Journal of Medicinal Chemistry

Article

A Cinchona Alkaloid Antibiotic that Appears to Target ATP Synthase in Streptococcus pneumoniae

Xu Wang, Yuna Zeng, Li Sheng, Peter Larson, Xue Liu, Xiaowen Zou, Shufang Wang, Kaijing Guo, Chen Ma, Gang Zhang, Huaqing Cui, David M. Ferguson, Yan Li, Jing-Ren Zhang, and Courtney C. Aldrich *J. Med. Chem.*, Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.8b01353 • Publication Date (Web): 19 Feb 2019
 Downloaded from http://pubs.acs.org on February 19, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

A Cinchona Alkaloid Antibiotic that Appears to Target ATP Synthase in Streptococcus pneumoniae

Xu Wang,^{a†} Yuna Zeng,^{b†} Li Sheng,^c Peter Larson,^d Xue Liu,^b Xiaowen Zou,^c Shufang Wang,^a Kaijing Guo,^e

Chen Ma, ^e Gang Zhang, ^a Huaqing Cui, ^a David M. Ferguson, ^d Yan Li, ^c Jingren Zhang, ^{b*} Courtney C.

Aldrich^{a,d}*

^aDepartment of Synthetic Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

^bCenter for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China

^cDepartment of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

^dDepartment of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

^eDepartment of Pharmaceutical Analysis, Institute of Materia Medica, Chinese Academy of

Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of

China

[†]These authors contributed equally

*Corresponding author's email address:

*(C.C.A.) E-mail: ccaldrich@imm.ac.cn and aldri015@umn.edu Phone: +86 17319037727.

*(J.Z.) E-mail: <u>zhanglab@tsinghua.edu.cn</u> Phone: +86 10 62795892.

Abstract

Optochin, a cinchona alkaloid derivative discovered over 100 years ago, possesses highly selective antibacterial activity towards *Streptococcus pneumoniae*. Pneumococcal disease remains the leading source of bacterial pneumonia and meningitis worldwide. The structure activity relationships of optochin were examined through modification to both the quinoline and quinuclidine subunits, which led to the identification of analogue **48** with substantially improved activity. Resistance and molecular modeling studies indicate **48** likely binds to the c-ring of ATP synthase near the conserved glutamate 52 ion binding site while mechanistic studies demonstrated **48** causes cytoplasmic acidification. Initial pharmacokinetic and drug metabolism analysis of optochin and **48** revealed limitations of these quinine analogues, which were rapidly cleared resulting in poor in vivo exposure through hydroxylation pendant to the quinuclidine and *O*-dealklyation of the quinoline. Collectively, the results provide a foundation to advance **48** and highlight ATP synthase as a promising target for antibiotic development.

Keywords: *Streptococcus pneumoniae*, pneumococcal disease, antibiotic, cinchona alkaloid, quinine, optochin, ATP synthase.

Introduction

Pneumococcal disease caused by the gram-positive bacterium *Streptococcus pneumoniae* remains the leading source of bacterial pneumonia and meningitis worldwide. Additionally, S. pneumoniae is responsible for bacteremia and many common upper respiratory tract infections including sinusitis and otitis media.^{1,2} The pneumococcal conjugate vaccine PCV13 provides immunity to thirteen of the most prevalent S. pneumoniae serotypes and has significantly reduced the global burden of pneumococcal The wide deployment of PCV13 and the heptavalent predecessor PCV7 has led to a disease. corresponding increase in drug-resistant S. pneumoniae (DRSP), thus complicating therapy for individuals that are either unvaccinated or infected with any of the more than eighty serotypes not covered by these vaccines.³⁻⁵ Narrow spectrum agents effective against DRSP are therefore desirable and could complement existing vaccination programs to decolonize asymptomatic carriers. The concept of narrow spectrum antibacterial agents, defined as active against a single or related species, is gaining traction due to advances in rapid diagnostics in clinical microbiology labs coupled with the importance of the human microbiome in maintaining health and preventing disease.⁶ Moreover, narrow spectrum agents are expected to have a smaller impact on human and environmental resistome, which serve as a reservoir for transmissible resistance elements.⁷

The antibiotic optochin 1^8 (Figure 1A), a cinchona alkaloid derivative, possesses highly selective pneumococcal activity and was also shown to effectively treat septicemia in animals and humans.⁹⁻¹¹ However, development of optochin was discontinued because of toxicity observed in humans with incidence of optical disturbances in up to 5% of patients given ~25 mg/kg/day and moderate activity in treating lobar pneumonia, the most prevalent infection caused by *S. pneumoniae*.¹⁰ Clinical experience indicated optochin appeared to be effective in the early course of pneumonia infections, but that *S. pneumoniae* became "optochin-fast" or resistant during treatment, likely owing to sub-optimal exposure

due to lack of pharmacokinetic (PK) and pharmacodynamic (PD) information and inabilty to administer higher doses to compensate for the presumptive low lung exposure.¹⁰ It should be highlighted that all of this aforementioned work was done over a century ago or more than three decades before penicillin revolutionized the treatment of bacterial infections. The analytical tools available to perform proper PK/PD studies were simply not available, the word "antibiotic" did not yet exist in the scientific lexicon, and the concept of drug resistance was inchoate. Optochin, thus remains largely forgotten in the history of antibiotics, but could be considered the very first antibiotic discovered if one defines an antibiotic as a natural product or derivative thereof with antibacterial activity that is not a general cytotoxin.^{12,13}

Figure 1. A) Structures of optochin (1) and bedaquiline (2). The numbering of optochin is based on the convention used for quinine. B) ATP synthase is a nanoscale rotary motor composed of two multimeric subunits (the membrane bound F_0 subunit and F_1 subunit), which transforms proton motive force into rotational energy that is used to phosphorylate ADP. The F_0 subunit is a cylinder with a central pore (the c-ring) comprised of multiple c-subunits (10-14 subunits in *S. pneumoniae*).

Given optochins remarkable selective antibacterial activity, it has been used in clinical microbiology laboratories as an important diagnostic reagent for distinguishing pneumococcal strains from other alpha-hemolytic streptococci for more than seventy years.¹⁴ The mechanism of action (MOA) of optochin has been inferred through genetic studies that show optochin-resistance maps to *atpE*, which encodes for the c-ring of ATP synthase (Figure 1B). ATP synthase is a multimeric complex and plays a central role in energy metabolism by synthesizing a majority of the ATP in most bacteria.¹⁵ ATP synthase is essential in *S. pneumoniae*¹⁶ and has been chemically validated as a new antibacterial target

with the recent FDA approval of bedaquiline **2**, a diarylquinoline drug that selectively blocks ATP production in *Mycobacterium tuberculosis (Mtb)* by coincidentally also binding to the c-ring of ATP synthase.¹⁷ Bedaquiline achieves an extraordinary 10,000-fold selectivity for the mycobacterial ATP synthase over human mitochondrial ATP synthase and other bacterial homologues demonstrating it is possible to achieve high species selectivity with this new molecular target. Interestingly, ATP synthase was recognized as the likely target of optochin nearly 10 years before the first report of bedaquiline, yet none of the published work on bedaquiline or any derivative has mentioned this prior precedent.¹⁸

Herein we have examined the structure–activity relationships (SAR) of optochin that govern antipneumococcal activity and toxicity through the synthesis of a systematic series of analogues. Based on the recent revelations into optochin's MOA, we hypothesized the observed adverse effects in animals and humans may have been caused by mechanism-based toxicity due to inhibition of human mitochondrial ATP synthase. The high biochemical selectivity attained with bedaquiline suggests the feasibility of separating potency and toxicity of ATP synthase inhibitors. Moreover, the 4-[(quinuclidin-2-yl)hydroxymethyl]quinoline scaffold of optochin has superior physicochemical properties (clogP 3.1, MW 340) compared to bedquiline (clogP 7.3, MW 556) and thus represents a more attractive molecular scaffold for development of new ATP synthase inhibitors.¹⁷

RESULTS

Chemistry. We began by exploring the SAR at C-6' of optochin (see Figure 1 for numbering of optochin). Morgenroth and Levy reported in 1911 that an ethyl substituent was optimal and indicated many homologues were less active; although information on many of the actual analogues prepared as well as chemical and microbiological characterization by contemporary standards were not provided.^{8,19,20} We therefore synthesized a systematic series of analogues at the C-6' position as shown

in Scheme 1. Catalytic hydrogenation of quinine **3** afforded dihydroquinine **4** in 97% yield.²¹ Demethylation was accomplished employing sodium thioethoxide in DMF at 100 °C to furnish phenol **5**.^{22, 23} This nucleophilic cleavage condition was preferred over more traditional methods using Lewis acids or potent electrophiles because of the nucleophilicity of the quinuclidine nitrogen atom. The desired compounds were prepared by phenol alkylation of **5** with a variety of primary and secondary alkyl bromides and iodides using cesium carbonate in DMF to afford optochin **1** and **6–14** in yields ranging from 9–87%.²⁴

Scheme 1. Synthesis of C-6' analogues.

The vinyl group at C-3 of quinine provides another convenient synthetic handle to introduce diversity, thus we next explored modification at this position. Ruthenium-catalyzed isomerization of the vinyl moiety of quinine **3** provided exocyclic olefin **15** as an inseparable 3:1 mixture of geometric isomers (Scheme 2A).²⁵ Oxidation of the exocyclic olefin in **15** was accomplished by a two-step procedure employing osmium tetroxide catalyzed dihydroxylation followed by oxidative cleavage of the resultant diol to furnish ketone **16** in 56% overall yield.^{26, 27} Condensation of **16** with hydroxylamine in refluxing methanol provided oxime **17**.²⁸ A wide variety of other oxime derivatives, **18–30** were prepared analogously by condensation with the appropriate alkoxyamines. Interestingly, *n*-propyl **21**, *i*-propyl **22**, cyclopropylmethyl **27**, and cyclopentyl **28** were isolated as single undefined geometric

isomers, whereas all of the other analogues were obtained as approximately 2:1 mixtures of geometric isomers. The synthesis of the corresponding alkoxyamines was conveniently performed by alkylation of *N*-hydroxyphthalimide **31** with various alkylbromides using DBU in DMF to afford **32a–I** (Scheme 2B).²⁹ Hydrazinolysis of **32a–I** liberated the alkoxyamines, which were precipitated to provide the desired alkyoxyamine building blocks **33a–I** as the HCl salts.³⁰

Scheme 2. Synthesis of C-3 oxime analogues.

For the next set of analogues the secondary alcohol of quinine **3** was TBS protected using standard conditions to afford **34** (Scheme 3).³¹ Lemieux-Johnson oxidation by sequential dihydroxylation to **35** and sodium periodate oxidation furnished an intermediate aldehyde.²⁷ Interestingly, competitive oxidation of the quinuclidine nitrogen was observed when **35** was not purified. Wittig olefination proceeded to afford **36** smoothly at 0 °C without significant epimerization of the aldehyde at C-3 and subsequent TBAF deprotection yielded **37**.³² Subjection of the intermediate diol **35** to TBAF similarly provided **38**.^{27,31}

As a result of the enhanced activity and reduced toxicity observed with compound **15** containing an exocyclic olefin at C-3 (*vide infra*) this scaffold was prioritized for further SAR studies. Compound **15** contains a methyl ether at C-6' of the quinoline and our SAR studies with the optochin series of compounds indicates this position can further modulate potency, thus a systematic series of analogues was synthesized as shown in Scheme 4. Demethylation of **15** employing sodium thioethoxide smoothly afforded apo-cupreine **39**,²³ which was reacted with a series of alkyl bromides and alkyl iodides to furnish **40–50** (Scheme 4A).²⁴ To investigatie the importance of the stereochemistry at C-8 and C-9 of **15**, quinidine **51** was converted to the diastereomeric analogue **52** (Scheme 4B).²⁵

As a last series of analogues, fluorination of the C-9 alcohol of quinine **3** was explored as a model substrate. In the absence of base, quinine **3** reacted with diethylaminosulfur trifluoride (DAST) to give a mixture of C-9 fluorinated diastereomers **53** and the rearranged fluorinated product **54** (Scheme **5A**). The identity of the rearranged product **54** was previously established by X-ray crystallography.³³ In contrast, in the presence of pyridine, a single C-9 fluorinated diastereomer **53** and eliminated product **55** were obtained.³⁴ Using this method, we then synthesized the fluorinated products **56**, **57**, and **58** respectively from **5**, **15** and quinidine derivative **52** with yield ranging from 36% to 50% (Scheme **5B**).

