New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid-Derived Amides and Natural Occurrence of an Intense Umami Amide in *Zanthoxylum piperitum*

Eric Frerot^{a,*}, Nathalie Neyrinck^{a,b}, Isabelle Cayeux^a, Yoyo Yi-Yuan^c, Yong-Ming Yuan^c

^aFirmenich SA, Corporate R&D Division, P.O. Box 239, CH-1211 Geneva 8, Switzerland

^bPresent address: Schwarzkopf Professional, 161, rue de Silly. 92 642 Boulogne Billancourt, France

^cFirmenich Aromatics (China) Co., Ltd., No 3901 JinDu Road, Xinzhuang Industry Park,

Shanghai 201108, China

^{*}Author to whom correspondence should be addressed. Tel: +41 22 780 35 66,

Fax: +41 22 780 33 34, e-mail eric.frerot@firmenich.com

ABSTRACT

1	A series of aromatic amides was synthesized from various acids and amines selected from
2	naturally occurring structural frameworks. These synthetic amides were evaluated for
3	umami taste in comparison with monosodium glutamate. The effect of the substitution
4	pattern of both the acid and the amine parts on umami taste was investigated. The only
5	intense umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The
6	amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-
7	substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in
8	water. Ultra-performance liquid chromatography coupled with a high quadrupole-Orbitrap
9	mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of
10	these amides. (E)-3-(3,4-dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown
11	to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae
12	growing in Korea, Japan, and China.
13	KEYWORDS
14	Aromatic amides, umami taste, UPLC/MS, Zanthoxylum piperitum

16 INTRODUCTION

17	Amides are ubiquitous compounds in nature, especially in plants of the genus <i>Piperaceae</i> . ¹
18	Many of the amides occurring in foods elicit a trigeminal sensation. Thus, capsaicin is
19	responsible for the hot sensation of red pepper (<i>Capsicum annuum</i> L.) ² and piperine for that
20	of black pepper (<i>Piper nigrum</i> L.) ³ . Red Sichuan pepper (<i>Zanthoxylum bungeanum</i> Maxim.) ⁴ ,
21	jambu oleoresin (extract from <i>Spilanthes acmella</i> L. flowers) ⁵ and pellitory roots (<i>Anacyclus</i>
22	pyrethrum L.) ⁶ provide another trigeminal effect, called tingling. This effect is mostly
23	attributed to the presence of unsaturated amides: hydroxy- $lpha$ -sanshool in red Sichuan
24	pepper, spilanthol in jambu oleoresin and pellitorin in pellitory. There is no mention in the
25	peer-reviewed literature of naturally occurring alkyl- or aromatic amides that provide umami
26	taste.
27	

The interest in new umami molecules was reviewed by Winkel and colleagues.⁷ In addition to amino acid derivatives, small peptides, and nucleotide derivatives, recent years have seen the emergence of umami compounds that are active at very low levels. Tachdjian *et al.* of Senomyx used receptor-based assays to screen libraries of thousands of compounds, among which amides such as FEMA 4233 and FEMA 4232 (Figure 1) were found to possess umami taste at concentrations as low as 1 μ M.^{8,9}

34

35

37	Dewis et al. of IFF (International Flavors and Fragrances) patented many unsaturated
38	alkamides as umami or more general taste enhancers. ¹⁰⁻¹¹ These amides have structural
39	similarities to naturally occurring amides. One example of a polyunsaturated isobutylamide
40	similar to spilanthol, is presented in Figure 1. ¹¹ In addition, Backes <i>et al.</i> of Symrise proposed
41	umami amides that are based on neomenthylamine. ¹²
42	The work of Adesina showed the occurrence of various cinnamic acid-related amides in
43	Nigerian plants of the Rutaceae family, in particular Zanthoxylum rubescens Planch. ex Hook.
44	(Figure 2). ^{13,14} Plants of this genus are generally used as spice or as phytomedicine to cure
45	various diseases. ^{15,16} At the beginning of the present work, the taste of the amides occurring
46	in <i>Z. rubescens</i> ¹³ had not been described. When we tasted Rubemamine 1 , we noticed its
47	umami taste and this prompted us to study other cinnamic acid-derived amides for their
48	potential umami taste. Rubemamine ${f 1}$ was included in a patent of 2003 from Symrise
49	related to the pungent taste of ferulic acid amides ¹⁷ and in 2012 in another patent claiming
50	the umami taste of cinnamic acid related amides. ¹⁸
51	The subject of this work includes the synthesis of many cinnamic acid-related amides, their
52	sensory evaluation for umami taste, the necessary structural features for umami taste, ¹⁹ and
53	the subsequent analysis of Zanthoxylum piperitum to show the natural occurrence of these

54 umami amides.

55

56 MATERIALS AND METHODS

57	General. Unless otherwise specified, commercially available reagents and solvents were
58	purchased from Fluka-Sigma-Aldrich, Buchs, Switzerland; Acros Organics, Geel, Belgium; and
59	Carlo-Erba, Val de Reuil, France.
60	NMR Spectra. ¹ H- and ¹³ C-NMR spectra were recorded in $CDCl_3$ on a DPX 400 spectrometer
61	(Bruker, Rheinstetten, Germany) at 25 °C operated at 400 MHz (1 H) or 100 MHz (13 C), with
62	tetramethylsilane as the internal standard. The ¹³ C signal assignments were obtained from
63	standard gradient-selected correlated spectroscopy, heteronuclear single quantum
64	coherence, and heteronuclear multiple bond correlation experiments performed on a Bruker
65	Avance 500 spectrometer. NMR spectra were processed with Bruker TopSpin 2.0 software
66	(s, singlet; d, doublet; t, triplet; m, multiplet).
67	UPLC-MS Method. Analyses of samples were performed on a Acquity I-Class UPLC system
68	(Waters, Milford, USA) coupled with a Q-Exactive Plus mass spectrometer (Thermo, San Jose,
69	CA, USA). The column was an Acquity HSS-T3, 100 $ imes$ 2.1 mm i.d. (Waters) operated at 30 °C.
70	Solvent A was UPLC/MS grade water (BioSolve, Valkenswaard, The Netherlands) containing
71	0.1% MS grade formic acid (Sigma-Aldrich, Steinheim, Germany). Solvent B was acetonitrile
72	(Biosolve) containing 0.1% formic acid at 0.3 mL/mL. The gradient elution was as follows:
73	40%, 1 min; 40-80% B for 9 min; 80% B, 1 min; and re-equilibration at 40% B for 1 min.
74	The mass spectrometer was equipped with an H-ESI II electrospray source operated in the
75	positive mode: spray 3500 V, probe heater 400 °C, heated capillary 300 °C, sheath gas 50 arb
76	units, auxiliary gas 10. The mass calibration was performed each week. The "full
77	scan/ddMS ² " combined with the "tMS ² " acquisition modes were used. The full scan/ddMS ²
78	triggered the recording of the MS^2 spectra for the three most intense ions. The targeted MS^2
79	mode (tMS^2) recorded the MS^2 spectra of 15 amides (see Results and Discussion) on the

