmol) the color changed to orange-red and a lot of solid was formed. The zinc reagent was then added dropwise at room temperature. After one hour at room temperature, aqueous NH₄Cl (20%, 25 mL) and Et₂O (50 mL) were added. The water layer was separated and reextracted with Et₂O (2 × 7 mL). The organic layers were combined and washed with aqueous NH₄Cl (20%)/NH₄OH (20%) (1:1, 10 mL), water (2 × 10 mL), HCl (10% aq., 2 × 10 mL), water (2 × 10 mL), and brine (2 × 10 mL) and dried. Concentration at reduced pressure gave the crude products 2 and 3. (See Table 1 for isolated yields).

General Procedure for the Synthesis of 4-Substituted Phenyl Piperidine-1-carboxylates by Removal of Undesired 2-Isomers by a [4+2] Cycloaddition with Maleic Anhydride: A mixture of the 2- and 4substituted dihydropyridine (0.5 mmol) was added to a solution of maleic anhydride (490 mg, 5 mmol) in THF (1.5 mL). After the mixture had been heated at reflux for two hours, saturated aqueous NaHCO₃ (5 mL) was added. Et₂O (15 mL) was then added, and the water layer was separated and reextracted with Et₂O (2 × 5 mL). The organic layers were combined, washed with brine (2 × 5 mL), and dried. Concentration at reduced pressure gave the crude 4-substituted dihydropyridine, which was used immediately in the next step without further purification.

Phase-Transfer Reduction: The crude 4-substituted dihydropyridine, together with dry ammonium formate (20 mol equiv.), dissolved in a solution of absolute methanol/THF (11 mL, 10:1), were added to a slurry of activated 10% Pd/C (30 mg) in absolute meth-

anol (1 mL).^[34] The resulting mixture was stirred at room temperature for half to one hour until all the starting material had been consumed (indicated by TLC, *n*-heptane/EtOAc, 6:1). The slurry was filtered through Celite and the Celite was thoroughly washed with Et₂O. The resulting organic solution was washed with water and brine to remove the residual ammonium formate and dried. Concentration at reduced pressure gave the crude product, which was purified by short silica gel flash chromatography (*n*-heptane/ EtOAc, 6:1) to provide pure 4-substituted 1-(phenyloxycarbonyl)piperidine **4.10** (total yield 56%) and **4.11** (total yield 65%).

Phenyl 4-Methylpiperidine-1-carboxylate (4.1): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 9:1) gave **4.1** as a white solid (yield, 95%). m.p. 61-63 °C. Commercially available, registry number: 333444-36-3.

Phenyl 4-Ethylpiperidine-1-carboxylate (4.2): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 9:1) gave **4.2** as a colorless oil (yield, 93%). ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.08 (m, 5 H), 4.35–4.19 (br. m, 2 H), 3.03–2.72 (br. m, 2 H), 1.75 (m, 2 H), 1.40 (m, 3 H), 1.20 (m, 2 H), 0.95 (t, 3 H) ppm. ¹³C NMR: δ = 153.65, 151.55, 129.12, 125.00, 121.72, 44.83, 44.50, 37.51, 31.93, 31.52, 29.07, 11.13 ppm. IR (neat): $\tilde{\nu}$ = 3041, 2956, 2925, 2856, 1670 (C=O), 1425 (C=C), 1205 cm⁻¹. MS (EI): 234 [M + 1], 233 [M], 140 (100%), 112, 94, 77, 65.

Phenyl 4-Butylpiperidine-1-carboxylate (4.3): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave **4.3** as a colorless oil (yield, 92%). ¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.07 (m, 5 H), 4.34–4.17 (br. m, 2 H), 3.03–2.72 (m, 2 H), 1.75–1.10 (m, 11 H), 0.91 (t, *J* = 6.68 Hz, 3 H) ppm. ¹³C NMR: δ 153.55, 151.46, 129.03, 124.91, 121.63, 44.76, 44.41, 36.01, 35.70, 32.24, 31.82, 28.71, 22.72, 13.95 ppm. IR (neat): \tilde{v} = 2929, 2856, 1722 (C=O), 1423, 1199 cm⁻¹. MS (EI): 261 [M], 204, 168 (100%), 140, 112, 77, 65.