Scheme 5. Fluorinated derivatives.

Micobiology. All optochin analogues were initially evaluated against S. pneumoniae strain D39 according to CLSI guidelines as described in the Experimental Section to determine the minimum inhibitory concentrations (MIC) that resulted in complete inhibition of observable growth and for mammalian toxicity against the HepG2 cell line to determine the concentration which resulted in 50% decrease of cell viability (CC_{50}). Optochin and quinine were included as controls and the relative potencies of the compounds discussed below are with respect to optochin. The SAR at C-6 shows an ethyl substituent is preferred as the MIC is 2-4 µg/mL for optochin 1 whereas the methyl analogue 4 loses 16-fold in potency and the unsubstituted phenol is 32-fold less active. The 2,2,2-trifluoroethyl analogue 6, *n*-propyl 7, *iso*-propyl 8 and allyl 9 are equipotent with MICs of 4 µg/mL demonstrating slightly larger groups are also tolerated. However, substituents beyond three carbons begin to show loses in potency with *n*-butyl 10 and cyclopropylmethyl 11 displaying 2-fold loses in potency and benzyl 14 a more pronounced 8–16 decrease in potency. We observed that more compact cycloalkyl substituents including cyclobutyl 12 and cyclopentyl 13 were equipotent to optochin. The cytotoxicity loosely tracked with antibacterial activity wherein weakly active compounds possessing MICs greater than 32 μ g/mL exhibited no apparent toxicity at 100 μ M, the highest concentration evaluated. On the other hand compounds, whose MICs were between 2–16 μ g/mL displayed cytotoxicities (CC₅₀) from 41 to 86 μ M. Cyclopentyl 13 and optochin 1 deviated from this trend and lacked observable cytotoxicity despite their potent antibacterial activities.

Table 1. SAR at C-6'.

Compound	R	MIC μg/mL (μM)	СС ₅₀ µМ ^b
Optochin (1)	Et	2-4 (6-12)	>100
Quinine (3)	$n.a.^a$	128 (395)	>100
4	Me	32 (98)	>100
5	Н	64 (204)	>100
6	∿2℃F3	4 (10)	72
7	<i>n</i> -Pr	4 (11)	57
8	<i>i</i> -Pr	4 (11)	86
9	allyl	4-8 (11-22)	78
10	<i>n</i> -Bu	8 (22)	41
11	***	8 (22)	87
12	₹−◆	2 (5)	51
13	$\mathbf{H}_{\mathbf{M}}$	2 (5)	>100
14	benzyl	16–32	76

^anot applicable, see structure in Scheme 1. ^bStandard deviation was less than 10% of the mean value for all compounds.

The SAR of the quinuclidine moiety at C-3' was performed with the C-6' position fixed as a methyl ether (Table 2). The MIC of quinine **3** containing a vinyl moiety at C-3 was 128 µg/mL. Saturation of the vinyl moiety in analogue **4** provided a 4-fold increase in potency while isomerization of the double bond to exocylic olefin **15** or addition of a methyl in propenyl **37** resulted in a striking 32-fold increase in activity relative to quinine. The ketone **16** arising from oxidative cleavage of **15** and diol **38** derived from dihydroxylation of vinyl group of **3** were both devoid of activity suggesting polar functional groups at C-3 are poorly tolerated. The exocyclic olefin in **15** orients the side chain at a completely different vector, which may explain its enhanced activity. Unfortunately, access to diverse alkylidene analogues at this position were synthetically challenging, thus isosteric oxime derivatives that are also

sp² hybridized at C-3 were explored. The unsubstitued oxime 17 was inactive; however, introduction of *O*-alkyl groups on the oxime led to enhancements in potency providing MICs of 16–32 µg/mL with methyl 18, *n*-propyl 21, *iso*-propyl 22, cyclopropylmethyl 27, cyclobutyl 26, cyclopentyl 28, and benzyl 30 oxime analogues. The SAR is relatively flat in this series of compounds, but some outliers were observed including ethyl 19 and 2,2,2-trifluoroethyl 20 oximes, whose MICs were \geq 128 µg/mL while the MICs of allyl 23 and propargyl 24 oximes were 64 µg/mL. The *n*-butyl oxime derivative 25 exhibited the most potent activity of all oximes with an MIC of 8–16 µg/mL or 8-16-fold greater than the parent compound quinine 3. The butyryl oxime 29 containing a terminal methyl ester in the carbon chain abrogated the benefits found oxime butyl ether 25 shifting the MIC to 128 µg/mL. Overall, compounds 15 containing an exocyclic olefin and 37 emerged as the most potent analouge from this series with an MIC of 4 µg/mL followed by oxime butyl ether 25 with an MIC of 8–16 µg/mL. None of the compounds except allyl 23 displayed any cytotoxicity at 100 µM, the highest concentration evaluated.

Table 2. SAR at C-3.

Compound	R	MIC μg/mL (μM)	СС ₅₀ (µМ)	Compound	R	MIC μg/mL (μM)	CC ₅₀ (μM)
Quinine (3)		128 (395)	>100	21	n-PrO _{4N} N	32 (86)	>100
4	ANN ANN	32 (98)	>100	22	ⁱ PrO _{tu} N	16–32 (43–86)	>100
15	, Me	4 (12)	>100	23		64 (174)	51ª
37	Me	4 (12)	>100	24		64 (175)	>100
16	CNN CNN	>128 (>410)	>100	25	n-BuO	8–16 (21~42)	>100
38	HO HO N	>128 (>357)	>100	26		32 (84)	>100
17	HOwn	>128 (>391)	>100	27		16–32 (42–84)	>100
18	MeO	16–32 (375–750)	>100	28		16–32 (40–81)	>100
19		128 (360)	>100	29		128 (299)	>100
20	CF3CH2OunN	>128 (>313)	>100	30		32 (77)	>100

^aStandard deviation was less than 10% of the mean value.

Page 15 of 93

Journal of Medicinal Chemistry

The promising activity of 15 combined with the ease of synthesis prompted optimization of the substituent at C-6' because our SAR studies on the optochin scaffold indicated this position allows further tuning of potency. The simple unsubstituted compound **39** containing a free phenol lost 4-fold in potency relative to 15 while the ethyl analogue 40 realized a substantial 8-fold increase in activity providing an MIC of 0.5 μ M (Table 3). The *iso*-propyl analogue **43** was equipotent to **40**, but most other small substituents led to a slight loss of activity with MICs ranging from $2-4 \mu g/mL$ as observed with 2,2,2-trifluoroethyl **41**, *n*-propyl **42**, allyl **44**, 1-hydroxypropan-2-yl **45**, *n*-butyl **46**, cyclopropylmethyl 47, and cyclopentyl 49. However, cyclobutyl 48 broke this trend and yielded the most potent optochin analogue yet described with an MIC of 0.25 μ g/mL. Given the potency of 48, we sought to determine if activity resided in one of the geometric isomers and thus separated the mixture by preparative reversephase HPLC and assigned each isomer by NOE studies. Thus, irradiation of the C-2 methylene of the major isomer led to an enhancement of the C-11 methyl group while irradiation of the C-10 vinyl proton led to enhancement of the C-4 methine group, securing the structural assignment as Z (note: the methyl group is in the plane with N-1, C-2, C-4 and directed towards the C-2 methylene) The minor isomer was assigned as E in a similar manner. The *E*-isomer conferred optimal activity and was 2-fold more potent than (Z)-48. Analogues with larger substituents progressively lost activity as illustrated by benzyl 50, whose MIC increased to 16 µg/mL. The overall trends for this compounds series paralleled the SAR of our initial optochin analogues (Table 1) with small alkyl substitutents between 2–5 carbons being preferred with significant reductions in potency as the chain length decreased or increased beyond this narrow range.

Interestingly, the cytotoxicity did not track with antibacterial activity and several compounds including

39–41, **45**, and **47** displayed no cytotoxicity while the remaining analogues exhibited modest cytotoxicity with CC_{50} values ranging from 27 to 65 μ M.

Table 3. SAR at C-6' of apo-cupreine analogues.

Compound	R	MIC μg/mL (μM)	СС ₅₀ ^а (µМ)
39	Н	16 (52)	>100
15	Me	4 (12)	>100
40	Et	0.5 (1)	>100
41	[™] CF ₃	2 (5)	>100
42	<i>n</i> -Pr	1-2 (3-6)	51
43	<i>i</i> -Pr	0.5 (1)	54
44	allyl	2 (4)	54
45	Me vyOH	2 (5)	>100
46	n-Bu	4 (11)	27
47	***	2 (5)	>100
48	₹	0.25 (0.7)	56
49	\mathbf{H}	2 (5)	48
50	benzyl	16 (40)	47
(E)- 48	₹−◆	0.25 (0.7)	65
(Z)- 48	₹−	0.5 (1.4)	59

^bStandard deviation was less than 10% of the mean value for all compounds.

Our last series of analogues explored the importance of the stereochemical requirements of C-8 and C-9 along with the role of the alcohol at C-9 (Table 4). Epimerization of the stereocenters at C-8 and C-9 in **52** obliterated activity demonstrating a strict requirement for the native 8*S*, 9*R*-stereochemistry. Bioisosteric replacement of the 9-hydroxy with a fluorine atom in the 9*S*-configuration with dihydroquinine or apo-cupreine derivatives **57** and **58** ablated activity illustrating the importance of the alcohol at this position. Finally, we obtained a small amount of a rearranged scaffold azabicyclo[3.2.2]nonane **54** during our attempts to fluorinate the C-9 position of the model substrate quinine. Intiguingly, this compound was equipotent to quinine suggesting **54** could be a viable scaffold

for future medicinal chemistry efforts through appropriate modification at C-6' and reduction of the olefin. We also tested **56** obtained during our studies, but this was inactive consistent with the SAR trends observed in the previously described series of compounds. Taken together, our results indicate the 8*S*, 9*R*-stereochemistry of **48** is required for activity, the C-9 alcohol is also essential, and fluorination at C-9 is poorly tolerated. None of these derivatives displayed any cytotoxicity at the highest concentration evaluated ($CC_{50} > 100 \mu M$).

CC

MIC

Table 4. SAR at C-8 and C-9 positions.

~ N		
Compound	R	R'

ים

Compound	R	R'	μg/mL (μM)	(µM)
52	Me	HO _M , H	>128 (>395)	>100
54	Me	N F	128 (392)	>100
56	Me	H H H	>128 (>390)	>100
57	Me		128 (392)	>100
58	Me	Me F H	>128 (>392)	>100

The minimum bactericidal concentration (MBC) of selected compounds was evaluated against *S. pneumoniae* D37 is shown in Table 5. Compound **48** demonstrated potent bactericidal activity with an

MBC of 1-2 µg/mL followed closely by optochin 1, whose MBC was 4 µg/mL. The kinetics of bacterial killing were assessed *in vitro* using time-kill assays by incubating **48** with *S. pneumoniae* at 1×, 5× and 50× the MIC. However, a significant decrease in the number of bacteria as measured by OD_{620} or plating to determine the residual colony forming units (CFU) These experiments revealed **48** was bacteriostatic during the first 18 hours (Figure 2). Experiments with higher concentrations of antibiotic (up to 1000× the MIC) as well as with a lower initial inoculum (10⁷ CFU) yielded the same outcome. Vancomycin was used as a positive control and displayed rapid bactericidal activity reducing the initial inoculum by about 1,000-fold units within 3 hours at 5× the MIC. Attempts to extend the duration of the experiments were confounded by well known autolytic behavior of *S. pneumoniae* that occurs in vitro as observed by the decreased CFU of the untreated control after 5 hours (data not shown).