basis of an inclusion list containing their molecular formulae. The full-scan spectra were
acquired with a resolution of 70,000 from 100 to 1000 Da and the MS² spectra with a
resolution of 17,500 and a higher energy collisional dissociation cell energy of 30 V.
Automated gain control was targeted to 3.10⁶ and 1.10⁵ ions with a maximum injection time
of 100 ms for full scan and 50 ms for ddMS².

Synthesis of Amides with Ethyl Chloroformate, General Procedure. The acid component 85 86 (typically 33 mmol) and diisopropyl ethyl amine (2 equiv) were diluted in 200 mL of EtOAc 87 and 50 mL of dichloromethane. The solution was cooled to 15 °C, and ethyl chloroformate (1 88 molar equiv) was added drop wise. The reaction was stirred for 1 h before the primary 89 amine component (1 molar equiv, diluted 2-3 times in EtOAc) was added. The reaction was 90 stirred overnight at room temperature. It was washed with aqueous 5% KHSO₄, brine, 91 aqueous 5% NaHCO₃, and brine, and then dried over Na₂SO₄ and evaporated under high 92 vacuum for 3 h. The crude product was purified by flash chromatography (silica gel; 93 cyclohexane/EtOAc, e.g. 2:8). Yields were between 50 and 80% of the purified product. MS and UV data only are given below. The description of ¹H and ¹³C NMR spectra can be found 94 95 as supporting information. Amide 1, Rubemamine. (E)-N-(3,4-dimethoxyphenethyl)-3-(3,4-dimethoxyphenyl)acrylamide 96 97 ESI (+): 372.1798 (C₂₁H₂₆O₅N, -2.1 ppm). UV max (nm): 316, 287, 222. 98 Amide **2**. (*E*)-N-(3,4-dimethoxyphenethyl)-3-(4-methoxyphenyl)acrylamide ESI (+): 342.1690 (C₂₀H₂₄O₄N, -2.8 ppm). UV max (nm): 310, 288, 224. 99 100 Amide **3**. (*E*)-3-(benzo[d][1,3]dioxol-5-yl)-N-(3,4-dimethoxyphenethyl)acrylamide 101 ESI (+): 356.1483 (C₂₀H₂₂O₅N, -4.2 ppm). UV max (nm): 322, 286, 228, 219.

6

- 102 Amide **4**. (*E*)-3-(3,4-dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide
- 103 ESI (+): 342.1693 (C₂₀H₂₄O₄N, -2.0 ppm). UV max (nm): 316, 291, 223.
- 104 Amide 5. (Z)-3-(3,4-dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide. Amide 4 (500
- 105 mg) in 50 mL of ethanol was irradiated for 16 h by using a water-cooled 125 W Hg lamp.
- 106 UPLC analysis showed that the crude product contained 50% of the (*Z*)-isomer. The product
- 107 was chromatographed over a Puriflash 50 C18 cartridge (Interchim, Montluçon, France)
- eluted with water:ethanol (60:40). A mixture of amide **5** and **4** (90:10) was obtained (96 mg).
- 109 ESI (+): 342.1693 (C₂₀H₂₄O₄N, -2.1 ppm). UV max (nm): 310, 276, 224.
- 110 Amide 6. 3-(3,4-dimethoxyphenyl)-N-(4-methoxyphenethyl)propanamide
- 111 ESI (+): 344.1849 (C₂₀H₂₆O₄N, -2.0 ppm). UV max (nm): 277, 225.
- 112 Amide **7**. N-(4-methoxyphenethyl)cinnamamide
- 113 ESI (+): 282.1481 (C₁₈H₂₀O₂N, -2.8 ppm). UV max (nm): 275, 222.
- 114 Amide 8. N-(3-methoxyphenethyl)cinnamamide
- 115 ESI (+): 282.1491 (C₁₈H₂₀O₂N, -2.6 ppm). UV max (nm): 274, 223.
- 116 Amide 9. (E)-N-(4-methoxyphenethyl)-3-(4-methoxyphenyl)acrylamide
- 117 ESI (+): 312.1585 (C₁₉H₂₂O₃N, -2.9 ppm). UV max (nm): 310, 290, 224.
- 118 Amide 10. (E)-N-(4-methoxyphenethyl)-3-(2-methoxyphenyl)acrylamide
- 119 ESI (+): 312.1586 (C₁₉H₂₂O₃N, -2.7 ppm). UV max (nm): 317, 274, 225.
- 120 Amide 11. (E)-N-(4-methoxyphenethyl)-3-(3-methoxyphenyl)acrylamide

- 121 ESI (+): 312.1587 (C₁₉H₂₂O₃N, -2.4 ppm). UV max (nm): 310, 277, 224.
- 122 Amide **12**. (E)-3-(2,5-dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide
- 123 ESI (+): 342.1690 (C₂₀H₂₄O₄N, -2.8 ppm). UV max (nm): 342, 276, 223.
- 124 Amide 13. (E)-N-(4-methoxyphenethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide
- 125 ESI (+): 372.1797 (C₂₁H₂₆O₅N, -2.4 ppm). UV max (nm): 299, 228.
- 126 Amide 14. (E)-2-methoxy-4-(3-((4-methoxyphenethyl)amino)-3-oxoprop-1-en-1-yl)phenyl
- 127 acetate. ESI (+): 370.1639 (C₂₁H₂₄O₅N, -2.6 ppm). UV max (nm): 310, 277, 224.
- 128 Amide **15**. (E)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-methoxyphenethyl)acrylamide. Amide
- 129 **14** was deprotected in MeOH/Na₂CO₃. The reaction was acidified and extracted from EtOAc.
- 130 The product was recrystallized from EtOAc (yield 75%). ESI (+): 328.1535 (C₁₉H₂₂O₄N, -2.5
- 131 ppm). UV max (nm): 317, 293, 222.
- 132 Amide **16**. (E)-3-(benzo[d][1,3]dioxol-5-yl)-N-(4-methoxyphenethyl)acrylamide
- 133 ESI (+): 326.1379 (C₁₉H₂₀O₄N, -2.4 ppm). UV max (nm): 322, 284, 219.
- 134 Amide **17**. (E)-3-(3,4-dimethylphenyl)-N-(4-methoxyphenethyl)acrylamide
- 135 ESI (+): 310.1794 (C₂₀H₂₄O₂N, -2.6 ppm). UV max (nm): 285, 224.
- 136 Amide **18**. (E)-3-(3,4-dimethoxyphenyl)-N-phenethylacrylamide
- 137 ESI (+): 312.1588 (C₁₉H₂₂O₃N, -2.0 ppm). UV max (nm): 317, 291, 235, 211.
- 138 Amide **19**. (E)-3-(3,4-dimethoxyphenyl)-N-(3-methoxyphenethyl)acrylamide
- 139 ESI (+): 342.1693 (C₂₀H₂₄O₄N, -2.1 ppm). UV max (nm): 317, 291, 218.