Phenyl 4-*tert***-Butylpiperidine-1-carboxylate (4.4):** Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 8:1) gave **4.4** as a white solid (yield, 92%). m.p.: 83–84 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.08$ (m, 5 H), 4.43–4.26 (br. m, 2 H), 3.01–2.72 (br. m, 2 H), 1.74 (d, 2 H), 1.36–1.14 (m, 3 H), 0.89 (s, 9 H) ppm. ¹³C NMR: $\delta = 153.58$, 151.55, 129.15, 125.03, 121.73, 46.55, 45.30, 45.01, 32.25, 27.25, 26.96, 26.56 ppm. IR (neat): $\tilde{v} = 3052$, 2948, 2921, 2861, 1710 (C=O), 1592, 1492, 1419, 1378, 1313, 1199, 1182, 1035, 740, 688 cm⁻¹. MS (EI): 261 (M), 204, 168 (100%), 113, 94, 77.

Phenyl 4-(3'-Methylbutyl)piperidine-1-carboxylate (4.5): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 5:1) gave **4.5** as a white solid (yield, 90%). m.p. 42–43 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.07$ (m, 5 H), 4.34–4.16 (br. m, 2 H), 3.02–2.73 (br. m, 2 H), 1.75 (d, 2 H), 1.55 (m, 1 H), 1.45 (m, 1 H), 1.40–1.20 (m, 6 H), 0.91 (d, J = 6.68 Hz, 6 H) ppm. ¹³C NMR: $\delta = 153.58$, 151.49, 129.06, 124.93, 121.65, 44.80, 44.46, 36.04, 35.81, 34.08, 32.32, 31.91, 28.06, 22.53 ppm. IR (neat): $\tilde{v} = 3066$, 3014, 2950, 2925, 2900, 2867, 2846, 1704 (C=O), 1592, 1417 (C=C), 1367, 1274, 1240, 1191, 740 cm⁻¹. MS (EI): 275 (M), 182 (100%), 162, 126, 94, 77, 65.

Phenyl 2,4-Diethylpiperidine-1-carboxylate (4.6): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 5:1) gave **4.6** as a colorless oil (yield, 91%). ¹H NMR (400 MHz, [D₆]DMSO, 298 K): two isomers (1:1), 1st isomer: $\delta = 7.40-7.27$ (m, 10 H), 4.30–4.08 (m, 1 H), 4.08–3.89 (m, 1 H), 3.78 (t, 1 H), 3.75–3.67 (m, 1 H), 3.22–3.11 (m, 1 H), 3.08–2.80 (m, 1 H), 1.91–1.62 (m, 6 H), 1.57–1.37 (m, 4 H), 1.37–1.26 (m, 2 H), 1.26–1.11 (m, 5

H), 1.06–1.93 (m, 1 H), 0.92–0.78 (m, 12 H) ppm. ¹H NMR (400 MHz, [D₆]DMSO, 408 K), 2nd isomer: δ = 7.39–7.02 (m, 10 H), 4.24 (m, 1 H), 4.05 (m, 1 H), 3.85 (t, 1 H), 3.80–3.70 (m, 1 H), 3.31–3.19 (m, 1 H), 3.97 (t, 1 H), 1.97–1.81 (m, 2 H), 1.81–1.67 (m, 4 H), 1.67–1.43 (4 H), 1.43–1.42 (m, 2 H), 1.32–1.17 (m, 5 H), 1.17–1.10 (m, 1 H), 0.97–0.83 (m, 12 H) ppm. IR (neat): \tilde{v} = 2960, 2923, 2873, 1712 (C=O), 1594, 1494, 1415 (C=C), 1373, 1201(C–O), 1149, 1058, 744, 690 cm⁻¹. MS (EI): 262 (M), 168 (100%), 140, 112, 94, 77, 65.

Phenyl 4-(Cyclopentyl)piperidine-1-carboxylate (4.7): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 3:1) gave **4.7** as a white solid (yield, 90%). m.p.: 60–61 °C, ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43-7.07$ (m, 5 H), 4.39–4.07 (br. m, 2 H), 3.09–2.73 (br. m, 2 H), 1.94–1.48 (m, 10 H), 1.32–1.07 (m, 4 H) ppm. ¹³C NMR: $\delta = 153.47$, 151.42, 128.97, 124.85, 121.57, 45.72, 44.72, 44.39, 41.52, 31.20, 30.80, 30.20, 25.01 ppm. IR (neat): $\tilde{v} = 3056$, 2939, 2863, 1710 (C=O), 1590, 1494, 1417 (C= C), 1259, 1197 (C–O), 1162, 742, 688 cm⁻¹. MS (EI): 273 (M), 204, 180 (100%), 95, 77, 67, 65.

