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Abstract 

Multi-component Mannich reactions between 2-fluoro-ethylacetoacetate or dimethyl-

2-fluoromalonate ester, aldehyde and amine components allowing convenient 

synthesis of β-fluoro(dicarbonyl)ethylamine systems using both batch and continuous 

flow techniques are reported.  
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1. Introduction 

The incorporation of fluorine atoms into pharmaceutical candidates is a well-

established approach to, for example, affect lipophilicity, pKa and metabolic stability 

of new chemical entities as part of drug discovery programs [1]. While many 

pharmaceuticals bearing fluorine atoms attached to aromatic rings are currently 

commercially available, lead compounds with fluorine atom attached to sp3 carbon 

are increasingly appearing in pharmaceutical company pipelines [2] and, 

consequently, effective and inexpensive methodology for the synthesis of selectively 

fluorinated multifunctional building blocks for incorporation into drug synthesis 

campaigns are very desirable. However, the building block approach relies on the 

ready availability of a wide range of inexpensive fluorinated substrates of differing 

functionality and the establishment of appropriate reactivity profiles [3]. 

Recently, we reported the optimized synthesis of 2-fluoromalonate esters by a direct 

fluorination strategy [4] which is very efficient, inexpensive, does not generate 

significant waste and is readily scalable. Analogous selective direct fluorination 

routes using fluorine gas to corresponding 2-fluoro-ketoesters [5] have also been 

developed and scaled up by industry [6]. Surprisingly, however, reactions of 2-fluoro 

malonate ester and 2-fluoro-ketoester derivatives are not particularly well developed 

despite the anticipated synthetic potential of these polyfuctional substrates and we 

recently reviewed the chemistry of fluoromalonate substrates to indicate some of the 

synthetic utility of these systems [7].  For example, in the context of developing the 

use of dimethyl 2-fluoro-malonate ester for the synthesis of more structurally complex 

fluorinated intermediates, we established routes to various fluoroheterocyclic systems 

[8].  

In this paper, we describe the use of 2-fluoro-ethylacetoacetate 1 and dimethyl 2-

fluoromalonate ester 2 in multi-component (MCR) Mannich reactions. The first 

reported MCR was the Strecker synthesis of the α-amino nitrile in 1850 [9] [4] and 

since then, MCR chemistry has been extensively developed. Well-known examples 

of MCRs are associated mainly with reactions of carbonyl compounds, used as 

substrates in the Biginelli reaction, the Hantzsch dihydropyridine synthesis and, 

particularly, Mannich-type reactions [10] giving rapid access to large libraries of 

molecules possessing a high degree of functionality and structural diversity.  
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However, while carbonyl compounds have played a crucial role in the development of 

multi-component reactions, use of corresponding fluorinated carbonyl compounds 

have been much less investigated as MCR substrates. Applications of Mannich-type 

reactions utilizing fluorinated carbonyl substrates have been reported previously [11] 

such as, for example, the synthesis of β-fluoronitro(phenylsulfonyl)ethylamines from 

fluoro-ketosulfone substrates described by Prakash and Olah [12]. Of particular 

relevance to the research reported here, Zhang and coworkers developed a Mannich 

reaction involving various fluoro-ketoesters catalyzed by zinc nitrate and irradiated by 

microwave at high temperature [13]. 

Here we use 2-fluoroethylacetoacetate 1 and dimethyl 2-fluoromalonate ester 2 as 

MCR components in Mannich reactions involving formaldehyde or benzaldehyde  

and different types of amines as educts to give polyfunctional fluorinated products 

bearing amine and carbonyl functionalities by both batch and continuous flow 

protocols in simple, scalable reaction processes. 

 

2. Results and discussion 

In initial studies we investigated reactions of 2-fluoro-ethylacetoacetate 1 with an 

amine 3 and formaldehyde in multi component Mannich-type processes (Table 1). 

Reactions were carried out by first mixing both amine 3 and formalin together before 

addition of the fluorinated dicarbonyl substrate 1 in order to limit the formation of any 

alcohol by-product by Aldol condensation. Our optimized conditions were found to be 

1.7 equivalents of amine 3 and 1.5 equivalents of formaldehyde, stirred together for 

two hours at room temperature, preceding the addition of the 2-fluoro-

ethylacetoacetate 1 and further reaction at room temperature. Reactions involving 

less reactive amines such as benzylamine were carried out at 90°C, providing the 

corresponding Mannich products 4 in full conversion. Analogous reactions between 

2-ethyl 2-fluoro-acetoacetate 1 with an amine 3 and benzaldehyde were also 

performed in high yields (Table 2). 
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During the course of this work, related Mannich reactions of fluorinated 1,3-

dicarbonyl compounds catalyzed by Zn(NO3)2 using microwave irradiation at 120 oC 

were reported [13]. However, the method we have described above does not require 

such vigorous heating and allows access to various products from, for example 5b 

and 5c, which reportedly cannot be obtained by the zinc nitrate catalyzed method 

[13]. Furthermore, Mannich reactions of fluoromalonate ester 2 were not described 

using the zinc catalyzed method. 