140	Amide 20 . (E)-3-(3,4-dimethoxyphenyl)-N-(2-methoxyphenethyl)acrylamide
141	ESI (+): 342.1691 (C ₂₀ H ₂₄ O ₄ N, -2.7 ppm). UV max (nm): 317, 291, 220.
142	Amide 21 . (E)-N-(3,5-dimethoxyphenethyl)-3-(3,4-dimethoxyphenyl)acrylamide
143	ESI (+): 372.1797 (C ₂₁ H ₂₆ O ₅ N, -2.4 ppm). UV max (nm): 317, 292, 219.
144	Amide 22 . (E)-3-(3,4-dimethoxyphenyl)-N-(3-ethoxyphenethyl)acrylamide
145	ESI (+): 356.1848 (C ₂₁ H ₂₆ O ₄ N, -2.4 ppm). UV max (nm): 316, 292, 219.
146	Amide 23 . (E)-3-(3,4-dimethoxyphenyl)-N-(3-propoxyphenethyl)acrylamide
147	ESI (+): 370.2005 (C ₂₂ H ₂₈ O ₄ N, -2.2 ppm). UV max (nm): 316, 290, 226.
148	Amide 24 . (E)-3-(3,4-dimethoxyphenyl)-N-(4-isopropoxyphenethyl)acrylamide
149	ESI (+): 370.2005 (C ₂₁ H ₂₈ O ₄ N, -2.1 ppm). UV max (nm): 316, 290, 226.
150	Amide 25 . (E)-3-(3,4-dimethoxyphenyl)-N-(4-ethylphenethyl)acrylamide
151	ESI (+): 340.1899 (C ₂₁ H ₂₆ O ₃ N, -2.3 ppm). UV max (nm): 316, 292, 220.
152	Amide 26 . (E)-3-(3,4-dimethoxyphenyl)-N-(4-isopropylphenethyl)acrylamide
153	ESI (+): 354.2055 (C ₂₂ H ₂₈ O ₃ N, -2.4 ppm). UV max (nm): 316, 292, 219.
154	Amide 27 . (E)-3-(3,4-dimethoxyphenyl)-N-(3,4-dimethylphenethyl)acrylamide
155	ESI (+): 340.1899 (C ₂₁ H ₂₆ O ₃ N, -2.6 ppm). UV max (nm): 316, 292, 218.
156	Amide 28 . (E)-3-(3,4-dimethoxyphenyl)-N-(4-methoxybenzyl)acrylamide
157	ESI (+): 328.1537 (C ₁₉ H ₂₂ O ₄ N, -2.6 ppm). UV max (nm): 317, 292, 223.

158	Amide 29 . (E)-N-(benzo[d][1,3]dioxol-5-ylmethyl)-3-(3,4-dimethoxyphenyl)acrylamide
159	ESI (+): 342.1327 (C ₁₉ H ₂₀ O ₅ N, -2.7 ppm). UV max (nm): 317, 292, 235, 218.
160	Amide 30 : Beecheyamide. (E)-3-(3,4-dimethoxyphenyl)-N-(4-methoxyphenethyl)-N-
161	methylacrylamide. A solution of amide 4 (478 mg, 1.4 mmol) in 14 mL of tetrahydrofuran
162	(THF) was added to a suspension of sodium hydride (120 mg, 5.0 mmol) in 9 mL of THF at 0
163	°C under argon atmosphere. The reaction was stirred for 30 min at 0 °C before 240 mg of
164	methyl iodide was added. The reaction was stirred at room temperature overnight, the
165	mixture poured into 50 mL of cold water, and the pH adjusted to 7 with 5% KHSO ₄ .
166	Extraction from EtOAc, followed by flash chromatography (pure EtOAc), gave 402 mg of 20
167	(yield 81%). The product was fully in agreement with the NMR data (showing two rotamers
168	of the amide bond) described by Cheng et al. ²⁰ ESI (+): 356.1847 ($C_{21}H_{26}O_4N$, -2.6 ppm). UV
169	max (nm): 320, 285, 224.
170	Amide 31 . Podocarpamide. (E)-N-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-3-(3,4-
171	dimethoxyphenyl)-N-methylacrylamide. Amide 16 (1.70 g, 5.2 mmol) in 50 mL of THF was
172	added drop wise to a suspension of sodium hydride (150 mg, 1.2 equiv) in 34 mL of THF at 0
173	°C under argon atmosphere. The reaction was stirred for 30 min at 0 °C. Iodomethane (390
174	μ L, 1.2 equiv) was added and the reaction was stirred overnight at room temperature. After
175	workup and flash chromatography (cyclohexane:EtOAc, 60:40), 1.37 g was obtained (77%
176	yield). NMR data (showing two rotamers of the amide bond) were compliant with those
177	reported by Delle Monache et al. ²¹ ESI (+): 340.1535 (C ₂₀ H ₂₂ O ₄ N, -2.4 ppm). UV max (nm):
178	321, 285, 232.