Phenyl 4-(3',5'-Difluorophenyl)piperidine-1-carboxylate (4.8): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 5:2) gave **4.8** as a white solid (yield, 90%). m.p.: 88–89 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42-6.63$ (m, 8 H), 4.53–4.34 (br. m, 2 H), 3.14–2.84 (br. m, 2 H), 2.71 (tt, 1 H, J = 12.08 Hz, 3.75 Hz), 1.89 (d, 2 H), 1.72 (dddd, 2 H, J = 38.24 Hz, 25.25 Hz, 12.62 Hz, 4.12 Hz) ppm. ¹³C NMR: $\delta = 163.91$ (dd, J = 248.25 Hz, 12.80 Hz), 153.39, 151.26, 149.16 (t, J = 8.76 Hz), 129.04, 125.04, 121.54, 109.44 (dd, J = 18.19 Hz, 6.40 Hz), 101.61 (t, J = 25.60 Hz), 44.60, 44.25, 41.93, 32.64, 32.23 ppm. ¹⁹F NMR: $\delta = -110.35$ ppm. IR (neat): $\tilde{v} = 3095$, 3060, 3005, 2933, 2902, 2867, 1702(C=O), 1625, 1594, 1496, 1452, 1421(C=C), 1290, 1197(C–O), 1110, 1047, 960, 856, 748, 682 cm⁻¹. MS (EI): 317 (M), 267, 224 (100%), 182, 153, 127, 112, 94, 77, 65.

Phenyl 4-(2'-Methylphenyl)piperidine-1-carboxylate (4.9): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 8:1) gave **4.9** as a colorless oil (yield, 92%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43-7.10$ (m, 9 H), 4.54-4.39 (br. m, 2 H), 3.18-2.94 (br. m, 3 H), 2.39 (s, 3 H), 1.90-1.68 (m, 4 H) ppm. ¹³C NMR: $\delta = 153.72$, 151.44, 143.14, 135.02, 130.45, 129.19, 126.35, 126.13, 125.35, 125.16, 121.72, 45.37, 45.05, 38.12, 32.49, 32.11, 19.32 ppm. IR (neat): $\tilde{v} = 3045$, 3018, 2937, 2854, 1716 (C=O), 1425(C=C), 1201(C-O), 1012, 750 cm⁻¹. MS (FAB): 296 [M + 1].

Phenyl 4-(2'-Methoxyphenyl)piperidine-1-carboxylate (4.10): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 9:1) gave **4.10** as a colorless oil (yield, 56%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-6.85$ (m, 9 H), 4.50-4.36 (br. m, 2 H), 3.85 (s, 3 H), 3.19 (tt, 1 H, J = 12.08 Hz, 3.57 Hz), 3.06-2.93 (br. m, 2 H), 1.90 (d, 2 H), 1.75 (m, 2 H) ppm. ¹³C NMR: $\delta = 156.72$, 153.76, 151.55, 133.42, 129.20, 127.21, 126.47, 125.11, 121.77, 120.68, 110.39, 55.29, 45.42, 45.08, 35.23, 31.95, 31.47 ppm. IR (neat): $\tilde{v} = 3012$, 2939, 2854, 1718(C=O), 1596, 1492, 1427, 1238, 1203 (C-O), 752 cm⁻¹. MS (EI): 312 [M + 1] (100%), 218, 175, 154, 77.