Many organic reactions have been adapted to laboratory scale continuous flow 

processes and the advantages of flow techniques such as mass transfer, reaction 

control and continuous operation are now well established [14]. Mannich reactions 

have been performed in continuous flow micro-fluidic devices [15] and asymmetric 

anti-Mannich reactions in continuous flow packed bed reactor [16] using various 

polystyrene-supported chiral amine-based catalyst have also been reported. We 

have previously reported continuous flow fluorination reactions using fluorine gas in 

gas-liquid processes including fluorination of ketoester and diester substrates [17].  

Following optimization of continuous flow reactions of ethyl fluoro-ethylacetoacetate 1 

with amine/formaldehyde mixtures in a one-step liquid-liquid flow process, we 

adapted our synthetic procedure described above to a two-step gas-liquid, liquid-

liquid semi-continuous flow process using stainless steel coiled tube reactors (Fig. 1) 

that we have described previously [18]. A schematic diagram of the process is shown 

in Figure 1. Fluorine gas in nitrogen (10% v/v) was introduced into input 1 of the first 

coiled steel tube reactor and passed along the tube concurrently with ethyl 

acetoacetate in acetonitrile which was simultaneously added to the reactor system 

via inlet 2. The flow of the gaseous reactant stream was controlled by gas mass 

flowmeter and the liquid dicarbonyl reagent solution was introduced by hplc pump so 

that the fluorine gas : dicarbonyl addition ratio was ca.1.3 : 1. The flow rate of each 

reagent was adjusted to ensure a retention time of 2 to 5 min of the dicarbonyl 

substrate within the tubular reactor. The crude product mixture for the fluorination 

reaction was collected in a gas liquid separator flask where liquid was collected and 

gaseous waste passed through a scrubbing tower filled with soda-lime. The crude 
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fluoro-dicarbonyl product mixture was then pumped without any work-up procedure 

directly into input 3 of the second continuous flow coiled steel tube reactor while, 

simultaneously, a solution containing the amine and aldehyde solution was added at 

a controlled flow rate via Input 4. The crude product mixture for the two-step one 

continuous flow process was collected and, following work-up, the Mannich products 

were isolated in good yield and purity confirming the efficiency of this semi 

continuous flow process strategy (Table 4). 

 

 

 

Combined gas-liquid liquid-liquid sequential flow reaction using fluorine gas have not 

been well developed and only examples demonstrating the synthesis of 

fluoropyrazole derivatives have been recorded [19]. The reasonable yields of 

Mannich products 4 obtained from fluorine, ketoester and aminal inputs in the two-

step one semi-continuous flow process demonstrates the possible opportunities for 

process intensification of multi-step synthetic strategies using fluorine gas. 

In summary, a direct Mannich-type three component MCR reaction has been 

developed for the ready synthesis of β-fluoro(dicarbonyl)ethylamine derivatives 

starting from fluorinated dicarbonyl substrates further demonstrating that such 

systems are particularly useful as starting substrates for further transformations or 

functionalization, opening up opportunities for the synthesis of more complex 

fluorinated systems for life science projects from simple, readily accessible 

fluorinated systems. 

 

3. Experimental 

 

3.1 General 

All the chemicals and solvents used were commercially purchased from Alfa Aesar, 

Apollo Scientific, Fluorochem or Sigma Aldrich and, unless otherwise stated, were 
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used without any further purification. 1,3-Dimethyl-2-fluoromalonate was synthesized 

as described previously [4c]. 

Proton, fluorine and carbon nuclear magnetic resonance spectra (1H, 19F, 13C NMR) 

were obtained using a Bruker 400 Ultrashield spectrometer (1H NMR at 400 MHz, 19F 

NMR at 376 MHz and 13C NMR at 101 MHz) using residual solvent peaks as the 

internal standard (1H NMR; CDCl3 at 7.26 ppm, 19F NMR; CFCl3 at 0.00 ppm and 13C 

NMR; CDCl3 at 77.16 ppm). NMR spectroscopic data are reported as follows: 

chemical shift (ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = 

quarter, m = multiplet), coupling constant (Hz) and assignment. GC-MS data were 

obtained using a Trace GC-MS device (Thermo-Finnigan Corporation) operating in 

electron impact ionization (EI) mode. Accurate mass analysis was performed on a 

Xevo QtoF mass spectrometer (Waters Ltd, UK) with an accurate solids analysis 

probe (ASAP) or a TQD UPLC (Waters) instrument operating in electrospray 

ionization mode. 