179 Amide **32**. (E)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-methoxyphenethyl)-N-methylacrylamide

180	4-Acetoxy-3-methoxycinnamic acid (360 mg, 1.5 mmol, Alfa Aesar) was condensed on [2-(4-
181	methoxy-phenyl)-ethyl]methylamine (1 equiv, Aldrich), as described above. The product was
182	purified by flash chromatography (cyclohexane:EtOAc, 50:50) and subsequently deprotected
183	(MeOH:1M KOH, 1/1 v:v). The reaction was neutralized by addition of 5% KHSO ₄ and the
184	product was extracted 3 x with EtOAc, then with CH_2Cl_2 . After drying over Na_2SO_4 and
185	evaporation, 132 mg of pale yellow oil was obtained (26%). NMR showed the presence of
186	two rotamers (as described for amide 30^{20}) in a 55:45 ratio. ESI (+): 342.1691 (C ₂₀ H ₂₄ O ₄ N, -
187	2.6 ppm). UV max (nm): 321, 285, 232.
188	Preparation of the Extracts from Zanthoxylum piperitum (L.) DC. The stems and roots were
100	reparation of the extracts from zunthoxylum piperitum (L.) DC. The sterns and roots were
189	separately cut from the fresh plants, and 207.15 g stems and 110.44 g of roots were
190	obtained. The stems were ground into a fine powder, poured into 4 L of dichloromethane,
191	stirred for 6 h, and left standing over the weekend. The suspension was filtered and the
192	solvent was evaporated to yield 1.06 g of brownish oil (0.51% w/w). Similarly, the roots gave
193	1.6 g of extract (1.45% w/w). The botanical identification of the species was confirmed by a
194	professional botanist (YM. Yuan). Voucher specimens were prepared and kept in the
195	herbarium of the company.
196	Sensory Evaluation.
197	All of the compounds were assessed by a toxicologist and many of them classified as Cramer
198	class III. Therefore a daily intake of 90 $\mu g/day$ was allowed. Only one compound of the

199 cinnamic amides family was tasted per session using the "sip and spit" method for 20 ml of

- solution at 20 ppm therefore minimizing the amount of ingested product. All panelists had
- signed a consent form informing them about the risk associated with such tasting of new
- 202 compounds.

Umami Score (small panel). Most of the amides were evaluated by a panel of four to nine
trained people. Each amide was evaluated at 20 ppm in Henniez water against 0.05%
monosodium glutamate (MSG) in a blind pair test. The panelists were asked to score the
umami taste on a scale of 0-10 for the sample in each cup. The *relative umami score* was
calculated as follows: *Relative umami score* = (amide score/MSG score) × 10

208 **Umami Score (large panel).** To assess the sensory performance of the selected amides with 209 a larger panel, we asked 15 panelists to evaluate them at 20 ppm or 100 ppm in water 210 (Henniez mineral water) alone and in a 0.05% MSG solution. They were asked to taste the 211 sample while using nose clips in order to focus on taste and trigeminal sensations in the 212 mouth, and then without nose clips in order to describe the olfactive notes. The panelists 213 evaluated the samples (20 mL served in a black cup) blind by sipping and spitting the sample 214 out after 5 s before answering the questions. For the pure water system, the panelists had 215 to select the most appropriate attributes from attributes lists (see below) when they were 216 and were not using nose clips. The attributes were ranked by decreasing order as a function 217 of attribute number cited by the panelists. In the MSG model system, all solutions tasted 218 contained 0.05% MSG and the panelists had to evaluate the perceived umami intensity in 219 the reference solution and in the samples by using a linear scale score from 0 (not intense) to 10 (very intense). The potential umami-enhancing effect of the amide was then evaluated 220 by comparing the perceived intensity of the samples "amide in MSG" vs "MSG alone" 221 222 ("delta" score corresponding to the intensities of "amide in MSG" minus "MSG alone"). A student test (paired test, one tailed) was performed to evaluate the significance of the 223 224 observed umami difference. The following is the list of attributes: with nose clips: astringent, 225 bitter, cooling, fatty, hot, licorice taste, metallic, mouthfeel, pungent, salivating, salty, sour,

226	sweet, tingling, umami; without nose clips: earthy, fruity, green, herbal, mushroom, nutty,
227	tea, woody.
228	
229	RESULTS AND DISCUSSION
230	Structure Taste Relationship Study of Nature-Inspired Amides. Most of the amides
231	occurring in Z. rubescens consist of amides of substituted cinnamic acid and
232	phenethylamine. ¹³ Throughout this study, 29 such amides (1-29) bearing different
233	substituents were synthesized (figure 3 and table 1). A few amides shown in table 1 were
234	already identified in plants ^{13,22,23} or microorganisms ²⁴ . We limited the study to amides
235	formed from acids and amines whose structural scaffolds were close to those already known
236	to occur in nature. We thought it might increase the chances of showing the natural
237	occurrence of these amides afterwards by targeted analysis. Thus, for example, 4-
238	methoxyphenethylamine clearly derives from the amino acid tyrosine, but 3-
239	methoxyphenethylamine could also form from the uncommon but naturally occurring meta-
240	tyrosine. ²⁵ The amide bond was formed from the mixed carbonic anhydride generated by
241	reaction of the acid with ethyl chloroformate, followed by addition of the amine. The
242	synthetic amides were subsequently evaluated for their umami taste by a panel of four to
243	nine trained people. A relative umami score was calculated as follows: (amide score/MSG
244	score) $ imes$ 10. For a <i>umami score</i> of 10, the umami taste intensity of the amide at 20 ppm was
245	perceived as being equal to that of 0.05% MSG. Thus, rubemamine <u>1</u> , which was perceived
246	as umami with a score of 3.3, was used as a lead compound in this study. The structural
247	optimization was performed step by step by varying the substituents independently.

248	The comparison of the relative umami score for these amides shown in Table 1 led to the
249	following conclusions. The double bond of the (E) configuration in the acid part was needed
250	because compound 5 of the (<i>Z</i>)-configuration and the saturated compound 6 did not have a
251	umami taste. Two methoxy groups were the most favorable (4 vs 7, 9-11, and 13) and they
252	should be in the <i>meta</i> and <i>para</i> position (4 better than 12). With substituents other than
253	methoxy groups (14-17), the umami taste intensity decreased significantly. Thus, it appeared
254	that 3,4-dimethoxycinnamic acid as the acid part of the amide was needed. The
255	phenethylamine part (n = 1) tolerated much more variation on the aromatic ring. Thus,
256	compounds 18-19 and 20-27 , bearing different R_5 and R_6 groups, were perceived as umami,
257	either moderately (18, 21, 22) or strongly (19, 22-27). In particular, compounds having one
258	alkoxy or one alkyl group in <i>meta</i> position were all very strong (19 > 4 > 20). Benzylamides
259	(n = 0) 29 and 30 were only very weakly umami.
260	In the large panel study, all but two of the evaluated amides significantly enhanced the
261	umami taste (see Table 2). The delta scores represent the average difference between the
262	perceived umami intensity of the model solution (MSG) and that with the amide added. A
263	positive value denotes an increase of umami taste intensity when the amide was present.
264	The student test (paired test, one tailed) indicates whether this difference is significant at
265	different levels of confidence (*, **, ***, at 95%, 99%, and 99.9%, respectively) between
266	these two samples. The best-performing amides were 1, 4, 19, and 23-27. One of the most
267	interesting compounds was 4, which increased the perceived intensity of umami by 1.3, with
268	a significance level of 99.9% with and without the nose clip. Furthermore, the comments
269	regarding the water system with the nose clips were quite positive, except for the
270	

astringency; there was no olfactive off-note (no comment without the nose clips). 270