Phenyl 4-(4'-Fluorophenyl)piperidine-1-carboxylate (4.11): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 9:1) gave 4.10 as a white solid (yield, 65%). m.p. 80-82 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42-7.06$ (m, 9 H), 4.53-4.38 (br. m, 2 H), 3.21-1.85 (br. m, 2 H), 2.73 (tt, 1 H, J = 12.17 Hz, 3.57 Hz), 1.91 (d, 2 H), 1.72 (m, 2 H) ppm. ¹³C NMR: $\delta = 161.38$ (d, J = 244.21 Hz), 153.61, 151.40, 140.95 (d, J = 3.37 Hz), 129.16, 128.02 (d, J = 7.75 Hz), 125.12, 121.66, 115.20 (d, J = 20.88 Hz),

45.01, 44.68, 41.69, 33.43, 32.91 ppm. ^{19}F NMR: $\delta = -117.12$ ppm. IR (neat): $\tilde{\nu} = 3073$, 2996, 2950, 2919, 2850, 1716(C=O), 1598, 1508, 1425(C=C), 1274, 1193(C-O), 1160, 1112, 1047, 829, 744 cm^{-1}. MS (FAB): 300[M + 1].

General Procedure for the Preparation of 4-Substituted Piperidines (5): A mixture of phenyl piperidine-1-carboxylate 4 (1.5 mmol), KOH (2.1 g, 38 mmol), and 100% NH_2NH_2 ·H₂O (0.52 mL) in ethylene glycol (20 mL) was heated at reflux for 1 hour. The mixture was poured into water and extracted with CH₂Cl₂ (3 × 15). The organic solution was washed with NaOH (30%, aq.) and dried. Concentration at reduced pressure and purification by flash chromatography on silica gel (Et₂O:isopropylamine, 9:1) gave pure compound.

4-Methylpiperidine (5.1): Yield 56% Commercially available, registry number: 626–58–4.

4-Ethylpiperidine (5.2): Yield 60% Commercially available, registry number: 3230–23–7.^[35,36]

4-Butylpiperidine (5.3): Yield 72% Spectral data as published.^[35–37]

4-*tert***-Butylpiperidine (5.4):** Yield 75% Commercially available, registry number: 1882–42–4.^[35]

4-(3-Methylbutyl)piperidine (5.5): Yield 76% Commercially available, registry number: 372196–26–4.^[38]

4-(2'-Methylphenyl)piperidine (5.6): Mixture of solid and oil. Yield 80% ¹H NMR (400 MHz, CDCl₃): δ = 7.28–7.07 (m, 4 H), 3.2 (d, 2 H), 2.89–2.73 (m, 3 H), 2.35 (s, 3 H), 2.13 (s, 1 H), 1.77 (d, 2 H), 1.66 (m, 2 H) ppm. ¹³C NMR: δ = 144.40, 134.91, 130.19, 126.16, 125.66, 125.44, 47.31, 38.57, 33.58, 19.22 ppm. IR (neat): \tilde{v} = 3060, 3018, 2931, 2846, 2807, 2732, 1604, 1556, 1490, 1461, 1317, 1282, 1243, 752 cm⁻¹. MS (EI): 175 [M] (100%), 160, 117, 91, 83.

4-Cyclopentylpiperidine (5.7): Yield 63% Commercially available, registry number: 123812–47–5.^[39]

General Procedure for the Preparation of 4-Substituted tert-Butyl Piperidine-1-carboxylates (7): Crude 4 (5 mmol) was added dropwise at -40 °C to a solution of KOtBu (1.4 g, 12.5 mmol) in THF (15 mL), resulting in a red solution. The mixture was kept for one hour at -40 °C and then for 30 min at room temperature. Water (30 mL) was added, and the resulting mixture was extracted with Et_2O (3 × 25 mL). The organic layers were combined, washed with water (2 \times 15 mL) and brine (2 \times 15 mL), and dried. Concentration at reduced pressure and purification by short flash chromatography on silica gel (n-heptane/EtOAc, 6:1) gave 7.11 (87%, from 4.10) and 7.12 (85%, from 4.11). Compounds 6.1-6.10 were prepared by the same procedure, starting from the corresponding 4substituted 1-phenyloxycarbonyl-dihydropyridine (2). These were reduced without prior purification, by the phase-transfer hydrogenation described above, to 4-substituted 1-tert-butoxycarbonylpiperidines 7.1-7.10.