 

Mannich-type reaction by conventional batch process. 

General procedure: In a 50 mL two-necked flask containing dichloromethane (10 

mL) were added the amine (17 mmol)  followed by the aldehyde (15 mmol) and the 

resulting reaction mixture was allowed to stir at rt for 2 h., before the fluorinated 

dicarbonyl system (10 mmol) was added. The reaction mixture was stirred at rt for 16 

h, evaporated and the residue dissolved in dichloromethane (20 mL), washed with 

distilled water (2 x 20 mL), dried over magnesium sulfate and evaporated, to give the 

desired product. Further purification by distillation or column chromatography eluting 

from hexane/ethyl acetate was carried out when appropriate.  

Analytical and spectroscopic data for each individual compound are listed below. For 

NMR data only resonances of one diastereoisomer or conformer is given for clarity. 

 

Mannich reactions of 2-Fluoro ethylacetoacetate and formaldehyde 

Ethyl-2-((benzylamino)methyl)-2-fluoro-3-oxobutanoate 4a 
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1H NMR (400 MHz, CDCl3) δH 1.31 (t, J = 7.1 Hz, 3H, -OCH2CH3), 2.39 

(d, J = 4.8 Hz, 3H, -C(O)CH3), 3.80 – 4.08 (m, 2H, -CF-CH2), 4.28 (q, J 

= 7.1 Hz, 2H, -OCH2CH3), 6.63 – 6.95 (m, 3H, ArH), 7.12 – 7.24 (m, 

2H, ArH). 19F NMR (376 MHz, CDCl3) δF -169.37 (tq, 3JHF = 22.4 Hz, 

4JHF = 4.8 Hz). 13C NMR (101 MHz, CDCl3) δC 13.97 (-OCH2CH3), 26.27 (-C(O)CH3), 

47.53 (d, 2JCF = 20.5 Hz, -CF-CH2), 62.96 (-OCH2CH3), 100.23 (d, 1JCF = 198.8 Hz, -

CF), 113.62 (Ar), 118.80 (Ar), 129.27 (Ar), 147.17 (Ar), 165.01 (d, 2JCF = 25.4 Hz, -

C(O)O), 201.35 (d, 2JCF = 28.6 Hz, -C(O)CH3). MS (ESI) m/z 115.02 (100%), 123.98 

(68.4%), 224.12 (62.7%), 254.15 ([M+H]+, 72.2%). HRMS (ESI) m/z calcd for [M+H]+ 

C13H17FNO3 254.1200, found 254.1192. 

Ethyl-2-((diethylamino)methyl)-2-fluoro-3-oxobutanoate 4b 

1H NMR (400 MHz, CDCl3) δH 0.87 (t, J = 7.1 Hz, 6H, –NCH2CH3), 

1.22 (t, J = 7.1 Hz, 3H, -OCH2CH3), 2.23 (d, 4JHF = 5.0 Hz, 3H, -

C(O)CH3), 2.51 (q, J = 7.1, 4H, –NCH2CH3), 3.05 (t, 3JHF = 26.1, 2H, -

CF-CH2), 4.18 (q, J = 7.1 Hz, 2H, -OCH2CH3). 19F NMR (376 MHz, 

CDCl3) δF -166.64 (tq, 3JHF = 26.1 Hz, 4JHF 5.0 Hz). 13C NMR (101 MHz, CDCl3) δC 

11.45 (NCH2CH3), 13.86 (-OCH2CH3), 26.41 (-C(O)CH3), 47.89 (m, –NCH2CH3), 

56.42 (d, 2JCF = 18.4 Hz, -CF-CH2), 62.18 (-OCH2CH3), 102.21 (d, 1JCF = 199.1 Hz, -

CF), 165.39 (d, 2JCF = 26.0 Hz, -C(O)O), 201.94 (d, 2JCF = 29.6 Hz, -C(O)CH3). MS 

(ESI) m/z 234.07 ([M+H]+, 100%), 86.04 ([M-C6H8FO3]+, 95.3%), 266.10 (81.7%). 

HRMS (ESI) m/z calcd for [M+H]+ C11H21FNO3 234.1505; found 234.1504. 