271

272	Targeted UPLC/MS/MS Analysis and Occurrence of Amides 1, 4, 15, 16 and 30-32 in Z.
273	<i>piperitum</i> . There are more than 500 species in the genus <i>Zanthoxylum</i> (Rutaceae), ¹⁵ often
274	used as medicinal plants, as ornamentals, or in culinary applications. Cheng et al. analyzed Z.
275	beecheyanum K. Koch, which K. Koch purchased in Taiwan, and it contained many aromatic
276	amides. ²⁰ The description of this plant as an evergreen shrub originating from Japan and
277	introduced as an ornamental plant in Taiwan is very similar to Z. piperitum. The latter plant is
278	used as ornamental plant in China and Japan as bonsai, whereas the pericarp of the species
279	is commonly used as a spice in Japan. ¹⁵ We decided to focus our study on this plant.
280	Dichloromethane was selected as the solvent for the extraction because the synthetic
281	amides described earlier were all very soluble in it. The stems and the roots were extracted
282	separately and analyzed by UPLC/MS operated in positive electrospray ionization mode. For
283	this study, we used a high-resolution hybrid quadrupole-Orbitrap mass spectrometer in full
284	scan/data dependent MS ² experiment followed by a targeted MS ² experiment (t-MS ²) within
285	the same run. The t-MS ² used an inclusion list comprising the molecular formulae of the 15
286	selected amides (see Table 3) to record the corresponding product ion spectra. Figure 4
287	shows the UPLC/MS profile of the root extract of Z. piperitum. It was not the aim of this
288	study to fully characterize the extract, but some major products already known to occur in
289	Zanthoxylum species could be tentatively identified on the basis of their accurate masses.
290	The major products were amides such as $lpha$ -sanshool (Figure 4, peak 11), beecheyamide 30
291	(peak 4), podocarpamide 31 (peak 6), alkaloids such as skimmianine (peak 3) and
292	zanthoxyline (peak 2); and probably lignan-related products (peaks 9-10). Amides 30 , 31 and
293	also 32 (Figure 5) were synthesized to be used in the study.

294	According to the International Organization of the Flavor Industry guidelines for the
295	positive identification of chemicals by high resolution LC/MS/MS, ²⁶ an undisputed
296	identification of new compounds in plants "requires six points of identification when
297	comparing the reference synthetic material with the analyte in the plant: 1 precursor in low
298	resolution + 2 product ions in high resolution + 1 ratio \rightarrow 6 IPs". A mixture of 15 amides
299	(Table 3) was injected in concentrations ranging from 0.1 to 1000 ppb. The t-MS ² data were
300	then compared with those obtained from the injection of the extract at 1000 ppm after
301	blank runs were performed. The comparison of the chromatographic and mass spectral data
302	(Table 3 and Supporting Information) between the synthetic compounds and the natural
303	extract showed the unambiguous occurrence of amides 1, 4, 15, 16, 30, 31, and 32 in
304	Zanthoxylum piperitum root extract. Quantitative results presented below should be
305	considered with care since we did not check for ion suppression effects. Also, the most
306	abundant amides were in concentration higher than the highest concentration of the
307	calibration curves.
308	Amides 1 (rubemamine), 16, 20 (beecheyamide), and 31 (podocarpamide) were already
309	reported to occur in <i>Zanthoxylum</i> species (see Table 1). Amides 30 and 31 were abundant
310	compounds in our extract, accounting for 0.57 and 1.87% w/w, respectively. Figure 6 shows
311	the t-MS 2 trace of ion 342.17. The peak at 3.816 min in the plant extract (trace A) and the
312	synthetic amide 4 eluting at 3.820 min in the reference mixture (trace B) injected separately
313	showed identical MS/MS spectra (C and D, same fragments, same ratio). As amide 4 was well
314	separated from its isomers 5 and 19 , its occurrence is thus unambiguously supported. The
315	comparisons between the UPLC/MS/MS data of the synthetic products and the natural

316 products for the other amides are available as Supporting Information.

317	This work illustrates how compounds already known to occur in plants served as a starting
318	point for umami taste relationship studies to find more intense ingredients. Targeted
319	UPLC/MS/MS analyses then unambiguously supported the natural occurrence of a few of
320	these molecules in a plant extract. The combination of plant knowledge, chemical synthesis,
321	and modern LC/MS techniques thus provided an efficient way to discover new taste-active
322	and naturally occurring ingredients. A similar approach was used by Süss et al. who
323	synthesized a series of "kitchen-like" amides by reaction of lactones and amines, evaluated
324	them for their umami taste and finally showed the natural occurrence of one of them in blue
325	cheese. ²⁷
326	
327	ABBREVIATIONS USED
328	MSG, monosodium glutamate; THF, tetrahydrofuran; UPLC/MS, ultra-performance liquid
329	chromatography mass spectrometry; ESI, electrospray ionization.
330	
331	ACKNOWLEDGMENT
332	We thank Mr. Alain Bagnoud for his help in chemical synthesis, Mrs. Esmeralda Cicchetti for
333	preliminary LC/MS analyses, Mrs. Aurore Planchais and Christine Saint-Léger for the
334	organization of the large panel evaluations, Dr. Sylvain Etter for toxicology assessment and
335	Mrs. Kasia Aeberhardt for stimulating discussions. The reviewers for their constructive
336	suggestions to improve the manuscript are also acknowledged.
337	

338 Supporting Information

- ¹H and ¹³C NMR descriptions of products **1-32**.
- 340 Chromatograms and mass spectra comparison of synthetic amides vs natural amides in
- 341 *Z.piperitum*. This material is available free of charge via the Internet at http://pubs.acs.org.