tert-Butyl 4-(2'-Methylphenyl)piperidine-1-carboxylate (7.1): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.1 as a colorless oil (yield, 90%). ¹H NMR (400 MHz, CDCl₃), $\delta = 7.20-7.09$ (m, 4 H), 4.31–4.17 (br. s, 2 H), 2.92–2.75 (m, 3 H), 2.36 (s, 3 H), 1.76 (d, 2 H), 1.63 (m, 2 H), 1.51 (s, 9 H) ppm. ¹³C NMR: $\delta = 154.76$, 143.51, 134.95, 130.31, 126.21, 125.91, 125.29, 79.28, 44.31 (br. s), 38.26, 32.31, 28.40, 19.24 ppm. IR (neat): $\tilde{v} = 3006$, 2973, 2937, 2852, 1695 (C=O), 1423, 1365 (C=C), 1280, 1232, 1170 (C–O), 1114, 752 cm⁻¹. MS (EI): 275 (M), 219 (100%), 204, 160, 117, 105, 91, 70.

tert-Butyl 4-(1'-Methylpropyl)piperidine-1-carboxylate (7.2): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.2 as a colorless oil (yield, 92%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.15-3.96$ (br. s, 2 H), 2.64-2.47 (br. s, 2 H), 1.48 (d, 2 H), 1.38 (s, 9 H), 1.35 (m, 1 H), 1.29-1.00 (m, 5 H), 0.84-0.72 (m, 6 H) ppm. ¹³C NMR: $\delta = 154.68$, 78.88, 44.20(br. s), 40.65, 38.89, 29.59, 27.95, 28.32, 26.24, 15.43, 11.53 ppm. IR (neat): $\tilde{v} = 2962$, 2931, 2856, 1695 (C=O), 1421, 1365, 1282, 1234, 1174 cm⁻¹. MS (EI): 242 [M + 1], 241, 186 (100%), 168, 140, 84.

tert-Butyl 4-(1'-Ethylpropyl)piperidine-1-carboxylate (7.3): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.3 as a colorless oil (yield, 93%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.21-3.89$ (br. s, 2 H), 2.65-2.43 (br. s, 2 H), 1.46 (d, 2 H), 1.38 (m, 10 H), 1.36 (m, 2 H), 1.21-1.03 (m, 4 H), 0.91 (m, 1 H), 0.83-0.72 (m, 6 H) ppm. ¹³C NMR: $\delta = 154.64$, 78.83, 45.54, 44.34 (br. s), 37.88, 28.94, 28.30, 22.15, 11.58 ppm. IR (neat): $\tilde{\nu} = 2962 \text{ cm}^{-1}$, 2931, 2873, 1697 (C=O), 1423, 1366, 1234, 1174 cm⁻¹. MS (EI): 255 [M], 200 (100%), 182, 126, 84, 71.

tert-Butyl 4-Pentylpiperidine-1-carboxylate (7.4): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.4 as a colorless oil (yield, 88%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.14-3.88$ (br. s, 2 H), 2.69–2.52 (br. s, 2 H), 1.58 (d, 2 H), 1.40 (s, 9 H), 1.32–1.10 (m, 9 H), 1.08–0.93 (m, 2 H), 0.83 (t, 3 H) ppm. ¹³C NMR: $\delta = 154.67$, 78.86, 43.87 (br. s), 36.42, 35.90, 32.16, 31.94, 28.36, 26.18, 22.53, 13.94 ppm. IR (neat): $\tilde{v} = 2956$, 2925, 2856, 1698 (C=O), 1421, 1365, 1278, 1245, 1172 cm⁻¹. MS (EI): 255 [M], 200 (100%), 182, 154, 140, 126, 84.

tert-Butyl 4-(2'-Ethylhexyl)piperidine-1-carboxylate (7.5): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.5 as a colorless oil (yield, 91%). ¹H NMR (400 MHz, CDCl₃), $\delta = 4.14-3.86$ (br. s, 2 H), 2.70-2.51 (br. s, 2 H), 1.55 (d, 2 H), 1.39 (s, 9 H), 1.38(m, 1 H), 1.30-1.11 (m, 9 H), 1.09-0.91 (m, 4 H), 0.83 (t, J = 7.04 Hz, 3 H), 0.77 (t, J = 7.41 Hz, 3 H) ppm. ¹³C NMR: $\delta = 154.71$, 78.89, 43.87(br. s), 40.64, 35.22, 33.31, 32.91, 32.55, 32.44, 28.65, 28.33, 25.87, 23.00, 14.01, 10.46 ppm. IR (neat): $\tilde{v} = 2958$, 2921, 2858, 1697 (C=O), 1465, 1421, 1365, 1278, 1243, 1172, 1151 cm⁻¹. MS (EI): 297 [M], 242 (100%), 224, 196, 168, 129, 84.