Ethyl-2-((diisopropylamino)methyl)-2-fluoro-3-oxobutanoate 4c 

1H NMR (400 MHz, CDCl3) δH 0.97 (d, J = 6.7 Hz, 12H, -CH(CH3)2), 

1.32 (t, J = 7.1 Hz, 3H, -OCH2CH3), 2.32 (d, 4JHF = 5.1 Hz, 3H, -

C(O)CH3), 3.08 (m, 2H, -CF-CH2), 3.24 (m, 2H, -CH(CH3)2), 4.13 – 4.39 

(m, 2H, -OCH2CH3).19F NMR (376 MHz, CDCl3) δF -163.81 (ddq, 3JHF = 

22.3 Hz, 3JHF = 20.8 Hz, 4JHF - 4.7 Hz). 13C NMR (101 MHz, CDCl3) δC 13.98 (-

OCH2CH3), 20.66 (s, -CH(CH3)2), 26.87 (-C(O)CH3), 48.66 (s, -NCH), 49.45 (d, 2JCF = 

18.7 Hz, -CF-CH2), 62.29 (-OCH2CH3), 102.78 (d, 2JCF = 198.7 Hz, -CF), 165.72 (d, 

2JCF = 26.0 Hz, -C(O)O), 202.63 (d, 2JCF = 30.3 Hz, -C(O)CH3). MS (ESI) m/z 102.10 

([M-C7H10FO3
•]+, 100%), 114.10 ([M-C6H8FO3

•]+, 77.9%), 262.13 ([M+H]+, 74.3%), 
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294.2 (55.8%). HRMS (ESI) m/z calcd for [M+H]+ C13H25FNO3 262.1818; found 

262.1803. 

Ethyl-2-(pyrrolidin-1-methyl)-2-fluoro-3-oxobutanoate 4d 

1H NMR (400 MHz, CDCl3) δH 1.25 (t, J = 7.1 Hz, 3H, -OCH2CH3), 1.66 

– 1.86 (m, 4H, -CH2), 2.27 (s, 3H, -C(O)CH3), 2.49-2.65 (m, 4H, -

NCH2), 3.06-3.31 (m, 2H, -CFCH2), 4.10-4.36 (m, 2H, -OCH2CH3). 19F 

NMR (376 MHz, CDCl3) δF -166.84 (ddq, 3JHF = 29.7 Hz, 3JHF = 25.1 Hz, 4JHF = 4.8 

Hz). 13C NMR (101 MHz, CDCl3) δC 13.93 (-OCH2CH3), 23.83 (CH2), 26.23 (-

C(O)CH3), 55.28 (-NCH2), 58.41 (d, 2JCF = 19.4 Hz, -CF-CH2), 62.34 (-OCH2CH3), 

101.62 (d, 1JCF = 199.2 Hz, CF), 165.35 (d, 2JCF = 25.8 Hz, -C(O)O), 201.39 (d, 2JCF = 

28.6 Hz, -C(O)CH3). MS (ESI) m/z 232.10 ([M+H]+, 100%), 264.18 (56.4%), 84.01 

([M-C5H6FO4
•]+, 49.3%). HRMS (ESI) m/z calcd for [M+H]+ C11H19FNO3 232.1349; 

found 231.1350. 

Ethyl-2-(piperidin-1-methyl)-2-fluoro-3-oxobutanoate 4e 

1H NMR (400 MHz, CDCl3) δH 1.29 (t, J = 7.1 Hz, 3H, -OCH2CH3), 1.35 

– 1.46 (m, 2H, -CH2), 1.48 – 1.60 (m, 4H, CH2), 2.30 (d, 4JHF = 4.9 Hz, 

3H, -C(O)CH3), 2.49 – 2.57 (m, 4H, -NCH2), 3.02 (d, 3JHF = 26.8 Hz, -

CF-CH2), 4.09 – 4.43 (m, 2H, -OCH2CH3). 19F NMR (376 MHz, CDCl3) 

δF -165.59 (tq, 3JHF = 26.6, 4JHF = 4.9 Hz). 13C NMR (101 MHz, CDCl3) δC 14.01 (-

OCH2CH3), 23.84 (CH2), 26.18 (CH2), 26.40 (-C(O)CH3), 55.82 (s, NCH2), 61.10 (d, 

2JCF = 18.5 Hz, -CF-CH2), 62.30 (-OCH2CH3), 102.16 (d, 1JCF = 199.9 Hz, -CF), 

165.40 (d, 2JCF = 25.8 Hz, -C(O)O), 201.75 (d, 2JCF = 29.3 Hz, -C(O)CH3). MS (ESI) 

m/z 246.31 ([M+H]+, 100%). HRMS (ESI) m/z calcd for [M+H]+ C12H21FNO3 246.1505; 

found 246.1508. 