Figure 2. In vitro time-kill analysis of *S. pneumoniae*. Bacterial killing was monitored by measuring the optical density at 620 nm (OD_{620}) up to 18 hours. Four independent time-kill experiments were performed, and one representative experiment is shown. The CFU at each time point was independently determined by plating and the results paralleled the OD_{620} measurements. Compound 48 was evaluated as a *E/Z* mixture.

Table 5.	. MBC	of 1,	39,	and 48	(E/Z mixture).
----------	-------	-------	-----	---------------	-----------------

Compound	MIC (µg/mL)	MBC (µg/mL)
Optochin (1)	2–4	4
apo-Cupreine (39)	16	16
48	0.25-0.5	1–2

S. pnuemoniae mutants that were resistant to **48** were isolated with a frequency of ~ 1 in 10⁶ CFU when **48** was present at a concentration of 4× MIC (Figure 3). This frequency decreased to ~ 2 in 10⁷ CFU at 8× MIC and to ~ 1 in 10⁸ CFU at 16× MIC. Mutants resistant to optochin (**1**) were recovered at a similar frequency. For rifampicin used as positive control, we observed a frequency of resistance of about 2 in 10⁷ at 4× MIC, which decreased to 4 in 10⁸ at 8× and 16× MIC.

Figure 3. Frequency of the emergence of spontaneous resistance in *S. pneumoniae* D39 on standard solid medium in the presence of **48** (*E*:*Z* mixture) at concentrations $4\times$, $8\times$, and $16\times$ the MIC (1, 2, and 4 µg/mL). Optochin **1** (8, 16, and 32 µg/mL) and rifampicin (0.125, 0.25, and 0.5 µg/mL) were used as controls. Data were obtained twice independently with two to three replicates (except for the data for optochin at $16\times$ MIC, which was a single experiment with no recoverable colonies). The mean value is given for platting 10^8 CFU and the error bars represent the standard error of the mean (SEM). Error bars for compound **48** at $4\times$ the MIC are not shown because only two data points were obtained (120 and 138 colonies were recovered). The individual data points are provided in Table S1 in the Supporting Information.

We next evaluated **48** along with apo-cupreine **39** and optochin **1** against a panel of other *S*. *pneumoniae* strains including drug-sensitive, multidrug resistant, and optochin-resistant strains (Table 6). Compound **48** maintained fairly uniform activity against four *S. pneumoniae* multidrug resistant strains including serotypes 6B, 19A, and 19F (Table 6, entries 3–6) with MICs ranging from $0.25-1 \mu g/mL$. Interestinly, apo-cupreine **39** that also contains the C-3' exocyclic olefin found in **48** lost considerable activity against several of drug-resistant strains (Table 6, entries 4–5). We also generated two optochin-resistant strains through point mutations (G142C and G145A) of *atpE* in *S. pneumoniae* strain R6 using

Journal of Medicinal Chemistry

an efficient PCR-based approach based on previously described resistant studies (Table 6, entries 7–8).^{18,35} The MIC values of optochin **1** and **48** were each shifted 16–32-fold confirming AtpE as a likely molecular target of these compounds.

Table 6. Inhibitory	v activity agains	st resistant S.	pneumoniae.
---------------------	-------------------	-----------------	-------------

Entry Strain		Desistance		MIC, μg/mL			
Entry Strain	Resistance"	Optochin (1)	apo-Cupreine (39)	48 (<i>E</i> : <i>Z</i> mixture)			
1	D39	DS	2—4	8-16	0.25-0.5		
2	R6	DS	2	n.d.	0.5		
3	TH2784 (19F*)	APCET	2	4	0.5		
4	TH2582 (19A)	APChEMC	2	64	0.25-0.5		
5	TH2889 (6B)	APEErMoC	2	128	0.5		
6	TH2863 (19F)	PEMT	4-8	n.d.	0.5-1		
7	R6-atpE _{G142C}	Optochin	64	n.d.	8-16		
8	$R6$ -atp E_{G145A}	Optochin	16	n.d.	4		

^aAbbreviation: n.d.: not determined, DS: Drug Sensitive, A: Amoxicillin, P: Penicillin, C: Cefotaxime, E: Erythromycin, T: Tetracycline, Ch: Chloramphenicol, M: Meropenem, Er: Ertapenem, Mo: Moxifloxacin.

To further validate *atpE* as the target, we sequenced the *atpE* gene of 29 mutants from the resistance tests discussed in Figure 2 isolated at 4, 8, and 16× MIC of **48**. Indeed all of the mutants contained missense mutations in *atpE* as shown in Table 7. Interestingly, at 4× the MIC, all mutations (10/10) mapped to G18S within the N-terminal helix of AtpE while at 8× the MIC, the mutations were found at different positions (A31V and A49S). We also sequenced five mutants from multiple experiments recovered at 16× the MIC of **48** and mutations mapped to F50L and F45C within the C-terminal helix of AtpE. For comparison, 15 mutants resistant to optochin (**1**) were sequenced and mutations mapped to similar positions (Table 7).

2
З
1
4
5
6
7
Q
0
9
10
11
12
12
15
14
15
16
17
10
10
19
20
21
22
22
25
24
25
26
27
27
20
29
20
30
30 31
30 31 32
30 31 32
30 31 32 33
30 31 32 33 34
30 31 32 33 34 35
30 31 32 33 34 35 36
 30 31 32 33 34 35 36 37
30 31 32 33 34 35 36 37 20
30 31 32 33 34 35 36 37 38
 30 31 32 33 34 35 36 37 38 39
 30 31 32 33 34 35 36 37 38 39 40
30 31 32 33 34 35 36 37 38 39 40 41
30 31 32 33 34 35 36 37 38 39 40 41 42
30 31 32 33 34 35 36 37 38 39 40 41 42 42
 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90 50
30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 50 51 52
30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 50 51 52
30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 50 51 52 53
30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 50 52 53
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54
30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 50 51 52 53 54 55

60

1

Table 7. Mutational substitutions in *S. pneumoniae atpE.*

Compound ^a	DNA sequence	Amino acid sequence	# of clones
48 (4× MIC)	G52A	G18S	10
48 (8× MIC)	С92Т	A31V	9
	C145T	A49S	6
	T148C	F50L	4
48 (16× MIC)	T134G	F45C	1
Optochin (1), (4× MIC)	G52A	G18S	7
	G145T	A49S	1
Optochin (1),	G49A	G14S	5
(8× MIC)	T72A	N24K	2

^aThe value in parentheses, i.e. ($4 \times$ MIC), refers to the concentration of compound used to select the isolated mutant. Compound 48 was used as an *E*:*Z* mixture.

We hypothesized ATP synthase in *S. pneumoniae* is involved in pH homeostatsis as observed in other fermentive microorganisms by operating in the reverse direction to regulate the intracellular pH (pH_{IB}) by consuming ATP.³⁶⁻³⁸ To explore the physiological consequences of inhibition of *S. pneumoniae* ATP synthase, we determined the pH_{IB} of strain D39 and two isogenic optochin-resistant mutants (D39- $atpE_{G142C}$ and D39- $atpE_{G145A}$) using a pH-sensitive ratiometric GFP biosensor on a plasmid that allowed non-invasive measurements of pH_{IB}.^{39,40} The bacterial cells in medium at pH 7.2 were treated with **48**, DMSO only (negative control), or the proton uncoupler carbonyl cyanide-*m*-chlorophenylhydrazone (CCCP) (positive control) and the pH was measured at 5 minute intervals (Figure 4).

Figure 4. The impact of compound 48 treatment on intracellular pH of *S. pneumoniae*. D39 WT, D39 $atpE_{G142C}$, D39 $atpE_{G145A}$ were treated with vehicle control DMSO (0.5% v/v), compound 48, or CCCP (10 μ M) in PBS pH7.2 buffer supplemented with 10 mM glucose. pH measurements immediately and at 5-min intervals after treatment were shown in A, B, C and D, respectively. Experiments were performed two times independently in triplicate. Representative data from one independent experiment is shown with mean \pm standard deviation.

The basal pH_{IB} of wild-type *S. pneumoniae* treated with DMSO was 7.34 ± 0.04 . Treatment with **48** resulted in a time and concentration-dependent decrease in pH_{IB} (Figure 4). For example, at 5 minutes, the pH_{IB} decreased to 7.02 ± 0.03 with $0.0625 \ \mu g/mL$ **48** ($0.25 \times MIC$) and to 6.82 ± 0.003 with $0.25 \ \mu g/mL$ **48** ($1 \times MIC$), but then quickly began to level off reaching 6.66 ± 0.01 at 8 $\mu g/mL$ **48** ($32 \times MIC$) (Figure 4B). The impact of **48** on pH_{IB} was rapid, thus addition of **48** to wild-type *S. pneumoniae* at 0.25

 μ g/mL (1×MIC) immediately lowered the pH to 7.11 ± 0.003 (Δ pH = -0.23 compared to the DMSO only control at the same time point), then to 6.82 ± 0.003 ($\Delta pH = -0.47$) at 5 minutes, followed by a more gradual decline to 6.68 ± 0.01 ($\Delta pH = -0.54$) at 10 minutes that remained essentially unchanged at 15 minutes ($\Delta pH = -0.52$) (Figures 4A-D). Addition of DMSO only (negative control) did not impact pH_{IB} whereas addition of 10 µM of the proton uncoupler CCCP (positive control) caused an immediate reduction of the intracellular pH to 5.43 ± 0.07 ($\Delta pH = -1.9$) that persisted for the duration of the experiment. To provide support for the selectivity of this process, we also evaluated two isogenic S. pneumoniae mutant strains D39-atpE_{G145A} and D39-atpE_{G142C} whose MICs of 2 and 8 μ g/mL are shifted 8 and 32-fold, respectively. Treatment of the more resistant strain D39-*atpE*_{G142C} with 0.25 μ g/mL 48, which is the MIC of the wild-type strain, had essentially no impact on pH_{IB} at any time point ($\Delta pH \leq$ 0.03). The mutant strain D39-*atpE*_{G142C} did undergo cytoplasmic acidification with 48, but only at substantially higher concentrations than required for the wild-type S. pneumoniae D39. The isogenic S. pneumoniae mutant D39-atpE_{G145A} that exhibits low-level resistance (MIC = 2 μ g/ml) showed a comparable time-dependent decrease in intracellular pH as the wild-type; but only at concentration of 48 equal to or greater than 2 µg/mL. Taken together these data show 48 results in mild cytoplasmic acidification that is dependent on AtpE.

To confirm the microbiological selectivity, we evaluated **48** against a panel of gram positive and negative organisms as well as a couple of other streptococcal species. As shown in Table 8, compound **48** was weakly active towards *Enterococcus faecium*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, *Escherichia coli* and *Enterobacter clocae* displaying MICs of \geq 128 µg/mL. Compound **48** retained moderate activity against other pathogenic streptococci with MICs of 32 µg/mL and 16 µg/mL against *Streptococcus pyogenes* and *Streptococcus mittis*, respectively.

2	
З	
1	
4	
5	
6	
7	
8	
q	
10	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
27	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
27	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
75 76	
40	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
57	
58	
59	

60

Species	Strain	MIC (µg/mL)	
Staphylococcus aureus	TH4114	128	
Streptococcus pyogenes	ST157	32	
Streptococcus mitis	ST138	16	
Enterococcus faecium	TH6064	64-128	
Enterobacter clocaae	TH11715	>128	
Escherichia coli	TH4746	>128	
Klebsiella pneumoniae	ATCC13883	128	
Acinetobacter baumannii	TH9781	128	
Pseudomonas aeruginosa	TH4090	>128	
Mycobacterium tuberculosis	H37Rv	>256	

Table 8. Susceptibility of gram positive and negative bacteria to 48 (*E*:*Z* mixture).

The effect of four antibiotics (vancomycin, penicillin, levofloxacin and rifampicin) used to clinically treat pneumococci was next examined in combination with **48** by checkboard assay with *S. pneumoniae* D39. The fractional inhibition concentration indices (FICI) were calculated to assess drug interaction between these compounds. The minimum FICI_m values for each combination ranged from 0.63 to 1. indicating these antibiotics exhibit no interaction (FICI >1 to \leq 4). Representative data from a single experiment are shown in Figure 5.