tert-Butyl 4-(1'-Ethylbutyl)piperidine-1-carboxylate (7.6): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.6 as a colorless oil (yield, 89%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.21-3.88$ (br. s, 2 H), 2.67-2.42 (br. s, 2 H), 1.50-0.90 (m, 21 H), 0.89-0.64 (m, 6 H) ppm. ¹³C NMR: $\delta = 154.52$, 78.72, 44.33 (br. s), 43.62, 38.14, 32.15, 28.85, 28.72, 28.21, 22.67, 20.37, 14.23, 11.51 ppm. IR (neat): $\tilde{v} = 2958$, 2931, 2869, 1697 (C=O), 1465, 1423, 1365, 1236, 1174, 1145 cm⁻¹. MS (EI): 269 [M], 213 (100%), 196, 168, 129, 126, 84.

tert-Butyl 4-(1',1'-Dimethylpropyl)piperidine-1-carboxylate (7.7): Purification by short flash chromatography on silica (*n*-heptane/ EtOAc, 6:1) gave 7.7 as a colorless oil (yield, 89%). ¹H NMR (400 MHz, CDCl₃): δ = 4.18–3.82 (br. s, 2 H), 2.58–2.29 (br. s, 2 H), 1.55–1.20 (m, 11 H), 1.20–0.86 (m, 5 H), 0.81–0.47 (m, 9 H) ppm. ¹³C NMR: δ = 154.44, 78.71, 44.35 (br. s), 43.85, 34.17, 32.10, 28.20, 26.18, 23.74, 7.78 ppm. IR (neat): \tilde{v} = 2962, 2858, 1695 (C=O), 1465, 1448, 1423, 1365, 1241, 1162, 1116 cm⁻¹. MS (EI): 255 [M], 200 (100%), 182, 129, 126, 84, 71.

tert-Butyl 4-(1'-Propylbutyl)piperidine-1-carboxylate (7.8): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.8 as a colorless oil (yield, 88%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.21-3.87$ (br. s, 2 H), 2.67–2.37 (br. s, 2 H),

FULL PAPER

1.51–1.27 (m, 12 H), 1.27–0.96 (m, 11 H), 0.79 (t, 6 H) ppm. 13 C NMR: $\delta = 154.62$, 78.83, 44.41 (br. s), 41.82, 38.56, 32.80, 28.75, 28.25, 20.42, 14.28 ppm. IR (neat): $\tilde{v} = 2956$, 2929, 2861, 1693 (C=O), 1454, 1423, 1365, 1234, 1172 (C–O), 1145. MS (EI): 283 [M], 227 (100%), 210, 182, 140, 129, 84.

tert-Butyl 4-(1'-Methylpentyl)piperidine-1-carboxylate (7.9): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.9 as a colorless oil (yield, 92%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.15-3.95$ (br. s, 2 H), 2.65-2.41 (br. s, 2 H), 1.55-1.31 (m, 11 H), 1.31-0.94 (m, 10 H), 0.87-0.68 (m, 6 H) ppm. ¹³C NMR: $\delta = 154.64$, 78.84, 44.24 (br. s), 41.03, 37.17, 33.42, 29.58, 29.42, 28.32, 27.91, 22.86, 15.93, 13.96 ppm. IR (neat): $\tilde{v} = 2956$, 2929, 2856, 1697 (C=O), 1465, 1421, 1365, 1280, 1234, 1174 (C-O), 1145 cm⁻¹. MS (EI): 269 [M], 214 (100%), 196, 128, 84.

tert-Butyl 4-(2'-Ethylbutyl)piperidine-1-carboxylate (7.10): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 6:1) gave 7.10 as a colorless oil (yield, 88%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.13-3.84$ (br. s, 2 H), 2.71–2.45 (br. s, 2 H), 1.61–1.43 (br. s, 2 H), 1.43–1.26 (br. s, 10 H), 1.26–1.09 (m, 5 H), 1.09–0.84 (m, 4 H), 0.84–0.60 (br. s, 6 H) ppm. ¹³C NMR: $\delta = 154.62$, 78.80, 43.83 (br. s), 40.11, 36.65, 33.26, 32.46, 28.29, 25.34, 10.48 ppm. IR (neat): $\tilde{v} = 2962$, 2917, 2859, 1693 (C=O), 1421, 1365, 1278, 1243, 1172 (C–O), 1151 cm⁻¹. MS (EI): 269 [M], 213 (100%), 196, 184, 140, 129, 84.