Ethyl-2-((benzylmethylamino)methyl)-2-fluoro-3-oxobutanoate 4f 

1H NMR (400 MHz, CDCl3) δH 1.30 (t, J = 7.1 Hz, 3H, -OCH2CH3), 2.26 

(m, 3H, -NCH3), 2.34 (d, 4JHF = 4.7 Hz, 3H, -C(O)CH3), 3.24 (t, 3JHF = 

26.0, 2H, -CFCH2), 3.63 (s, 2H, -NCH2), 4.28 (q, J = 7.2 Hz, 2H, -

OCH2CH3), 7.09 – 7.41 (m, 5H, ArH). 19F NMR (376 MHz, CDCl3) δF -

166.35 (tq, 3JHF = 25.8, 4JHF = 4.8 Hz). 13C NMR (101 MHz, CDCl3) δC 

14.02 (-OCH2CH3), 26.27 (-C(O)CH3), 43.40 (d, 4JCF = 3.2 Hz, -NCH3), 59.84 (d, 2JCF 
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= 18.4 Hz, -CF-CH2), 62.50 (-OCH2CH3), 63.51 (d, 4JCF = 2.5 Hz, -NCH2), 102.16 (d, 

1JCF = 199.5 Hz, CF), 127.12 (Ar), 128.22 (Ar), 128.90 (Ar), 138.59 (Ar), 165.36 (d, 

2JCF = 26.0 Hz, -C(O)O), 201.13 (d, 2JCF = 28.8 Hz, -C(O)CH3). MS (ESI) m/z 122.23 

([C8H10N•]+, 100%), 282.23 ([M+H]+, 90.5%), 300.36 (72.4%). HRMS (ESI) m/z calcd 

for [M+H]+ C15H20FNO3 282.1505 ; found 282.1516. 

Ethyl-2-((dicyclohexylamino)methyl)-2-fluoro-3-oxobutanoate 4g 

1H NMR (400 MHz, CDCl3) δH 0.85 – 1.86 (m) (23H, CH2 and CH3), 

2.19 (d, 4JHF = 5.2 Hz, 3H, -C(O)CH3), 2.36 – 2.56 (m, 2H, NCH), 

3.14 - 3.35 (m, 2H, -CF-CH2), 3.90 – 4.26 (m, 2H, -OCH2CH3). 19F 

NMR (376 MHz, CDCl3) δF -171.87 (ddq, 3JHF = 26.6 Hz, 3JHF = 21.8 

Hz, 4JHF 4.8 Hz). 13C NMR (101 MHz, CDCl3) δC 13.83 (-OCH2CH3), 

25.16, 25.92, 26.00 (CH2), 26.75 (-C(O)CH3), 50.28 (d, 2JCF = 18.5 Hz, -CFCH2), 

52.92 (N-CH), 62.07 (-OCH2CH3), 102.82 (d, 1JCF = 198.9 Hz, -CF), 165.55 (d, 2JCF = 

26.0 Hz, -C(O)O), 202.48 (d, 2JCF = 30.3 Hz, -C(O)CH3). MS (ESI) m/z 182.2 

([C12H22N•+H]+, 100%), 191.3 ([M-C6H8FO3
•]+, 28.9%), 312.4 (38.5%), 342.4 ([M+H]+, 

31.5%), HRMS (ESI) m/z calcd for [M+H]+ C19H33FNO3 342.2444, found 342.2445. 

 

Mannich reactions of fluorinated dicarbonyl systems and benzaldehyde 

Ethyl-2-(phenyl(benzylmethylamino)methyl)-2-fluoro-3-oxobutanoate 5a 

1H NMR (400 MHz, CDCl3) δH 0.96 (t, J = 7.1 Hz, 3H, -OCH2CH3), 

2.13 (d, 4JHF = 5.6 Hz, 3H, -C(O)CH3), 2.16 (s, 3H, -NCH3), 3.46 - 

3.67 (m, 2H, -N-CH2), 3.96 – 4.13 (m, 2H, -OCH2CH3), 4.88 (d, 

3JHF = 35.0 Hz, 1H, -CF-CH), 7.08 – 7.97 (m, 10H, ArH).19F NMR 

(376 MHz, CDCl3) δF -176.64 (dq, 3JHF = 34.6, 4JHF = 5.5 Hz). 13C NMR (101 MHz, 

CDCl3) δC 13.59 (OCH2CH3), 26.99 (-C(O)CH3), 38.92 (-NCH3), 61.00 (-N-CH2), 

62.39 (-OCH2CH3), 70.79 (d, 2JCF = 15.8 Hz, -CF-CH), 105.73 (d, 1JCF = 209.4 Hz, -

CF), 126.98, 128.15, 128.25, 128.74, 129.00, 130.25, 134.44, 138.99 (Ar), 164.57 (d, 

2JCF = 25.5 Hz, -C(O)O), 201.85 (d, 2JCF = 30.6 Hz, -C(O)CH3). MS (ESI) m/z 122.2 

([C8H10N•], 100%), 282.3 ([M-C6H5
•+H]+, 26.6%), 358.2 ([M+H]+, 6.0%) HRMS (ESI) 

m/z calcd for [M+H]+ C21H24FNO3 358.1818; found 358.1825. 
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Ethyl-2-(phenyl(phenylamino)methyl)-2-fluoro-3-oxobutanoate 5b 