343	RE	ERENCES
344	1.	Strunz, G. M. Unsaturated amide in Piper species (Piperaceae). In Studies in Natural
345		Products Chemistry; Elsevier Science B.V.: Amsterdam, The Netherlands, 2000; pp. 683-
346		738.
347	2.	Galopin, C. C.; Furrer, S. M.; Goeke, A. Pungent and tingling compounds in Asian cuisine.
348		In Challenges in Taste Chemistry and Biology; ACS Symposium Series, 2003; Vol. 867, pp.
349		139-152.
350	3.	Dawid, C.; Henze, A.; Frank, O.; Glabasnia, A.; Rupp, M.; Büning, K.; Orlikowski, D.;
351		Bader, M.; Hofmann, T. Structural and sensory characterization of key pungent and
352		tingling compounds from black pepper (Piper nigrum L.). J. Agric. Food Chem. 2012, 60,
353		2884-2895.
354	4.	Yang, X. Aroma constituents and alkylamides of red and green huajiao (Zanthoxylum
355		bungeanum and Zanthoxylum schinifolium). J. Agric. Food Chem. 2008 , 56, 1689-1696.
356	5.	Nagashima, M.; Nakatani, N. LC-MS analysis and structure determination of pungent
357		alkamides from Spilanthes acmella L. flowers. LebensmWissens. Technol. 1992, 25,
358		417-421.
359	6.	Gulland, J.M.; Hopton, GU. Pellitorine, the pungent principle of Anacyclus pyrethrum. J.
360		Chem.Soc. 1930 , 6-11.
361	7.	Winkel, C.; de Klerk, A.; Jan Visser, J.; de Rijke, E.; Bakker, J.; Koenig, T.; Renes, H. New
362		developments in umami (enhancing) molecules. Chem. Biodiversity 2008, 5, 1195-1203.

- 363 8. Tachdjian, C.; Patron, A. P.; Qi, M.; Adamski-Werner, S. L.; Tang, X.-Q.; Chen, Q.;
- 364 Darmohusodo, V.; Lebl-Rinnova, M.; Priest, C. Aromatic amides and ureas and their uses
- as sweet and/or umami flavor modifiers, tastants and taste enhancers. U.S. Pat. Appl.
- 366 20060045953 A1 20060302, 2006. To Senomyx.
- 367 9. Shigemura, R.; Chen, Q.; Darmohusodo, V.; Dean, A. R. Comestible compositions
- 368 comprising high potency savory flavorants, and processes for producing them. PCT Int.
- 369 Appl. WO 2007124152 A2 20071101, 2007. To Senomyx.
- 10. Dewis, M. L.; Conklin, G.; Pei, T. Saturated and unsaturated N-alkamides exhibiting taste
- and flavor enhancement effect in flavored compositions. U.S. Patent 2008/0317922,
- 372 2008. To IFF.
- 373 11. Bombuwala, K.; Janczuk, A. J.; John, T. V.; Kraut, K.; Liu, Z.; Mannava, N.; Wu, H.; Yang, Y.

Production and application of flavor-enhancing amide compounds. Eur. Pat. Appl. EP
2386212 A2 20111116, 2011. To IFF.

- 12. Backes, M.; Paetz, S.; Vössing, T.; Ley, J.P. Synthesis and Sensory Studies of Umami-
- 377 Active Scaffolds. *Chem.Biodiv.* **2014**, *11*, 1782-1797.
- 13. Adesina, S. K.; Reisch, J. Amides from *Zanthoxylum rubescens*. *Phytochemistry* **1989**, *28*,
 839-842.
- 380 14. Adesina, S. K. Three new amides from *Zanthoxylum rubescens*. *Planta Med*. **1989**, *55*,
 381 324-326.
- 15. Patiño, L. O. J.; Prieto, R. J. A.; Cuca, S. L. E. *Zanthoxylum* genus as potential source of
- 383 bioactive compounds. In *Bioactive Compounds in Phytomedicine*; Rasooli, I., Ed.; InTech:
- 384 Rijeka, Croatia, 2012; pp. 185-218.

- 385 16. Adesina, S. K. The Nigerian *Zanthoxylum*; chemical and biological values. *Afr. J. Trad.*386 *Complem. Alt. Med.* 2005, *2*, 282-301.
- 17. Ley, J.P.; Krammer, G.; Muche, S.; Kindel, G.; Reiss, I. Use of ferulic acid amides as flavor
 compounds. U.S. Patent 2003/0152682, 2003. To Symrise.
- 18. Ley, J. P.; Reichelt, K.; Paetz, S.; Backes, M.; Obst, K. Cinnamamides as savory flavorings.
- 390 U.S. Pat. Appl. Publ. 2012/0308703, 2012. To Symrise.
- 19. Frerot, E.; Aeberhardt, K. Taste modifying product to improve or modify the kokumi or
- umami taste of a flavored food. PCT Int. Appl. (2013), WO 2013000673 A1 20130103,
- 393 2013. To Firmenich.
- 20. Cheng, M. J.; Wu, C. C.; Tsai, I. L.; Chen, I. S. Chemical and antiplatelet constituents from
- the stem of *Zanthoxylum beecheyanum*. J. Chinese Chem. Soc. **2004**, *51*, 1065-1072.
- 396 21. Delle Monache, F.; Di Benedetto, R.; De Moraes E Souza, M. A.; Sandor, P. Esenbeckia
- 397 *leiocarpa*: II. Further components. *Gazzetta Chim. Ital.* **1990**, *120*, 387-389.
- Wu, M.-C.; Peng, C.-F.; Chen, I.-S.; Tsai, I.-L. Antitubercular Chromones and Flavonoids
 from *Pisonia aculeata. J.Nat. Prod.* 2011, 74, 976-982.
- 400 23. Kalia, N.K.; Singh, B.; Sood, R.P. A New Amide from *Zanthoxylum armatum*. *J.Nat. Prod.*401 **1999**, *62*, 311-312.
- 402 24. Takemoto, T.; Uchida, M.; Koike, K.; Hoshina, Y.; Kusano, G. Constituents of Chloranthus
- 403 species. I. Structures of two new amides from *Chloranthus serratus* and the isolation of
- 404 isofraxidin from *C. japonicas*. *Chem.Pharm.Bull.* **1975**, *23*, 1161-1163.