Figure 5. Graphical representation of checkerboard assays used to determine drug interactions with **48** (E/Z mixture). Representative data is presented for **48** in combination with rifampicin (panel A), penicillin (panel B), and levofloxacin (panel C). FICI_m, minimum value of FICI in the tested combinations is 1.0 (panel A), 0.63 (panel B), and 1.0 (panel C). Representative data from at least

two independent experiments are shown. FICI_m, minimum value of FICI in the tested combinations is shown. Synergy (FICI_m ≤ 0.5). No interaction (FICI_m > 0.5-4). Three to four independent checkerboard assays were performed, and one representative experiment is shown.

To assess the potential for mitochondrial toxicity of 48 caused by inhibition of ATP synthase, we performed cell viability assays employing glucose or galactose as the primary carbon sources following the protocol described by Will and co-workers.⁴¹ Highly proliferative HepG2 cells have adapted their metabolism under standard cell culture conditions to obtain ATP primarily from glycolysis and thus are insensitive to inhibitors of ATP synthase. By contrast, metabolism of galactose does not generate ATP by glycolysis; consequently, cells grown on galactose supplemented medium are highly sensitive to inhibition of mitochondrial function because they are forced to rely on the mitochondrial oxidative phosphorylation pathway to generate a proton motive force that in turn drives ATP synthase in the mitochondrial membrane. The impact of optochin 1, apo-cupreine 39, and 48 on cell viability of HepG2 cells did not depend on carbon source (glucose or galactose) confirming these quinine derivatives do not disrupt mitochondrial function (see Table 9 and a representative dose-response curve for 48 in Figure 6A). By contrast, the positive control, oligomycin, a potent inhibitor of mammalian ATP synthase inhibited cell viability more than 90% (CC₉₀) at $\leq 0.3 \ \mu$ M in galactose medium. The CC₉₀ value was shifted by four orders of magnitude to 300 µM when grown in glucose-supplemented medium (Figure 6B). The negative control tamoxifen, which does act on ATP synthase, displayed equipotent cytotoxicity in both media (Figure 6C). Taken together, our results demonstrate that optochin 1 and derivatives 39 and 48 do not pertub mitochondrial function indicating these molecules likely do not inhibit mammalian ATP synthase due to their intrinsic biochemical selectivity for the S. pneumoniae homologue.

Figure 6. Dose-response curves for cell viability of HepG2 cells treated with compound **48** as an *E:Z* mixture (panel A), oligomycin (panel B) and tamoxifen (panel C) for 24 hours using the CellTiter-Glo[®] luminescent cell viability assay. Cells were grown in DMEM medium either supplemented with 10 mM glucose (solid circles) or 10 mM galactose (solid squares).

 Table 9. Mitochondrial Toxicity of HepG2 cells.^a

Compound	CC ₉₀ , +Glu (µM)	CC ₉₀ , +Gal (µM)		
Tamoxifen	75	75		
Oligomycin	300	<0.3		
Optochin (1)	300	300		
Apo-Cupreine (39)	>300	300		
48 (<i>E</i> / <i>Z</i> mixture)	150	150		

^aInhibition of 90% cell viability (IC₉₀) measured against HepG2 cells grown in DMEM medium supplemented either with 10 mM glucose (+Glu) or 10 mM galactaose (+Gal)

Pharmacokinetics and Metabolism Studies. Each of the pure diasteromers Z-48 and E-48 along with optochin 1 and apo-cupreine 39 were evaluated in single dose pharmacokinetic experiments using male ICR mice administered as a bolus orally (*p.o.*) at 25 mg/kg and intravenously (*i.v.*) at 2.5 mg/kg. The serum concentration-versus-time curves shown in Figure 7 were used to determine the pharmacokinetic parameters (Table 10) by noncompartmental analysis. After intravenous (*i.v.*) administration (2.5 mg/kg), all compounds exhibited biexponential kinetics with a rapid distribution phase followed by a slow terminal elimination phase resulting in an extremely large steady state volumes of distribution (VD_{ss}) ranging from 8.8 L/kg for *E*-48 to 20 L/kg for apo-cupreine 39 with optochin possessing an intermediate value of 12.7 L/kg. Each of the compounds also exhibited extremely high clearances (CI) ranging from 172–274 mL·min^{-1.}kg⁻¹, which indicates extra-hepatic

metabolism since the clearance vastly exceeds mouse hepatic blood flow (90 mL·min⁻¹·kg⁻¹) suggesting tissue oxidases may play a significant role in metabolism of these quinine derivatives. The high clearance overrides the extensive tissue distribution resulting in short half-lives ($t_{1/2\beta}$) from 0.42 to 0.53 hours for *Z*-48, *E*-48, and optochin 1. After oral administration of optochin 1, apo-cupreine 39, *Z*-48 and *E*-48, the compounds reached peak plasma concentrations (C_{max}) of 639, 619, 207 and 331 ng/mL. The oral bioavailabilities (F) of optochin 1, apo-cupreine 39, *Z*-48 and *E*-48 calculated from the area-underthe-curve (AUC) of the concentration-time plots shown in Figure 7 were 109%, 23%, 14% and 21%, respectively. Based on the C_{max} values, only *E*-48 exceeded its MIC when dosed orally. Even with its impressive bioavailability optochin 1 was unable to approach its MIC. These preliminary PK studies suggest the poor in vivo performance of optochin was likely caused by poor oral exposure as a result of rapid clearance. While *E*-48 provides improved oral exposure as measured by the MIC/AUC ratio, it also suffers from rapid clearance and low bioavailability.

Parameters	Units	Optochin (1)		apo-Cupreine (39)		Z- 48		E- 48	
		<i>p.o</i> .25 mg/kg	<i>i.v</i> .2.5 mg/kg	<i>p.o</i> .25 mg/kg	<i>i.v</i> .2.5 mg/kg	<i>p.o</i> .25 mg/kg	<i>i.v</i> .2.5 mg/kg	<i>p.o</i> .25 mg/kg	<i>i.v.</i> 2.5 mg/kg
$t_{1/2\beta}$	h	1.00	0.53	0.91	1.12	0.69	0.42	0.70	0.44
T _{max}	h	0.5	0.033	0.083	0.033	0.25	0.033	0.083	0.033
C _{max}	ng/mL	639	375	619	511	207	521	331	399
AUC(0-t)	h×ng/mL	1569	144	442	190	319	235	368	175
VD _{ss}	L/kg	-	12.7	-	20.0	-	6.30	-	8.8
Cl	mL/min/kg	-	274	-	207	-	172	-	230
F‰		109	-	23.3	-	13.6	-	21.0	-

Table 10. Pharmacokinetic parameters of **1**, **39**, *Z*-**48**, and *E*-**48** after a single oral or *i.v.* administration to male ICR mice.

Figure 7. Mean plasma concentration versus time profile after single *p.o.* (25 mg/kg) and *i.v.* (2.5 mg/kg) bolus administration of **1**, **39**, *Z*-**48**, and *E*-**48** to male ICR mice. Error bars represent standard deviation of the mean (n = 3).

Based on the excellent pharmacokinetic behavior of quinine,⁴² we were surprised that the related derivatives optochin (1), apo-cupreine **39**, and **48**, were so rapidly cleared. Given quinine primarily undergoes hepatic metabolism, we incubated **1**, **39**, and *Z***-48** with ICR mouse liver microsomes (MLM) and observed 87%, 89%, and 99.8% metabolism, respectively after 60 minutes. Further characterization of the metabolites of *Z***-48** generated by MLMs using LC-MS/MS revealed the time-dependent formation of seven metabolites (M1-M7) ranked in order of their relative abundance with M1-M3 accounting for 80% of the total abundance based on ion counts. The primary metabolite M1 was formed by hydroxylation (+16 Da) pendant to the quinuclidine ring while M2 was formed by *O*-dealkylation of the cyclobutyl group (-54 Da) and M3 resulted from hydroxylation of M2 on or pendant to the quinuclidine ring (-54 Da + 16 Da). Further hydroxylation of M1 on the quinoline (+32 Da) provided M4 and oxidation of M1 to a putative keto derivative (+16 Da – 2Da) yielded M7. Metabolism of M2 via glucuronidation afforded M5 (-54 Da + 176 Da) while oxidation of M2 furnished ketone M6 (-54 Da – 2 Da). Putative structural assignments of M1-M7 are shown in Figure 8 based on accurate mass

measurements of the MS^1 and MS^2 fragment ions. The structures of metabolites M2 (i.e. apo-cupreine) was confirmed by chemical synthesis. We also performed a similar analysis on optochin (1) and apocupreine (**39**) and the results are summarized in the supporting information. Taken together, this analysis demonstrates hydroxylation of the quinucline is the major pathway for all compounds followed by *O*dealkylation at C-6'.

Figure 8. Proposed metabolic scheme for Z-48 in MLM.

DISCUSSION

Given the paucity of new antibiotics and growing antimicrobial resistance epidemic, re-examination of old antibiotics like optochin represents a promising strategy to replenish the antibiotic pipeline. The putative molecular target of optochin is the multimeric ATP synthase; however, a cell-free biochemical assay was not initially available for this challenging target. Thus optimization was solely guided by whole-cell antibacterial activity, which can be confounded by differential bacterial accumulation and off-target activity across a compound series. Despite, these limitations, clear SAR trends were observed as discussed below. The SAR of optochin was interrogated at each of the most synthetically accessible positions of the 4-[(quinuclidin-2-yl)hydroxymethyl]quinoline scaffold. Morgenroth and Levy had reported that an ethyl group at the quinoline C-6' position of optochin was optimal, while the methyl, isopropyl, isobutyl, and isopentyl homologues were respectively, 20-, 4,- 150-, and 20-fold less potent.¹⁰ We observed slightly different relative trends in activity. While our methyl analogue 7 was 16-fold less active than optochin and the isopropyl analogue 10 was 2-fold less potent, consistent with the reported values, we found the SAR to be considerably more flat for homologues 8-13, which contained between two and four carbons (e.g. 2,2,2-trifluoethyl, *n*-propyl, iso-propyl, allyl, *n*-butyl, and cyclopropylmethyl). Each of these compounds was only 2-4-fold less potent than optochin. Further exploration led to cyclobutyl 14 and cyclopentyl 15 with equivalent potencies to optochin, which deviates from the anticipated trends of the historical data. Our findings indicate slightly more flexibility at the quinoline C-6' position than anticipated. Comparison of the quinoline SAR at C-6' of different quinuclidine congeners (Tables 1 and 3) reveals changing the quinuclidine moiety also subtly impacts the relative SAR trends observed at C-6'. Thus for the 3-ethyl substitued quinuclidine analogues (e.g. optochin analogues, Table 1), the optimal C-6' substituent is an ethyl. However, the 3-ethylidene substitued

quinuclidine analogues (Table 3) display a slightly different trend wherein the cyclobutyl substituent is preferred.