1H NMR (400MHz, CDCl3) δH 1.12 (t, J = 7.1 Hz, 3H, -OCH2CH3), 1.96 

(d, 4JHF = 5.8 Hz, 3H, -OCH3), 4.13 (q, J = 7.1 Hz, 2H, -OCH2CH3), 5.47 

(d, 4JHF = 27.9, 1H, -CF-CH), 6.63 – 6.87 (m, 2H, ArH), 7.23 – 7.48 (m, 

3H, ArH), 7.23 – 7.48 (m, 5H, ArH), 8.50 (s, 1H, NH). 19F NMR (376 

MHz, CDCl3) δF -179.28 (dq, 3JHF = 28.1, 4JHF = 5.9 Hz). 13C NMR (101 

MHz, CDCl3) δC 13.99 (-OCH2CH3), 26.65 (-C(O)CH3), 60.51 (d, 2JCF = 18.3 Hz, -CF-

CH), 63.10 (-OCH2CH3), 103.03 (d, 1JCF = 204.7 Hz, -CF), 114.47, 118.52, 119.29, 

125.95, 128.48 – 128.66 (m), 131.39, 135.47, 145.46 (Ar), 164.61 (d, 2JCF = 24.3 Hz,-

C(O)O), 201.05 (d, 2JCF = 28.3 Hz, -C(O)CH3). MS (ESI) m/z 182.08 ([M- C6H8FO3
•]+, 

100%), 330.17 ([M+H]+, 34.0%). HRMS (ESI) m/z calcd for [M+H]+ C19H21FNO3 

330.1505; found 330.1510. 

Ethyl-2-(phenyl(4-methoxyphenylamino)methyl)-2-fluoro-3-oxobutanoate 5c 

1H NMR (400 MHz, CDCl3) δH 1.27 (t, J = 7.2 Hz, 3H, -OCH2CH3), 1.94 

(d, 4JHF = 5.7 Hz, 3H, -C(O)CH3), 3.70 (s, 3H, -OCH3), 4.24-4.39 (m, 

2H, -OCH2CH3), 5.34 (d, 3JHF = 28.2 Hz, 1H, -CF-CH), 6.60-6.73 (m, 

2H, ArH), 6.68-6.73 (m, 2H, ArH), 7.13-7.46 (m, 5H, ArH). 19F NMR 

(376 MHz, CDCl3) δF -179.57 (dq, 3JHF = 28.2 Hz, 4JHF = 5.8 Hz). 13C 

NMR (101 MHz, CDCl3) δC 14.01 (-OCH2CH3), 26.63 (-C(O)CH3), 55.55 (-OCH3), 

61.74 (d, 2JCF = 18.2 Hz, -CF-CH), 63.01 (-OCH2CH3), 103.21 (d, 1JCF = 204.6 Hz, -

CF), 114.67 (Ar), 128.43 – 128.59 (m, Ar), 135.56 (Ar), 139.37 (Ar), 153.04 (C-OMe), 

164.57 (d, 2JCF = 26.7 Hz, -C(O)O), 200.99 (d, 2JCF = 29.5 Hz, -C(O)CH3). MS 

(ASAP) m/z 212.11 ([M-C6H8FO3
•]+, 100%), 360.17 ([M+H]+, 1.9%). HRMS (ASAP) 

m/z calcd for [M]+ C20H22FNO4 359.1533; found 359.1538. 

 

Mannich reactions of 2-Fluoro-1,3-dimethymalonate and formaldehyde 

Dimethyl-2-((diethylamino)methyl)-2-fluoromalonate 6a 

1H NMR (400 MHz, CDCl3) δH 0.91 (t, J = 7.1 Hz, 6H,–CH2CH3), 2.57 

(q, J = 7.1 Hz, 4H, CH2CH3), 3.17 (t, 3JHF = 26.2 Hz, 2H, -CF-CH2), 

3.78 (s, 6H, -OCH3). 19F NMR (376 MHz, CDCl3) δF -166.73 (t, 3JHF = 
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26.1 Hz). 13C NMR (101 MHz, CDCl3) δC 11.62 (-NCH2CH3), 47.97 (-NCH2CH3), 

52.99 (-OCH3), 56.38 (d, 2JCF = 18.7 Hz, -CF-CH2), 97.27 (d, 1JCF = 200.0 Hz, -CF), 

165.82 (d, 2JCF = 26.3 Hz, -C(O)OCH3). MS (ESI) m/z 236.14 ([M+H]+, 100%), 178.08 

([M-C2H3O2
•+2H]+, 64.1%), 122.04 (43.1%), 86.02 ([M-C5H6FO4

•]+, 36.9%). HRMS 

(ESI) m/z calcd for [M+H]+ C10H19FNO4 236.1298; found 236.1299. 