405	25.	Huang, T.; Rehak, L.; Janger, G. Meta-tyrosine in Festuca rubra ssp. commutata
406		(Chewings fescue) is synthesized by hydroxylation of phenylalanine. Phytochemistry
407		2012 , <i>75</i> , 60-66.
408	26.	IOFI Working Group on Methods of Analysis. Guidelines for LC-MS identifications of
409		flavouring substances in nature, made by the Working Group on Methods of Analysis of
410		the International Organization of the Flavor Industry (IOFI). Flavour Fragrance J. 2010,
411		25, 2-3.
412	27.	Suess, B.; Brockhoff, A.; Meyerhof, W.; Hofmann, T. Structures, orosensory activity, and
413		T1R1/T1R3 receptor activation of amides generated by lactone aminolysis using food-
414		related processing conditions. Eur. Food Res. Technol. 2013, 237, 57-70.
415		

413

416

418 Figure captions

Figure 1. High-intensity umami ingredients.

Figure 2. Amides from Zanthoxylum rubescens.¹³

Figure 3. Structure of cinnamic acid-derived amides synthesized for umami taste evaluation.

Figure 4. UPLC/MS chromatogram (Full scan mode) of Zanthoxylum piperitum root extract.

Figure 5. Amides **30-32** synthesized for targeted UPLC/MS analysis if *Z.piperitum*

Figure 6. UPLC/MS trace in targeted-MS² mode (see Material & Methods) of ion 342.17 in *Z. piperitum* root extract (A) and in a mixture of synthetic products (B). MS/MS spectra of peak at 3.827 min in *Z.piperitum* (C) and peak at 3.820 min in the synthetic mixture (D), showing the natural occurrence of amide **4**

number of rel. umami

number of rel. umami product no.

natural

production	occurrence	panelists	score	production	occurrence	panelists	score
<u>1</u>	Z. rubescens ¹³	4	3.3	<u>17</u>		3	2.6
2		5	3.9	<u>18</u>	Chloranthus serratus ²⁴	7	3.8
<u>3</u>	Z. rubescens ¹⁴	b		<u>19</u>		9	10.2
<u>4</u>	Z. piperitum ^a	6	5.6	<u>20</u>		7	3.2
<u>5</u>		4	1.3	<u>21</u>		7	3.7
<u>6</u>		5	0.9	<u>22</u>		6	9.8
<u>7</u>	Pisonia aculeata ²²	4	1.6	<u>23</u>		7	9.9
<u>8</u>		4	1.5	<u>24</u>		5	6.5
<u>9</u>		6	2.4	<u>25</u>		5	11.5
<u>10</u>		5	1.0	<u>26</u>		5	5.9
<u>11</u>		4	2.2	<u>27</u>		4	13.3
<u>12</u>		9	1.8	<u>28</u>		6	1.4
<u>13</u>		4	0.3	<u>29</u>		6	0.8
<u>14</u>		6	2.2	<u>30</u>	Z. beecheyanum ²⁰	b	
<u>15</u>	Z. piperitum ^a	4	1.1	<u>31</u>	Z. piperitum ^a	b	
<u>16</u>	Z. armatum ²³	9	2.1	<u>32</u>	Z. piperitum ^a	с	

Table 1. Cinnamic Acid-Derived Amides and Their Umami Taste Score

^aThis work

product no.

natural

^bEvaluated in large panel only (table 2)

^cNot evaluated

compound no.	conc. (ppm) ^a	delta ^b with NC	delta ^b without NC	<i>t-</i> test with NC	<i>t-</i> test without NC	comments for amides in water evaluated with NC ^c	comments for amides in water evaluated w/o NC ^c
1	20	0.9	0.8	***	**	umami (4), astringent (3)	no
4	20	1.1	1.3	***	***	umami (9), mouthfeel (6), salty (5), astringent (4)	no
19	20	1.7	1.7	**	**	umami (10), mouthfeel (4), salty (4), sour (3)	green (3), herbal (3)
23	20	1.3	1.3	**	**	umami (11), astringent (3), salty (3)	no
24	20	1	1.2	**	**	umami (4), sweet (3)	no
25	20	0.9	0.9	**	**	umami (12)	no
26	20	1	1.1	**	<pre>** umami (7), salty (4), sweet</pre>		no
27	20	0.8	1.0	NS	NS	umami (11)	green (3), herbal (3)
30	20	0.7	0.6	NS	*	no	no
31	100	0.1	0.0	NS	NS	bitter (10), astringent (4)	no

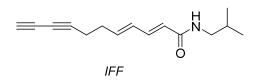
Table 2. Sensory Evaluation of Selected Amides by a Large Panel

^aThe amides were diluted to 10% in ethanol. The quantity of ethanol added to the solution was therefore 0.02% for the compounds tasted at 20 ppm and 0.1% for compound **31** tasted at 100 ppm.

^bDifference in perceived intensity between the amide+MSG vs MSG alone

^cThe numbers in parentheses indicate the number of panelists among the 15 who made this comment.

*, **, ***: levels of confidence at 95%, 99%, and 99.9%, respectively


Abbreviations: NC, nose clip; NS, not significant; No, no comments or comments given by less than 20% of the panel (fewer than three panelists).

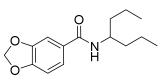
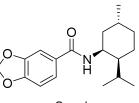