We explored the SAR at C-3 of the quinuclidine through the synthesis of a systematic series of oxime derivatives. This was accomplished by isomerization of vinyl group of quinine 3 to the C-3 ethylidene isomer 15, which in turn could be efficiently oxidatively cleaved to furnish the C-3 ketone derivative 16. We successfully synthesized 14 oxime derivatives 17–30 from 16 and identified several compounds (18, 21, 22, 26, 28, and 30) that were equipotent to the parent dihydroquinine 7 whose MIC was 32 µg/mL (see Table 2). However, clear SAR trends did not emerge as highlighted by the uneven potency trends of 18-21 where the unsubstituted and ethyl oxime derivatives 17 and 19 (MIC > 128) ug/mL) were inactive while the methyl oxime 18 and *n*-propyl oxime 21 were active (MIC = $32 \mu g/mL$). The intermediate 15 containing the exocyclic olefin exhibited an unexpected and dramatic 8-fold increase in potency (MIC = $4 \mu g/mL$) relative to dihydroquinine 7. Butler and Cretcher had described the isolation of a quinine derivative in 1935 termed apo-cupreine containing an ethylidene at C-3 of the quinuclidine, but a phenol C-6' of the quinoline (a molecule, identical in structure to 39 that could be isolated as mixture of likely E and Z isomers).⁴³ The apo-cupreines displayed no toxicity when dosed in mice $(30/30 \text{ mice survived a 5 mg dose} \sim 250 \text{ mg/kg})$ whereas only 5/30 mice survived an equivalent dose of optochin.⁴³ In 2014, Sullivan and co-workers re-examined a related analogue termed hydroxyethyl-apo-cupreine for anti-malarial activity and confirmed it much less toxic than guinine.⁴⁴ These data suggested to us that toxicity could potentially be minimized by incorporation of an ethylidene substituentat C-3 rather than the ethyl group found in optochin. We hypothesized the sp^2 hybridized ethylidene substituent, which orients the ethylidene group in a different vector, decreases undesirable off-target activity resulting in the improved safety profile. We therefore set out to further optimize compound 15 by modification of the C-6' substituent and identified derivative 48 with an

Journal of Medicinal Chemistry

impressive MIC of 0.25 μ g/mL that is 8–16 more potent than optochin. Attempts to further improve upon the potency of **48** by alteration of the stereochemistry at C-8/9 or modification of the C-9 hydroxyl proved futile. Thus bioisosteric replacement of the C-9 hydroxyl with a fluoro group abolished activity. Overall, these initial SAR studies identified **48**, which is an order of magnitude more potent than optochin.

We initially hypothesized the adverse effects observed with optochin in humans were due to mechanism-based toxicity; however, the lack of mitochondrial toxicity suggests optochin and analogue **48** do not inhibit mammalian ATP synthase or distrupt mitochondrial function. Pharmacokinetic analysis demonstrates both optochin and analogue **48** are rapidly cleared resulting in low exposure, thus it seems plausible that the parent compounds do not contribute to toxicity. Rather we speculate toxicity may be caused by one of the metabolites as has been suggested for quinine, which undergoes similar metabolism.⁴⁵ Further work will be required to evaluate this new hypothesis and future efforts will be directed at blocking the metabolic labile positions of **48** as well as toxicological evaluation of the major metabolites.

Kunin and Ellis reported that mefloquine which bears some structural resemblance to optochin exhibited antibacterial activity against gram-positive organisms including *S. pneumoniae* (MIC 0.4–0.8 μ g/mL), *Staphylococcus aureus* (MIC = 16 μ g/mL), *Staphylococcus epidermidis* (MIC = 16 μ g/mL), and *Enterococcus faecalis* (MIC = 16 μ g/mL) with substantially reduced activity agasint gram-negative bacteria (MICs \geq 32 μ g/mL).⁴⁶ Like optochin, they observed mutations to mefloquine mapped to the F_o subunit of ATP synthase in *S. pneumoniae*. These mutational studies were biochemically validated employing a reconstituted membrane assay that measured the ATPase activity of ATP synthase isolated from a panel of susceptible and laboratory-generated resistant strains.⁴⁷ Strong correlation ($r^2 = 0.91$) was observed between the biochemical IC₅₀ values for inhibition of ATPase activity and the MIC values

against *S. pneumoniae* providing strong evidence for the primary mechanism of action. These coworkers also synthesized several mefloquine analogues with improved pneumococcal activity and significantly expanded spectrum of activity.⁴⁶ For example, their mefloquine analogue OSU-99 (Figure 9) showed excellent activity against *S. aureus*, *S. epidermidis*, *S. pyogenes*, *E. faecalis*, *E. faecium* with MICs of 1.5–6.3 µg/mL and MIC ranging from 0.08–1.25 against 21 clinical *S. pneumoniae* isolates. Mefloquine is an approved drug for malaria; however, its primary liabilities are its poor drug disposition properties including an exceedingly high plasma protein binding (>98%), large volume of distribution (V_d ~ 20 L/kg), and low clearance, which result in very low plasma concentrations (C_{max} ~50 ng/mL), and an exceptional long terminal elimination half-life (t_{1/2β}~20 days).⁴⁸ Additionally, mefloquine is well known for numerous toxicities. These combined issues have presumably contributed to the lack of antibacterial drug development of mefloquine and the reported analogues, which are even more lipophilic than mefloquine.

Figure 9. Structrues of mefloquine and bedaquiline analogues.

Page 35 of 93

In 2012, Koul, Bald and co-workers disclosed their efforts to expand the spectrum of activity of bedaquiline beyond mycobacteria.⁴⁹ Over 700 analogues of bedaquiline were evaluated and a few compounds were identified with activity towards gram positive bacteria including S. aureus, S. epidermidis, S. pneumoniae, E. faecalis, and B. subtilis. The most potent compound (bedaquiline analogue 1) had MICs ranging from 0.25–4 µg/mL against the aforementioned pathogens. Interestingly, one of the derivatives (bedaquiline analogue 5, Figure 9) was selective towards S. pneumoniae with an MIC of 1 µg/mL. Further microbiological studies were performed with S. aureus where bedaquiline analogues 1 and 2 were shown to be rapidly bactericidal depleting an initial inoculum by greater than 10,000-fold CFU/mL within 24 hours at 10× their MIC values.⁴⁹ Resistance to these compounds against S. pneumonaie, the most susceptible pathogen, occurred with a mutation frequency of 8×10^{-7} at $10 \times$ their MIC and mapped to *atpE* with mutations at V48I and V60A, results that are almost identical to our observations with optochin analogue 48.49 The bedaquiline analogues were shown to inhibit ATP synthase from S. aureus (S. pneumoniae ATP synthase was not examined) with IC₅₀ values ranging from 1.4-2.7 µg/mL.⁴⁹ However, the compounds were also quite cytotoxic and active against human mitochondrial ATP synthase with IC_{50} 's ranging from 23–29 µg/mL providing selectivity indexes (SI) of only 9-21, whereas bedaquiline exhibited a SI greater than 10,000.49 Taken together with the aforementioned mefloquine analogues, these studies further corroborate ATP synthase as a vulnerable and chemically validated target in S. pneumoniae and highlight the potential to expand the spectrum of activity of optochin. Additionally, several other non-quinoline ATP synthase inhibitors have recently been reported for other bacteria.^{50,51}

Genetic disruption studies have confirmed ATP synthase is essential in *S. pneumoniae*.¹⁶ However, analysis of the genome sequence of the reference strain *S. pneumoniae* R6 shows it lacks genes necessary for an electron transport chain (ETC) and a complete tricarboxylic acid (TCA) cycle,
indicating *S. pneumoniae* primarily relies on glycolysis for energy metabolism.⁵² ATP synthase in *S. pneumoniae* is therefore unlikely to be responsible for production of ATP due to the lack of a functional ETC to generate an electrochemical gradient. Rather, it seems plausible that *S. pneumoniae* ATP synthase is involved in pH homeostatsis as observed in other fermentive microorganisms by operating in the reverse direction to regulate the intracellular pH by consuming ATP.³⁶⁻³⁸ Consequently, we hypothesized that optochin and **48** inhibits ATP synthase, which disrupts pH homeostasis lowering intrabacterial pH, leading to the observed growth inhibition. The catallytic proficiency of many glycolytic enzymes is substantially reduced at lower pH, so we expect acidification may also perturb glycolysis and indirectly inhibit energy metabolism. In support of this mechanism of action we demonstrated **48** leads to cytoplasmic acidification that is dependent on AtpE. This is fundamentally different from bedaquiline that collapses the pH gradient and depletes ATP levels in mycobacteria through direction inhibition of ATP synthase and/or acting as H⁺/K⁺ ionophore.⁵³⁻⁵⁸

The putative molecular target of optochin and our lead compound **48** based on genetic resistance mapping is the c-ring of ATP synthase encoded by *atpE*. ATP synthase is a complex molecular machine composed of two multimeric subunits (the membrane bound F_0 subunit and F_1 subunit) responsible for synthesizing ATP from the transmembrane proton gradient.^{15,59,60} The F_0 subunit is a cylinder with a central pore (the c-ring) comprised of multiple c-subunits (10-14 subunits in *S. pneumoniae* and 9 in *M. tuberculosis*). Resistance to **48** mapped to amino acids 18 and 31 in the N-terminal helix and 45, 49, and 50 in the C-terminal helix of the *S. pneumoniae* AtpE ortholog. Interestingly, Phe⁵⁰ at the putative binding site in *S. pneumoniae* and *S. mitis* (the only other bacteria with an MIC of \leq 16 ug/mL) is not conserved in subunit c of ATP synthase for the other bacteria examined (Figure 10), which employ a more bulky leucine at this position. Resistance to bedaquiline maps to similar positions in the C-terminal helix of the corresponding mycobacterial c-subunit as shown in the alignment in Figure 10.^{17,61,62}

Bedaquiline was recently co-crystallized with the c-subunit from *Mycobacterium phlei* and binding overlapped with the residues identified from the resistance studies serving to validate the observed mutants in *M. tuberculosis*.⁶³ Based on the structural similarity of **48** to bedaquiline (i.e. both are 6-substituted quinolines containing an amino alcohol side chain at the 3- or 4-positions) we hypothesize **48** binds in a similar location on helix 2 of the *S. pneumoniae* ATP synthase adjacent to the critical glutamate 52 ion-binding site, which is to responsible for proton binding, shuttling, and release.

Figure 10. Amino acid alignment of *S. pneumoniae* and other ATP synthase c-subunits. The location of the N- and C-terminal helices and the loop region are indicated (top). Amino acid numbering (top) is according to S. pneumoniae. Amino acids shown to cause respective resistance to optochin in S. pneumoniae and bedaquiline in M. tuberculosis are indicated in red. Residues involved in drug coordination of bedaquilline based on the x-ray structure are shown in blue (PDB 4v1f). The ion-binding glutamate/aspartate is indicated in green. Species used: SPN = Streptococcus pneumoniae D39 (Genebank Accession number ABJ53659); MTB = Mycobacterium tuberculosis, H37Rv (Genebank Accession number: CCP44062.1); MPL = Mycobacterium phlei, CCUG 28060 (Genebank Accession number: SMH63861.1); SMI = Streptococcus mitis, SK137 (Genebank Accession number: KJQ73325.1); STA = Staphylococcus aureus MRSA USA 300 (Genebank Accession number: ABD22522.1); ENF = Enterococcus faecium Aus0004 (Genebank Accession number: AFC64146.1); KPN = Klebsiella pneumoniae, ATCC 13883 (Genebank Accession number: KFJ74351); ECO = Escherichia coli, K12 (Genebank Accession number: AIZ93459.1); ABA = Acinetobacter baumannii, strain AYE (Genebank Accession number: CAM88485.1); PAE = Pseudomonas aeruginosa, PA01-VE2 (Genebank Accession number: AGY64756.1); HSP = Homo sapiens (residues 60–136, Genebank Accession number: NP 001002027.1).

To provide further insight into the observed resistance studies, we constructed a homology model of

the c-ring of S. pneumoniae using the bedaquiline co-crystal structure as a template.⁶³ As shown in

Figure 11, the mutations cluster approximately 1-2 helical turns away from the bedaqualine binding site

in the c-ring of *S. pneumoniae*. This suggests that **48** adopts a different binding mode when compared to bedaqualine which may in part, explain the differences in selectivity noted. Further support for this hypothesis can be found in an analysis of the bedaqualine binding site structure that indicates the secondary amine projects into a cleft containing the key glutamate anchor. An alignment of the tertiary amino group of the quinuclidine bicyclic ring structure superposed to the seconday amine of bedaqualine is shown in Figure 11B. The result indicates **48** is sterically occluded from the binding site pocket, preventing salt link formation with the glutamate of the *M. phlei* c-ring. While the model explains the failure of **48** to bind *M. phlei*, further work is requied to characterize the c-ring structure of ATP synthase in *S. pneumoniae* to construct a detailed binding site model that explains selectivity. In particular, it will be critical to determine the number of monomeric units that comprise the c subunit to arrive at meaningful homology models given the limited sequence identity shared across species (<35%).