Dimethyl-2-((diisopropylamino)methyl)-2-fluoromalonate 6b 

1H NMR (400 MHz, CDCl3) δH 0.95 (d, J = 6.7 Hz, 6H, -CH(CH3)2), 

2.97 – 3.13 (m, 1H, -CF-CH2), 3.29 (m, 1H, -N-CH), 3.80 (s, 3H, -

OCH3).19F NMR (376 MHz, CDCl3) δF
  -163.14 (t, J = 26.7 Hz). 13C 

NMR (101 MHz, CDCl3) δC 20.62 (-CH(CH3)2), 48.42 (-N-CH), 49.51 

(d, 2JCF = 19.1 Hz, -CF-CH2), 52.96 (-C(O)OCH3), 97.98 (d, 1JCF = 199.3 Hz, -CF), 

166.05 (d, 2JCF = 26.4 Hz, -C(O)OCH3). MS (ESI) m/z 102.26 ([M-C6H8FO4
•]+, 100%), 

114.10 ([M-C5H6FO4
•]+, 49.6%), 264.29 ([M+H]+, 68.5%). HRMS (ESI) m/z calcd for 

[M+H]+ C12H23FNO4 264.1620; found 264.1611. 

Dimethyl-2-(pyrrolidin-1-methyl)-2-fluoromalonate 6c 

1H NMR (400 MHz, CDCl3) δH 1.63 – 1.74 (m, 4H, CH2), 2.54 – 2.66 

(m, 4H, -NCH2), 3.24 (d, 3JHF = 26.6 Hz, 2H, -CF-CH2), 3.81 (s, 6H,–

C(O)OCH3). 19F NMR (376 MHz, CDCl3) δF -166.92 (t, J = 26.7 Hz). 

13C NMR (101 MHz, CDCl3) δC 23.89 (-NCH2CH2), 53. 

18 (-C(O)OCH3), 55.26 (-NCH2), 58.67 (d, 2JCF = 19.5 Hz, -CF-CH2), 96.43 (d, 1JCF = 

200.4 Hz, -CF), 165.81 (d, 2JCF = 25.9 Hz, -C(O)OCH3). MS (ESI) m/z 152.23 ([M-

C5H6FO4
•]+, 50.4%), 234.21 ([M+H]+, 100%). HRMS (ESI) m/z calcd for [M+H]+ 

C10H17FNO4 234.1142; found 234.1145. 

Dimethyl-2-(piperidin-1-methyl)-2-fluoromalonate 6d 

1H NMR (400 MHz, CDCl3) δH 1.24-1.38 (m, 2H, CH2), 1.44 (m, 4H, 

CH2), 2.35 - 2.44 (m, 4H, NCH2), 3.00 (d, 3JHF = 26.6 Hz, 2H, -CF-

CH2), 3.74 (s, 6H, -OCH3).19F NMR (376 MHz, CDCl3) δF -165.65 (t, 

3JHF = 26.6 Hz). 13C NMR (101 MHz, CDCl3) δ 23.79 (CH2), 26.17 

(CH2), 52.88 (-C(O)OCH3), 55.62 (-NCH2), 61.11 (d, 2JCF = 18.8 Hz, -CF-CH2), 97.11 

(d, 1JCF = 200.9 Hz, -CF), 165.71 (d, 2JCF = 26.1 Hz, -C(O)OCH3). MS (ESI) m/z 
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85.85 ([M-C6H8FO4
•+H]+, 100%), 190.10 ([M-C2H3O2

•+H]+, 95.7%), 248.15 ([M+H]+, 

73.6%). HRMS (ESI) m/z calcd for [M+H]+ C11H19FNO4 248.1298; found 248.1296. 

Dimethyl-2-((benzylmethylamino)methyl)-2-fluoromalonate 6e 

1H NMR (400 MHz, CDCl3) δH 2.31 (s, 3H, -NCH3), 3.31 (d, 3JHF = 

25.9 Hz, 2H, -CF-CH2), 3.68 (m, 2H, -N-CH2), 3.85 (s, 6H, -OCH3), 

7.11 – 7.55 (m, 5H, ArH). 19F NMR (376 MHz, CDCl3) δF -166.08 (t, 

3JHF = 25.9 Hz). 13C NMR (101 MHz, CDCl3) δC 43.53 (-NCH3), 53.22 

(-C(O)OCH3), 59.89 (d, 2JCF = 18.7 Hz, -CF-CH2), 63.46 (-N-CH2), 

97.03 (d, 1JCF = 200.2 Hz, -CF), 126.76, 128.18, 128.90 (Ar), 138.73 (Ar), 165.73 (d, 

2JCF = 26.1 Hz, -C(O)OCH3). MS (ESI) m/z 122.09 ([M-C6H8FO4
•+2H]+, 100%), 90.98 

([M-C7H11FNO4
•]+, 65.3%), 284.12 ([M+H]+, 44.8%). HRMS (ESI) m/z calcd for 

[M+H]+ C14H19FNO4 284.1298; found 284.1301. 