no.	RT	accurate mass	MS/MS fragment 1	MS/MS fragment 2	MS/MS fragment 3	quantity
	(min)					[mg/kg of extract]
<u>1</u>	2.94	372.1805	191.0702	163.0753		41
		$C_{21}H_{26}NO_5$ (-0.2)	C ₁₁ H ₁₁ O ₃ (-0.2)	C ₁₀ H ₁₁ O ₂ (-0.2)		
<u>4</u>	3.82	342.1699	191.0702	135.0846		29
		$C_{20}H_{24}NO_4$ (-0.2)	C ₁₁ H ₁₁ O ₃ (-0.5)	C ₉ H ₁₁ O, (+0.1)		
<u>5</u>	3.62	n.d.	n.d.	n.d.		
<u>15</u>	2.85	n.d.	177.0546	145.0284	135.0805	6
			C ₁₀ H ₉ O ₃ (-0.1)	C ₉ H ₅ O ₂ (+0.0)	C ₉ H ₁₁ O (+0.4)	
<u>16</u>	4.47	326.1387	175.0389	145.0284	135.0847	527
		C ₁₉ H ₂₀ NO ₄ (-0.0)	C ₁₀ H ₇ O ₃ (-0.2)	C ₉ H ₅ O ₂ (-0.2)	C ₉ H ₁₁ O (+0.2)	
<u>19</u>	3.92	n.d.	n.d.	n.d.		
<u>22</u>	4.79	n.d.	n.d.	n.d.		
<u>23</u>	5.92	n.d.	n.d.	n.d.		
<u>24</u>	5.44	n.d.	n.d.	n.d.		
<u>25</u>	5.80	n.d.	n.d.	n.d.		
<u>26</u>	6.63	n.d.	n.d.	n.d.		
<u>27</u>	5.64	n.d.	n.d.	n.d.		
<u>30</u>	4.26	356.1854	191.0703	135.0805		5784 ^a
		$C_{21}H_{26}NO_4$ (-0.6)	C ₁₁ H ₁₁ O ₃ (-0.1)	C ₉ H ₁₁ O (+0.5)		
<u>31</u>	5.01	340.1541	175.0389	145.0284	135.0805	18723 ^a
		C ₂₀ H ₂₂ NO ₄ (-0.6)	C ₁₀ H ₇ O ₃ (+0.0)	C ₉ H ₅ O ₂ (+0.0)	C ₉ H ₁₁ O (+0.5)	
<u>32</u>	3.18	342.1700	175.0390	145.0284	135.0805	845
		C ₂₀ H ₂₄ NO ₄ (+0.2)	C ₁₀ H ₉ O ₃ (-0.2)	C ₉ H ₅ O ₂ (-0.2)	C ₉ H ₁₁ O (+0.1)	
<u>32</u>	3.18					845

Table 3. Identification of Selected Amides in Zanthoxylum piperitum Root Extract


^aabove the highest point of calibration

Senomyx, FEMA 4232

Symrise

Figure 1.

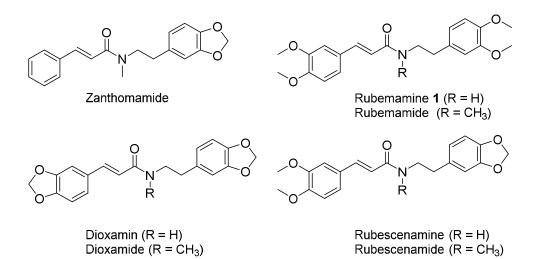


Figure 2.

R_1 R_2 R_3 R_4 R_4 R_4	1) EtO(2) H ₂	N~~	TEA, R ₅ n R ₈	EtOA R ₆ R ₇	с →	R₁∖ R₂́	R	R	0	N	$\begin{array}{c} R_5 \\ R_6 \\ R_7 \\ R_8 \end{array}$
	N°	R ₁	R ₂	R ₃	R ₄	R₅	R ₆	R ₇	R ₈	n	double bond
	1	OMe	OMe	Н	Н	Н	OMe	OMe	Н		
	2	Н	OMe	Н	Н	Н	OMe	OMe	Н		
	3	а	а	Н	Н	Н	OMe	OMe	Н		
	4		OMe		Н	Н	OMe	Н	Н		
	5		OMe		Н	Н	OMe		Н		(Z)
	6		OMe		Н	Н	ОМе		Н		single bond
	7	Н	H	H	H	H	OMe		Н		
	8	H	H	Н	Н	Н	H	OMe			
	9 10	H H	OMe H	н Н	H OMe	H L	OMe OMe		H H		
	11	ОМе		H	H	н	OMe		Н		
	12	OMe		н	OMe		OMe		н		
	13		OMe			Н	OMe		н		
	14		OAc		Н	н	OMe		н		
	15		ОН		н	н	OMe		н		
	16	а	а	Н	Н	Н	OMe	Н	н		
	17	Ме	Ме	Н	Н	Н	OMe	Н	Н		
	18	OMe	OMe	Н	Н	Н	Н	Н	Н		
	19	OMe	OMe	Н	Н	Н	Н	OMe	Н		
	20	OMe	OMe	Н	Н	Н	Н	Н	OMe		
	21	OMe	OMe	Н	Н	OMe	Н	OMe			
	22		OMe		Н		Н	OEt			
	23		OMe		Н		Н	OnPi			
	24		OMe		Н	Н	0 <i>i</i> Pr		Н		
	25		OMe		H	H	Et	H	H		
	26		OMe		Н	Н	<i>i</i> Pr	H	Н		
	27		OMe		Н	Н	Me	Me ⊔	Н	0	
	28 29		OMe OMe		H H	H H	OMe a	п a	н н	0	
							otherwi			-	

double bond of (*E*)-configuration except otherwise stated

 ${}^{a}R_{1}-R_{2} \text{ or } R_{6}-R_{7} = O-CH_{2}-O \text{ (methylenedioxy)}$

n = 1 (phenethylamine series) except 0 stated (benzylamine series)

Figure 3.

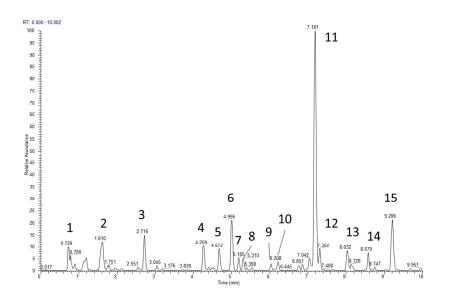


Figure 4.

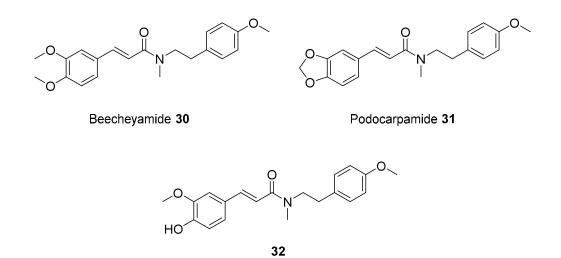


Figure 5.

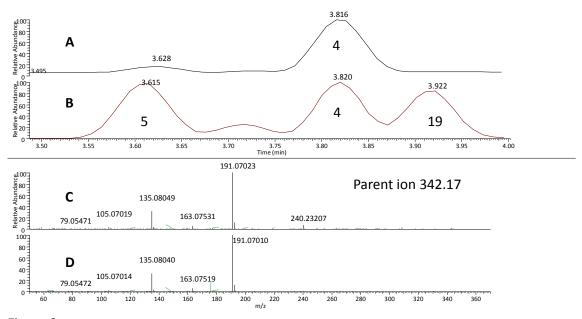
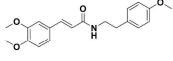



Figure 6.

An intense umami tasting amide (compound **4**) found in Zanthoxylum piperitum

TOC graphic