Figure 11. A) Homology model of the *S. pneumoniae* c-ring monomeric units showing location of the resistance mutations for bedaqualine and **48**. The structure was generated using the *M. phlei* crystal structure (4v1f). Bedaquiline induced mutations in *Mtb* are colored orange. Residues that mutate to form resistance to **48** in *S. pneumoniae* are colored red. Key GLU residue is shown in blue. B) Superposition of amino groups of bedaqualine (green) and **48** (yellow) showing the binding site cleft containing the glutamate anchor. Electrostatic potential surface showing negative polarity of pocket is shown for reference.

CONCLUSION

We have reexamined in much greater detail the structure-activity relationships of the antibiotic optochin, a semisynthetic derivative of quinine through the synthesis of more than 50 analogues. Initial SAR focused on the synthetically accessible positions at C-6' of the quinoline and C-3 of the quinuclidine. These efforts led to the identification of analogue 48, whose MIC for Streptococcus pneumoniae was 0.25 µg/mL or 8-16 times lower than optochin. The SAR showed that small substituents between 2-4 carbons were optimal at C-6' while the C-3 was very sensitive to modification, but small alkyl and alkylidene substituents were preferred. Like optochin, compound 48 demonstrated remarkable selectivity and was weakly active or inactive towards each of the ESKAPE pathogens as well as *Escherichia coli* and *Mycobacterium tuberculosis* (MIC \geq 128 µg/mL). Resistance and molecular modeling studies indicate 48 likely binds to the c-ring of near the conserved glutamate 52 ion binding site. Preliminary mechanism of action studies demonstrated 48 leads to cytoplasmic acidification that may be due to inhibition of ATP synthase. We demonstrated that 48 does not disrupt mammalian mitochondrial function and thus does not target human ATP synthase. Initial pharmacokinetic and drug metabolism analysis of optochin and 48 revealed these quinine analogues were rapidly cleared resulting in poor in vivo exposure through hydroxylation of the quinuclidine and O-dealklyation of the quinoline. Overall, these results provide a foundation for future studies aimed at further improving the activity and pharmacokinetic behavior of optochin as well as understanding optochin's mechanism of action, which we speculate is due to disruption of pH homeostasis.

EXPERIMENTAL SECTION

General materials and methods. Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker AVANCE III 400 (400 MHz), JEOL ECZ 400S (400 MHz), Zhongke-Niujin WNMR-I 500 (500 MHz) or Agilent VNS-600 (600 MHz) spectrometers. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (CDCl₃ δ 7.26, (CD₃)₂SO δ 2.50, CD₃OD δ 3.31), carbon (CDCl₃ δ 77.16, (CD₃)₂SO δ 39.52, CD₃OD δ 49.00) fluorine (CFCl₃ δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), ABq (AB quartet), quint (quintet), m (multiplet), dd (doublet of doublet), bs (broad singlet). For clarity, some ¹³C NMR chemical shifts are given only for the major diastereomer. Coupling constants were reported in Hertz (Hz). Optical rotations are quoted in $10^3 \text{ deg} \cdot \text{cm}^{-3}$ at concentrations (c) in g·100 mL⁻¹. Melting points were recorded on a Kofler hot block and are uncorrected. DSC measurements were carried out on the Mettler Toledo TGA/DSC 3⁺ equipment. All high resolution mass spectra were obtained on a Thermofisher Exactive Plus mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatography separations were performed on Merck 60 (0.040–0.063 mm) mesh silica gel. Preparative reversed-phase HPLC purification was performed on an Ultimate XB 10 μ m C18 250 \times 50 mm column at room temperature operating at 100 mL/min with detection at 210 nm employing a linear gradient from 70 to 90% MeCN (mobile phase B) in 0.05% formic acid at pH 2.7 (mobile phase A) for 40 min (Method A). Analytical reversed-phase HPLC was performed on a Kromasil 5 μ m C18 250 \times 4.6 mm column at 40 °C operating at 1 mL/min with detection at 254 nm employing a linear gradient from 30% to 70% MeOH (mobile phase B) in 0.15% ammonium acetate at pH 5.0 (mobile phase A) for 40 min (Method B). All compounds were evaluated for purity by analytical HPLC monitoring at 254 nm and shown to be >95% pure. For compounds obtained as a mixture of diastereomers, the purity

Journal of Medicinal Chemistry

refers to the sum of the purities of the individual diastereomers. Purities along with retention times and k' values are given for each final compound in the individual experimentals. Additionally, HPLC traces of every final compound are provided in the Supporting Information.

General Procedure for the C-6 Demethylation of Cinchona Alkaloids. NaH (60% in mineral oil, 2.0 equiv) was suspended in DMF (0.4 M for sodium ethanthiolate). To this suspension at 0 °C was added ethanethiol (3.0 equiv) dropwise over 3 min. The reaction mixture was stirred at room temperature for 10 min before the addition of cinchona alkaloid (1.0 equiv) in DMF (0.4 M for limiting reagent) and futher stirred for 13 h at 100 °C. The reaction mixture was cooled to 23 °C and neutralized with aqueous 1 N HCl. The phases were separated and the aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were washed with brine and dried with MgSO₄. The drying agent was filtered and resulting filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (5:1 CH₂Cl₂–MeOH) to give the title compound.

General Procedure for the C-6 Alkylation Reaction of 5 or apo-Cupreine 39. Cesium carbonate (2.0 equiv) was added to a stirred solution of compound 5 or apo-cupreine 39 (1.0 equiv) in dry DMF (0.1 M for limiting reagent) and stirred at 25 °C for 10 min. The bromoalkane or iodoalkane (1.2 equiv) was added, and the reaction mixture was stirred for 3 h at 25 °C. The reaction was quenched with saturated aqueous NaHCO₃ and the aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were washed with brine and dried with MgSO₄. The drying agent was filtered and resulting filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (30:1~5:1 CH₂Cl₂–MeOH) to give the title compound.

General Procedure for the Olefin Migration of Quinine or Quinindine. To a solution of cinchona alkaloid (1.0 equiv) in EtOH (0.1 M for limiting reagent) was added concentrated H_2SO_4 (2.0 equiv) and the mixture was stirred for 10 min at room temperature. RhCl₃·3H₂O (0.03 equiv) was added

and the mixture was refluxed for 2 h. After evaporation of the EtOH, the reaction mixture was diluted with CH_2Cl_2 , basified with $10\% K_2CO_3$, washed with brine and dried with MgSO₄. The drying agent was filtered and resulting filtrate was concentrated. Purification of the residue by column chromatography on silica gel (25:1 CH₂Cl₂–MeOH) gave the title compound as a *Z/E*-mixture.

General Procedure for the Oximation Reaction of Compound 18. A mixture of the ketone 18 (1.0 equiv) and hydroxylamine hydrochloride or *O*-alkylhydroxylamine hydrochloride (1.0 equiv) in methanol (0.1 M for limiting reagent) was refluxed 1 h. The reaction was quenched with saturated aqueous NaHCO₃ and the aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were washed with brine and dried with MgSO₄. The drying agent was filtered and resulting filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (15:1~5:1 CH₂Cl₂–MeOH) to give the title compound.

General Procedure for the Deprotection of TBS at C-9 Position of Cinchona Alkaloids. The silyl ether (1.0 equiv), TBAF (1M in THF, 1.0 equiv), and THF (0.1 M for limiting reagent) were stirred 6 hours. The THF was then removed under vacuum, and the resulting oil was dissolved in dichloromethane and washed with aq NaHCO₃. Upon removal of the dichloromethane the remaining oil was purified by flash column chromatography (10:1 ~ 3:1 CH₂Cl₂–MeOH) to give the title compound.

General Procedure for the Fluorination Reaction of Cinchona Alkaloids. To a solution of cinchona alkaloid (1.0 equiv) in CH₂Cl₂ (0.1 M for limiting reagent) and pyridine (2 equiv) was added DAST (1.5 equiv) at 0 °C, and the mixture was stirred at room temperature for 12 h. The reaction mixture was diluted with CH₂Cl₂, and the organic layer was washed with saturated aqueous NaHCO₃, water, and brine. The organic layer was dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash chromatography (50:1~10:1 CH₂Cl₂–MeOH) afforded the desired flourinated product along with eliminated byproduct.

(*R*)-4-((1*S*,2*S*,4*S*,5*R*)-5-Ethyl-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-methoxyquinoline (1). Optochin 1 was prepared following the general procedure for C-6 phenol alkylation employing 5 (177 mg, 0.567 mmol) and bromoethane (50 µL, 0.670 mmol) to afford (123 mg, 63%) as a white solid: HPLC purity 95.0%, $t_R = 18.3$ min; mp of optochin hydrochloride salt 250–252 °C, lit. mp 252–254 °C⁶⁴; $R_f = 0.48$ (20:1 CH₂Cl₂–MeOH); IR (KBr) γ_{max} 3328, 2957, 2562, 1458, 1240, 1046, 860, 825; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.5 Hz, 1H), 7.66 (d, J = 4.5 Hz, 1H), 7.63 (d, J = 9.2 Hz, 1H), 6.87 (dd, J = 9.2, 2.5 Hz, 1H), 6.72 (d, J = 2.5 Hz, 1H), 6.33 (s, 1H), 6.21 (s, 1H), 4.55–4.35 (m, 1H), 3.80– 3.70 (m, 1H), 3.60–3.48 (m, 1H), 3.38 (dd, J = 13.1, 10.7 Hz, 1H), 3.28–3.19 (m, 1H), 3.05 (td, J = 11.8, 5.5 Hz, 1H), 2.68–2.58 (m, 1H), 2.33–2.18 (m, 1H), 2.15–2.10 (m, 1H), 2.03–1.94 (m, 1H), 1.91–1.62 (m, 2H), 1.25 (t, J = 6.9 Hz, 3H), 1.25–1.10 (m, 2H), 0.77 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 146.7, 144.0, 143.6, 131.2, 125.2, 122.5, 118.7, 99.8, 66.1, 64.9, 60.1, 57.0, 44.2, 35.6, 27.0, 24.8, 24.7, 17.8, 14.5, 11.4; HRMS (ESI+) calcd for C₂₁H₂₉N₂O₂ [M+H] + 341.2224, found 341.2210 (error 3.9 ppm); [α]²³_D = +1.1 (*c* 0.500, CHCl₃).