tert-Butyl 4-(2'-Methoxyphenyl)piperidine-1-carboxylate (7.11): Purification by short flash chromatography on silica (*n*-heptane/ EtOAc, 5:1) gave 7.11 as a colorless oil (yield, 87%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.22-7.11$ (m, 2 H), 6.96-6.83 (m, 2 H), 4.33-4.12 (br. s, 2 H), 3.83 (s, 3 H), 3.09 (tt, 1 H, J = 12.26 Hz, 3.57 Hz), 2.82 (bt, 2 H, J = 12.62 Hz), 1.76 (d, 2 H), 1.58 (m, 2 H), 1.48 (s, 9 H) ppm. ¹³C NMR: $\delta = 156.72$, 154.93, 133.87, 127.03, 126.48, 120.62, 110.34, 79.27, 55.28, 44.46 (br. s), 35.32, 31.81, 28.49 ppm. IR (neat): $\tilde{v} = 3004$, 2960, 2933, 2852, 1693 (C= O), 1492, 1423, 1365, 1236, 1170 (C-O), 1016, 752 cm⁻¹. MS (FAB): 292 [M + 1].

tert-Butyl 4-(4'-Fluorophenyl)piperidine-1-carboxylate (7.12): Purification by short flash chromatography on silica (*n*-heptane/EtOAc, 9:1) gave 7.12 as a colorless oil (yield, 85%). ¹H NMR (400 MHz, CDCl₃), $\delta = 7.18-7.11$ (m, 2 H), 7.07-6.94 (m, 2 H), 4.32-4.14 (br. s, 2 H), 2.78 (br. m, 2 H), 2.62 (tt, 1 H, J = 12.26 Hz, 3.75 Hz), 1.79 (d, 2 H), 1.64-1.51 (m, 2 H), 1.48 (s, 9 H) ppm. ¹³C NMR: $\delta = 161.32$ (d, J = 244 Hz), 154.83, 141.44 (d, J = 3.37 Hz), 128.07 (d, J = 7.75 Hz), 115.21 (d, J = 21.22 Hz), 78.48, 44.35 (br. s), 42.00, 33.35, 28.47 ppm. ¹⁹F NMR: $\delta = -117.51$ ppm. IR (neat): $\tilde{v} = 3008, 2975, 2933, 2852, 1693$ (C=O), 1511, 1425, 1365, 1280, 1228, 1168 (C-O), 1122 cm⁻¹. MS (EI): 280 [M], 224 (100%), 154, 136, 107, 77.

Supporting Information Available: ¹³C NMR spectra of all purified compounds (see also the footnote on the first page of this article).

Acknowledgments

We are grateful to the Swedish Natural Science Research Council, the Knut and Alice Wallenberg Foundation, and the foundation for technology transfer in Umeå for financial support, and to Dr. Nicholas M. Kelly for valuable comments on the manuscript.