Dimethyl-2-((dicyclohexylamino)methyl)-2-fluoromalonate 6f 

1H NMR (400 MHz, CDCl3) δH 0.96 –1.98 (m) (20H, CH2), 2.42 – 

2.70 (m, 2H, –N-CH), 3.39 (d, 3JHF = 26.4 Hz, 2H, -CF-CH2), 3.79 

(s, 6H, -OCH3).19F NMR (376 MHz, CDCl3) δF -166.39 (t, 3JHF = 

21.9 Hz). 13C NMR (101 MHz, CDCl3) δC 25.23 (CH2), 28.4 (CH2), 

33.57 (NCH2), 52.96 (N-CH), 53.46 (-C(O)OCH3), 63.47 (d, 2JCF = 

21.5 Hz, -CF-CH2), 95.59 (d, 1JCF = 199.9 Hz, -CF), 165.28 (d, 2JCF = 25.5 Hz, -

C(O)OCH3). MS (ESI) m/z 182.31 ([C12H22N•+H]+, 100%), 194.34 ([M-C5H6FO4
•]+, 

79.3%), 344.20 ([M+H]+,15.8%). HRMS (ESI) m/z calcd for [M+H]+ 

C18H31FNO4 344.2237, found 344.2247. 

 

Mannich-type reaction by semi-continuous flow two-step process general 

procedure 

After purging the continuous flow reactor apparatus described previously [18] with 

nitrogen, a 10% mixture of fluorine in nitrogen (v.v-1) (11 mmol, 1.1 eq.) was passed 

through the first flow reactor via Input 1 at a prescribed flow rate that was controlled 

by a gas mass flow controller (Brooks Instruments). The flow reactor was cooled by 

an external cryostat to 0-5°C. The ethyl-acetoacetate solution in acetonitrile (10 mL, 
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1 mmol/mL) was injected by a HPLC pump into the flow reactor channel at a 

prescribed flow rate through Input 2 (5 mL/h). The gas-liquid flow stream was passed 

through the first reactor and the product mixture was collected in a three-neck round-

bottomed flask.  

This collected mixture was directly injected by a HPLC pump into the second flow 

reactor at a prescribed flow rate (5 mL/h). Formaldehyde (15 mmol) and the amine 3 

(17 mmol) were mixed together in acetonitrile for 2 h at rt and then injected by HPLC 

pump into the second flow reactor channel at a prescribed flow rate through the 

corresponding substrate Input via a T-piece. The molar ratio of fluorinated 

ethylacetoacetate:formaldehyde:amine was ca. 1:1.5:1.7. The liquid flow stream was 

passed through the second reactor and the product mixture was collected in a 

second two-neck round-bottomed flask. All flow streams were passed through the 

reactor and the product mixture was collected in a two-neck round-bottom flask. The 

collected mixture was then poured into water, extracted with dichloromethane (3 × 50 

mL) and washed with brine (20 mL) and water (20 mL). The combined extracts were 

then dried (MgSO4), filtered and the solvent evaporated to give a yellow oil, which 

was purified by micro-distillation or column chromatography on silica gel using 

hexane/ethyl acetate as eluent system when appropriate. 
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Figures 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of semi-continuous flow process (top); coiled stainless 

steel flow reactors (bottom) 
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Tables 

Table 1 Three-component Mannich-type reaction of 2-fluoro-ethylacetoacetate 1, 

formaldehyde and amine 3  

 

  ACCEPTED M
ANUSCRIP

T



18 
 

 

Table 2 Three-component Mannich-type reaction of 2-fluoro-ethylacetoacetate 1, 

benzaldehyde and amine 3 

 

 

The synthetic conditions developed above were then applied to reactions between 

dimethyl 2-fluoro-malonate ester 2 and a range of amines 3 (Table 3), resulting in 

analogous products 6 but in lower yield reflecting the lower nucleophilicity of the 

diester substrate.  
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Table 3 Three-component Mannich-type reaction of diethyl 2-fluoro-malonate ester 2, 

formaldehyde and amine 3 
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Table 4 Synthesis of β-fluoro(dicarbonyl)alkylamines 4 from ethylacetoacetate, 

amines 3 and formaldehyde by semi-continuous flow process 

 

R1 R2 Product Yield [%][a] 

CH2CH3 CH2CH3 4b 71  

iPr iPr 4c 43  

-(CH2)4- - 4d 55  

-(CH2)5- - 4e 59  

Bn CH3 4f 67  

[a] isolated yield  
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