(R)-4-((1S,2S,4S,5R)-5-Ethyl-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (4). To a solution of quinine (3.24 g, 10 mmol, 1.00 equiv) in MeOH (10 mL) at 25 °C, was added 20% *w/w* Pd/C (800 mg). The reaction mixture was stirred for 3 d at the same temperature. The suspension was filtered through Celite and washed with EtOAc (100 mL), dried (MgSO₄), and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (20:1 CH₂Cl₂–MeOH) to afford the title compound (3.20 g, 97%) as a white solid: HPLC purity 98.9%, $t_R = 28.3$ min; mp 176–178 °C, lit. mp 171–172 °C²¹; $R_f = 0.46$ (10:1 CH₂Cl₂–MeOH); IR (KBr) γ_{max} (cm⁻¹) 3174, 2931, 2870, 1509, 1241, 1031, 828; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 4.5 Hz, 1H), 7.94 (d, J = 9.2 Hz, 1H), 7.49 (d, J = 4.5 Hz, 1H), 7.29 (dd, J = 9.2, 2.6 Hz, 1H), 7.22 (d, J = 2.6 Hz, 1H), 5.56 (d, J = 3.7 Hz, 1H), 4.13 (br s, 1H), 3.86 (s, 3H), 3.57–3.34 (m, 1H),

3.21–2.93 (m, 2H), 2.68–2.54 (m, 1H), 2.36 (d, J = 13.5 Hz, 1H), 1.80–1.65 (m, 3H), 1.49–1.31 (m, 3H), 1.31–1.10 (m, 2H), 0.79 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 147.8, 147.6, 144.2, 131.5, 126.6, 121.5, 118.5, 101.4, 71.8, 59.8, 58.6, 55.8, 43.4, 37.5, 28.2, 27.7, 25.4, 21.3, 12.1; HRMS (ESI+) calcd for C₂₀H₂₇N₂O₂ [M+H]⁺327.2067, found 327.2054 (error 4.0 ppm); $[\alpha]_{D}^{23} = -92.8$ (*c* 0.800, CHCl₃), $[\alpha]_{D}^{22} = -141$ (*c* 0.2, CHCl₃)²¹. All spectroscopic data were in agreement with the literature values²¹

(R)-4-((1S,2S,4S,5R)-5-Ethyl-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-hydroxyquinoline

(5). Compound 5 was prepared following the general procedure for C-6 phenol demethylation employing 4 (650 mg, 2.00 mmol) to afford the title compound (493 mg, 79%) as a white solid: HPLC purity 95.0%, $t_R = 14.4$ min; mp 223–224 °C, lit. mp 230 °C⁶⁴; $R_f = 0.42$ (5:1 CH₂Cl₂/MeOH); IR (KBr) γ_{max} 3165, 2931, 2871, 1618, 1467, 1241, 857. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.59 (d, J = 4.4 Hz, 1H), 7.85 (d, J = 9.1 Hz, 1H), 7.45 (d, J = 2.5 Hz, 1H), 7.41 (d, J = 4.4 Hz, 1H), 7.26 (dd, J = 9.1, 2.5 Hz, 1H), 5.75 (br s, 1H), 5.12 (d, J = 6.3 Hz, 1H), 3.28–3.11 (m, 1H), 3.02 (q, J = 7.9 Hz, 1H), 2.83 (dd, J = 13.2, 9.6 Hz, 1H), 2.51 (br s, 1H), 2.47–2.38 (m, 1H), 2.15–2.12 (m, 1H), 1.79–1.59 (m, 4H), 1.31–1.24 (m, 4H), 0.78 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 155.7, 148.6, 147.1, 143.7, 131.6, 127.6, 121.6, 119.4, 105.4, 72.1, 60.5, 58.2, 42.4, 37.5, 28.6, 27.6, 25.7, 23.9, 12.5; HRMS (ESI+) calcd for C₁₉H₂₅N₂O₂ [M+H] ⁺ 313.1911, found 313.1897 (error 4.3 ppm); $[\alpha]_{1D}^{23} = -231$ (*c* 0.700, CHCl₃), lit $[\alpha]_{1D}^{27} = -149.4$ (*c* 1.23, EtOH)⁶⁵. All spectroscopic data were in agreement with the literature values.⁶⁵

(R)-4-((1S,2S,4S,5R)-5-Ethyl-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-(2,2,2-

trifluoroethoxy)quinoline (6). Compound 6 was prepared following the general procedure for C-6 phenol alkylation employing 5 (100 mg, 0.321 mmol) and 1,1,1-trifluoro-2-iodoethane (41 μ L, 0.39 mmol) to afford the title compound (12 mg, 9%) as a white solid: HPLC purity 99.2%, t_R = 27.7 min; mp 190–192 °C; $R_f = 0.45$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 4.5 Hz,

1H), 7.67 (d, J = 4.5 Hz, 1H), 7.62 (d, J = 9.2 Hz, 1H), 6.95 (dd, J = 9.2, 2.6 Hz, 1H), 6.90 (d, J = 2.6 Hz, 1H), 6.39 (d, J = 2.4 Hz, 1H), 6.16 (d, J = 4.7 Hz, 1H), 4.67–4.44 (m, 2H), 4.28–4.20 (m, 1H), 3.39 (dd, J = 13.0, 10.9 Hz, 1H), 3.23–3.12 (m, 1H), 3.07 (dt, J = 13.0, 6.6 Hz, 1H), 2.70–2.60 (m, 1H), 2.30–2.19 (m, 1H), 2.17–2.04 (m, 1H), 2.03–2.00 (m, 1H), 1.88–1.66 (m, 3H), 1.25–1.10 (m, 2H), 0.78 (t, J = 7.4Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 147.8, 144.5, 144.0, 131.8, 124.6, 123.6 (q, J = 279 Hz), 122.0, 118.8, 100.4, 66.2 (q, J = 35.0 Hz), 65.8, 60.2, 56.6, 44.2, 35.5, 26.9, 24.7, 24.5, 17.7, 11.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –73.01 (t, J = 8.2 Hz); HRMS (ESI+) calcd for C₂₁H₂₆N₂O₂F₃ [M+H] ⁺ 395.1941, found 395.1910 (error 7.9 ppm); [α]²³_D = +19.2 (*c* 0.300, CHCl₃).

(*R*)-4-((1*S*,2*S*,4*S*,5*R*)-5-Ethyl-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-propoxyquinoline (7). Compound 7 was prepared following the general procedure for C-6 phenol alkylation employing 5 (108 mg, 0.348 mmol) and 1-bromopropane (38 µL, 0.42 mmol) to afford the title compound (102 mg, 83%) as a white solid: HPLC purity 95.4%, $t_R = 20.7$ min; mp 189–191 °C; $R_f = 0.44$ (10:1 CH₂Cl₂– MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 4.5 Hz, 1H), 7.64 (d, J = 4.5 Hz, 1H), 7.63 (d, J =9.2 Hz, 1H), 6.93 (dd, J = 9.2, 2.5 Hz, 1H), 6.78 (d, J = 2.5 Hz, 1H), 6.36 (s, 1H), 5.93 (br s, 1H), 4.69– 4.43 (m, 1H), 3.82–3.70 (m, 1H), 3.66–3.51 (m, 1H), 3.45–3.32 (m, 1H), 3.32–3.18 (m, 1H), 3.06 (td, J =11.8, 5.6 Hz, 1H), 2.68–2.60 (m, 1H), 2.33–2.17 (m, 1H), 2.20–2.07 (m, 1H), 1.99 (d, J = 2.7 Hz, 1H), 1.82–1.79 (m, 1H), 1.79–1.61 (m, 4H), 1.27–1.16 (m, 2H), 1.05 (t, J = 7.8 Hz, 3H), 0.78 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 146.7, 143.9, 143.6, 131.2, 125.2, 122.5, 118.6, 99.8, 70.6, 66.1, 60.1, 57.0, 44.1, 35.6, 27.0, 24.8, 24.7, 22.4, 17.8, 11.5, 10.7; HRMS (ESI+) calcd for C₂₂H₃₁N₂O₂ [M+H]⁺ 355.2380, found 355.2376 (error 1.2 ppm); $[\alpha]_D^{23} = -0.7$ (*c* 0.3, CHCl₃).

(R)-4-((1S,2S,4S,5R)-5-Ethyl-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

isopropoxyquinoline (8). Compound **8** was prepared following the general procedure for C-6 phenol alkylation employing **5** (101 mg, 0.324 mmol) and 2-bromopropane (37 μ L, 0.39 mmol) to afford the

title compound (93 mg, 81%) as a light yellow solid: HPLC purity 98.9%, $t_R = 28.3$ min; mp 181– 182 °C; $R_f = 0.48$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 4.5 Hz, 1H), 7.64 (d, J = 9.3 Hz, 1H), 7.62 (d, J = 4.5 Hz, 1H), 6.95 (dd, J = 9.3, 2.5 Hz, 1H), 6.87 (d, J = 2.5 Hz, 1H), 6.40 (s, 1H), 5.68 (br s, 1H), 4.89–4.72 (m, 1H), 4.54 (t, J = 8.9 Hz, 1H), 3.41 (dd, J = 12.7, 10.5 Hz, 1H), 3.35 (q, J = 7.5 Hz, 1H), 3.19–3.05 (m, 1H), 2.81–2.57 (m, 1H), 2.33–2.17 (m, 1H), 2.18–2.05 (m, 1H), 2.03–2.00 (m, 1H), 1.93–1.61 (m, 4H), 1.34 (d, J = 6.0 Hz, 3H), 1.22 (d, J = 5.8 Hz, 3H), 1.21– 1.11 (m, 1H), 0.77 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 146.7, 143.6, 143.3, 131.4, 125.0, 123.3, 118.4, 101.0, 69.5, 66.3, 60.2, 57.0, 44.1, 35.6, 27.0, 24.8, 24.5, 22.2, 20.8, 17.8, 11.4; HRMS (ESI+) calcd for C₂₂H₃₁N₂O₂ [M+H]⁺ 355.2372, found 355.2380 (error 2.2 ppm); $[\alpha]_D^{23} = +17.6$ (*c* 0.300, CHCl₃).

6-Alloxy-(R)-4-[((1S,2S,4S,5R)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl]quinoline

(9). Compound 9 was prepared following the general procedure for C-6 phenol alkylation employing 5 (131 mg, 0.420 mmol) and allyl bromide (43 µL, 0.50 mmol) to afford the title compound (101 mg, 68%) as a white solid: HPLC purity 95.3%, $t_R = 19.1$ min; mp 183–184 °C; $R_f = 0.52$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 4.4 Hz, 1H), 7.67 (d, J = 9.2 Hz, 1H), 7.64 (d, J = 4.4 Hz, 1H), 6.99 (dd, J = 9.2, 2.5 Hz, 1H), 6.77 (d, J = 2.5 Hz, 1H), 6.42 (s, 1H), 6.07–5.99 (m, 1H), 5.60 (br s, 1H), 5.39 (d, J = 17.3 Hz, 1H), 5.18 (d, J = 10.6 Hz, 1H), 4.66–4.61 (m, 1H), 4.43 (d, J = 14.1 Hz, 1H), 4.31 (d, J = 14.1 Hz, 1H), 3.40 (dd, J = 13.2, 10.6 Hz, 1H), 3.27 (t, J = 9.1 Hz, 1H), 3.11–3.05 (m, 1H), 2.71–2.66 (m, 1H), 2.32–2.15 (m, 1H), 2.10 (dd, J = 13.2, 7.3 Hz, 1H), 2.02–1.94 (m, 1H), 1.86–1.73 (m, 3H), 1.20–1.14 (m, 2H), 0.78 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 147.0, 143.72, 143.67, 133.3, 131.4, 125.0, 122.5, 118.8, 116.0, 100.4, 69.4, 66.1, 60.1, 57.1, 44.4, 27.0, 25.5, 24.7, 24.6, 17.9, 11.5; HRMS (ESI+) calcd for C₂₂H₂₉N₂O₂ [M+H] + 353.2224, found 353.2218 (error 1.5 ppm); [α]²³_D = +23.1 (*c* 0.3, CHCl₃).

6-Butoxy-(*R***)-4-[((15,25,45,5***R***)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl]quinoline** (**10**). Compound **10** was prepared following the general procedure for C-6 phenol alkylation employing **5** (107 mg, 0.343 mmol) and 1-bromobutane (44 μL, 0.41 mmol) to afford the title compound (110 mg, 87%) as a white solid: HPLC purity 98.7%, t_R = 24.5 min; mp 191–192 °C; *R_f* = 0.46 (10:1 CH₂Cl₂/MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 4.5 Hz, 1H), 7.62 (d, *J* = 4.5 Hz, 1H), 7.62 (d, *J* = 9.2 Hz, 1H), 6.90 (dd, *J* = 9.2, 2.5 Hz, 1H), 6.75 (d, *J* = 2.5 Hz, 1H), 6.35 (s, 1H), 6.01 (br s, 1H), 4.54 (t, *J* = 16.2 Hz, 1H), 3.84–3.71 (m, 1H), 3.73–3.60 (m, 1H), 3.45–3.32 (m, 1H), 3.31–3.17 (m, 1H), 3.05 (td, *J* = 11.9, 5.5 Hz, 1H), 2.63 (dd, *J* = 17.1, 4.0 Hz, 1H), 2.34–2.15 (m, 1H), 2.17–2.05 (m, 1H), 2.03–1.98 (m, 1H), 1.89–1.80 (m, 1H), 1.77–1.59 (m, 3H), 1.56–1.40 (m, 2H), 1.25–1.18 (m, 3H), 1.00 (t, *J* = 7.3 Hz, 3H), 0.78 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 146.7, 143.9, 143.5, 131.2, 125.2, 122.5, 118.6, 99.8, 69.2, 66.1, 60.1, 57.0, 44.1, 35.6, 31.4, 27.0, 24.8, 24.7, 19.5, 17.8, 14.3, 11.5; HRMS (ESI+) calcd for C₂₃H₃₃N₂O₂ [M+H]⁺ 369.2537, found 369.2535 (error 0.5 ppm); [α]_D²³ = +20.4 (*c* 0.5, CHCl₃).