- ^[2] P. S. Watson, B. Jiang, B. Scott, Org. Lett. 2000, 2, 3679-3681.
- ^[3] D. O'Hagan, Nat. Prod. Rep. 2000, 17, 435–446.
- ^[4] D. M. Stout, A. I. Meyers, Chem. Rev. 1982, 82, 223-243.
- ^[5] S. Laschat, T. Dickner, *Synthesis* **2000**, 1781–1813.
- ^[6] R. Lavilla, J. Chem. Soc., Perkin Trans. 1 2002, 1141-1156.
- ^[7] N. Goetz-Luthy, J. Am. Chem. Soc. 1949, 71, 2254–2255.
- ^[8] D. L. Comins, S. O'Connor, Adv. Heterocycl. Chem. 1988, 44, 199–267.
- [9] D. L. Comins, G. Chung, M. A. Foley, *Heterocycles* 1994, 37, 1121–1135.
- [10] R. Yamaguchi, Y. Nakazono, M. Kawanisi, *Tetrahedron Lett.* 1983, 24, 1801–1804.
- ^[11] R. Yamaguchi, M. Moriyasu, M. Yoshioka, M. Kawanisi, J. Org. Chem. **1988**, 53, 3507–3512.
- ^[12] D. L. Comins, J. D. Brown, *Tetrahedron Lett.* **1984**, *25*, 3297–3300.
- ^[13] L.-L. Gundersen, F. Rise, K. Undheim, *Tetrahedron* **1992**, *48*, 5647–5656.
- ^[14] E. Piers, M. Soucy, Can. J. Chem. 1974, 52, 3563-3564.
- ^[15] D. L. Comins, A. H. Abdullah, J. Org. Chem. 1982, 47, 4315–4319.
- ^[16] D. L. Comins, S. O'Connor, *Tetrahedron Lett.* 1987, 28, 1843–1846.
- ^[17] L. Zhu, R. M. Wehmeyer, R. D. Rieke, J. Org. Chem. **1991**, 56, 1445–1453.
- ^[18] R. D. Rieke, M. V. Hanson, *Tetrahedron* 1997, 53, 1925-1956.
- ^[19] P. Knochel, J. J. Almena Perea, P. Jones, *Tetrahedron* 1998, 54, 8275–8319.
- ^[20] A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, *Angew. Chem. Int. Ed.* **2000**, *39*, 4414–4435.
- ^[21] W.-L. Chia, M.-J. Shiao, *Tetrahedron Lett.* 1991, 32, 2033–2034.
- [22] T.-L. Shing, W.-L. Chia, M.-J. Shiao, T.-Y. Chau, Synthesis 1991, 849-850.
- ^[23] M.-J. Shiao, K.-H. Liu, L.-G. Lin, Synlett 1992, 655-656.
- ^[24] A. P. Krapcho, D. J. Waterhouse, A. Hammach, R. Di Domenico, E. Menta, A. Oliva, S. Spinelli, *Synth. Commun.* 1997, 27, 781–794.
- ^[25] D. L. Comins, M. A. Weglarz, J. Org. Chem. 1991, 56, 2506-2512.
- ^[26] D. L. Comins, H. Hong, J. M. Salvador, J. Org. Chem. 1991, 56, 7197-7199.
- ^[27] A. Nazih, M.-R. Schneider, A. Mann, *Synlett* **1998**, 1337–1338.
- ^[28] M. K. Anwer, A. F. Spatola, Synthesis 1980, 929-932.
- ^[29] B. Zacharie, N. Moreau, C. Dockendorff, J. Org. Chem. **2001**, 66, 5264–5265.
- ^[30] T. Shono, Y. Matsumura, K. Uchida, K. Tsubata, A. Makino, J. Org. Chem. **1984**, 49, 300–304.
- ^[31] R. J. Sundberg, J. D. Bloom, J. Org. Chem. **1981**, 46, 4836–4842.
- ^[32] D. L. Comins, M. A. Weglarz, S. O'Connor, *Tetrahedron Lett.* 1988, 29, 1751–1754.
- ^[33] F. W. Fowler, J. Org. Chem. **1972**, 37, 1321–1323.
- ^[34] The Pd/C should be of a high-quality brand; the one used in our experiments was purchased from Aldrich, Cat.: 20, 569–9, Lot.: S04353–472. Other brands tested gave less reproducible results.
- ^[35] F. D. Bellamy, J. B. Chazan, P. Dodey, P. Dutartre, K. Ou, M. Pascal, J. Robin, *J. Med. Chem.* **1991**, *34*, 1545–1552.
- ^[36] W. Wawzonek, M. F. Nelson Jr., P. J. Thelen, J. Am. Chem. Soc. 1952, 74, 2894–2896.
- ^[37] A. I. Meyers, P. D. Edwards, W. F. Rieker, T. R. Bailey, J. Am. Chem. Soc. **1984**, 106(11), 3270-3276.
- ^[38] C. A. Andersson, B. M. Friberg, N. Skjaerbaek, T. Spalding, A. K. Uldam, *PCT Int. Appl.* **2001**, 84 pp.
- [39] P. Traxler, W. Kump, K. Mueller, W. Tosch, J. Med. Chem. 1990, 33(2), 552-560.

Received June 26, 2003

^[1] C. H. Hansen, R. Olsson, G. Croston, C.-M. Andersson, *Bioorg. Med. Chem. Lett.* 2000, 10, 2435–2439.