6-Cyclopropylmethoxy-(R)-4-[((1S,2S,4S,5R)-5-ethyl-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (11). Compound 11 was prepared following the general procedure for C-6 phenol alkylation employing 5 (101 mg, 0.324 mmol) and cyclopropylmethyl bromide (37 µL, 0.39 mmol) to afford the title compound (78 mg, 63%) as a white solid: HPLC purity 96.0%, $t_R = 20.2$ min; mp 195–197 °C; $R_f = 0.52$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.68 (d, J = 4.4 Hz, 1H), 7.75 (d, J = 9.3 Hz, 1H), 7.62 (d, J = 4.4 Hz, 1H), 7.09 (d, J = 9.3 Hz, 1H), 6.89 (d, J = 2.6 Hz, 1H), 6.41 (s, 1H), 4.53–4.46 (m, 1H), 3.83 (dd, J = 10.4, 7.0 Hz, 1H), 3.55 (dd, J = 10.4, 7.0 Hz, 1H), 3.41 (t, J = 11.9 Hz, 1H), 3.26 (t, J = 9.1 Hz, 1H), 3.12–3.05 (m, 1H), 2.67 (d, J = 12.6 Hz, 1H), 2.38–2.07 (m, 2H), 2.03 (d, J = 9.1 Hz, 1H), 1.80–1.40 (m, 1H), 1.20–1.04 (m, 5H), 0.80 (t, J = 7.3 Hz, 3H), 0.62–0.58 (m, 2H), 0.48–0.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 146.9, 143.81, 143.77, 131.4, 125.3,

122.8, 118.7, 100.1, 74.1, 66.2, 60.1, 57.1, 44.2, 35.6, 27.0, 24.8, 24.6, 17.94, 11.5, 10.1, 3.3, 3.2; HRMS (ESI+) calcd for $C_{23}H_{31}N_2O_2$ [M+H]⁺ 367.2380, found 367.2377 (error 0.8 ppm); $[\alpha]_D^{23} = -8.8$ (*c* 0.60, CHCl₃).

6-Cyclobutoxy-(R)-4-[((1S,2S,4S,5R)-5-ethyl-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (12). Compound 12 was prepared following the general procedure for C-6 phenol alkylation employing 5 (100 mg, 0.321 mmol) and bromocyclobutane (39 μL, 0.39 mmol) to afford the title compound (85 mg, 68%) as a white solid: HPLC purity 97.8%, $t_R = 21.7$ min. mp 188–190 °C; $R_f = 0.55$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 4.5 Hz, 1H), 7.96 (d, J = 9.3 Hz, 1H), 7.54 (d, J = 4.5 Hz, 1H), 7.25 (dd, J = 9.3, 2.5 Hz, 1H), 7.07 (d, J = 2.5 Hz, 1H), 5.69 (br s, 1H), 4.74–4.67 (m, 1H), 3.64 (br s, 1H), 3.29–3.11 (m, 2H), 2.73 (t, J = 13.7 Hz, 1H), 2.62–2.33 (m, 3H), 2.24–1.95 (m, 3H), 1.90–1.60 (m, 4H), 1.60–1.35 (m, 3H), 1.24 (d, J = 8.9 Hz, 3H), 0.79 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 147.5, 146.6, 144.3, 131.8, 126.5, 122.2, 118.5, 102.6, 71.7, 59.7, 58.5, 43.5, 37.3, 30.5, 30.2, 29.7, 27.8, 27.6, 25.3, 21.1, 13.4, 12.0; HRMS (ESI+) calcd for C₂₃H₃₁N₂O₂ [M+H]⁺ 367.2380, found 367.2367 (error 3.5 ppm); [α]_D²³ = -57.9 (*c* 0.500, CHCl₃).

6-Cyclopentoxy-(R)-4-[((1S,2S,4S,5R)-5-ethyl-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (13). Compound 13 was prepared following the general procedure for C-6 phenol alkylation employing 5 (65 mg, 0.21 mmol) and bromocyclopentane (27 µL, 0.25 mmol) to afford the title compound (67 mg, 84%) as a white solid: HPLC purity 97.3%, $t_R = 24.6$ min; mp 205–207 °C; $R_f = 0.50$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 4.5 Hz, 1H), 7.68 (d, J = 9.2 Hz, 1H), 7.64 (d, J = 4.5 Hz, 1H), 6.94 (dd, J = 9.2, 2.0 Hz, 1H), 6.75 (s, 1H), 6.26 (s, 1H), 4.74 (t, J = 5.2 Hz, 1H), 4.41 (br s, 1H), 3.47–3.13 (m, 2H), 3.02 (t, J = 14.3 Hz, 1H), 2.63 (dd, J = 15.1, 3.8 Hz, 1H), 2.11 (t, J = 12.7 Hz, 1H), 2.07–1.85 (m, 4H), 1.80–1.63 (m, 5H), 1.63–1.46 (m, 4H), 1.18–1.09

(m, 3H), 0.76 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 146.9, 144.2, 143.5, 131.3, 125.3, 123.2, 118.6, 101.2, 79.1, 67.0, 60.0, 57.2, 44.0, 35.9, 32.8, 31.8, 27.1, 25.3, 24.7, 24.1, 24.0, 18.4, 11.5; HRMS (ESI+) calcd for C₂₄H₃₃N₂O₂ [M+H] + 381.2537, found 381.2530 (error 1.7 ppm); $[\alpha]_D^{23} = +24.9$ (*c* 0.200, CHCl₃).

6-Benzyloxy-(*R*)-4-[((1*S*,2*S*,4*S*,5*R*)-5-ethyl-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (14). Compound 14 was prepared following the general procedure for C-6 phenol alkylation employing **5** (65 mg, 0.21 mmol) and benzyl bromide (30 µL, 0.25 mmol) to afford the title compound (70 mg, 83%) as a white solid: HPLC purity 96.3%, $t_R = 22.9$ min; mp 200–202°C; $R_f = 0.45$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 4.5 Hz, 1H), 7.66 (d, J = 9.2 Hz, 1H), 7.59 (d, J = 4.5 Hz, 1H), 7.54 (s, 1H), 7.52 (s, 1H), 7.36–7.29 (m, 2H), 7.28 (d, J = 4.5 Hz, 1H), 7.03 (dd, J = 9.2, 2.5 Hz, 1H), 6.90–6.83 (m, 1H), 6.40 (s, 1H), 5.00 (ABq, $\Delta \delta_{AB} = 0.21$, $J_{AB} = 13.2$ Hz, 2H), 4.55 (t, J = 12.0 Hz, 1H), 3.34 (dd, J = 13.1, 10.7 Hz, 1H), 3.25–3.09 (m, 1H), 3.05 (dt, J = 12.0, 6.0 Hz, 1H), 2.43 (dd, J = 12.0, 4.4 Hz, 1H), 2.31–2.13 (m, 1H), 2.13–2.01 (m, 1H), 2.00–1.91 (m, 1H), 1.87–1.61 (m, 3H), 1.22–0.99 (m, 3H), 0.75 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 147.1, 144.1, 143.6, 137.3, 131.4, 128.2, 127.2, 126.9, 125.0, 122.5, 118.7, 100.3, 69.9, 66.0, 60.2, 57.0, 44.2, 35.5, 26.9, 24.8, 24.5, 17.7, 11.2; HRMS (ESI+) calcd for C₂₆H₃₁N₂O₂ [M+H] ⁺ 403.2374, found 403.2380 (error 1.6 ppm); [α]²³_D = +32.3 (*c* 0.250, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (15). Compound 15 was prepared following the general procedure for olefin migration employing quinine 3 (970 mg, 2.99 mmol) to afford (806 mg, 83%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of $-OCH_3$ protons) as a white solid: HPLC purity 98.7% (two isomers, 22.5% and 76.1%), $t_R = 18.7$ and 19.3 min; mp 172–173 °C; $R_f = 0.60$ (10:1 CH₂Cl₂/MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.72 (d, J = 4.6 Hz, 1H), 8.00 (d, J = 9.2 Hz, 1H), 7.52

(d, J = 4.6 Hz, 1H), 7.35 (dd, J = 9.2, 2.7 Hz, 1H), 7.23 (d, J = 2.7 Hz, 1H), 5.63 (d, J = 4.7 Hz, 1H), 5.24 (q, J = 6.6 Hz, 0.75H, major), 5.12 (q, J = 6.6 Hz, 0.25H, minor), 3.92 (s, 2.2H, major), 3.90 (s, 0.8H, minor), 3.55–3.35 (m, 3H), 3.16 (t, J = 5.4 Hz, 1H), 2.95–2.61 (m, 2H), 2.35 (s, 1H), 1.93 (t, J = 10.4 Hz, 1H), 1.87–1.66 (m, 2H), 1.61–1.55 (m, 1H), 1.53 (d, J = 6.9 Hz, 0.8H, minor), 1.45 (d, J = 6.9 Hz, 2.2H, major); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 147.9, 147.5, 144.1, 140.9, 131.4, 126.6, 121.4, 118.4, 114.6, 101.4, 71.9, 60.1, 56.7, 55.7, 44.0, 33.4, 28.1, 27.9, 12.3; HRMS (ESI+) calcd for C₂₀H₂₅N₂O₂ [M+H] + 325.1911, found 325.1897 (error 4.3 ppm); $[\alpha]_D^{23} = -160$ (*c* 1.20, CHCl₃). All spectroscopic data were in agreement with the literature values.²⁵

6-Methoxy-(R)-4-[((1S,2S,4S)-5-oxo-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl]quinoline

(16). Compound 15 (100 mg, 0.31 mmol, 1.0 equiv) was added to a vigorously stirred two-phase system of K_2CO_3 (129 mg, 0.93 mmol, 3.0 equiv) and $K_3[Fe(CN)_6]$ (306 mg, 0.93 mmol, 3.0 equiv) in *tert*-butyl alcohol/H₂O (1:1, 3.1 mL). After 45 min, osmium(VIII)oxide solution (0.14 mL, 2.5% in water) was added in small portions, and the reaction mixture was stirred for 15 h at room temperature, then the reaction mixture was diluted with CH_2Cl_2 (20 mL), followed by washing with saturated aqueous NaHCO₃ (5 mL) and 10% aqueous NaHSO₃ (5mL). The combined organic layer was dried over MgSO₄, evaporated to obtain the crude diol as a white solid.

To a solution of the crude diol prepared above in *tert*-butanol (2 mL), was added a saturated solution of NaIO₄ (88 mg, 0.41 mmol, 1.3 equiv) in H₂O (2 mL). The mixture was stirred vigorously for 2 h at at room temperature, treated with aqueous NaHCO₃ (5 mL) and extracted with CH₂Cl₂ (3×20 mL). The extracts were dried over MgSO₄, concentrated, and the crude product was purified by column chromatography (5:1 CH₂Cl₂–MeOH) to yield the desired ketone **16** (53 mg, 55%) a white solid: HPLC purity 96.8%, t_R = 13.0 min; mp 205–206 °C; R_f = 0.42 (10:1 CH₂Cl₂–MeOH); IR (KBr) γ_{max} 3074, 1728, 1512, 1258, 851, 833; ¹H NMR (400 MHz, DMSO- d_6) δ 8.69 (d, *J* = 4.3 Hz, 1H), 7.93 (d, *J* = 9.2 Hz,

1H), 7.60 - 7.44 (m, 2H), 7.39 (d, J = 9.2 Hz, 1H), 5.85 - 5.77 (m, 1H), 5.40 (t, J = 5.2 Hz, 1H), 3.92 (s, 3H), 3.48-3.40 (m, 1H), 3.24 (q, J = 7.7 Hz, 1H), 3.17-3.11 (m, 2H), 2.62 (t, J = 5.8 Hz, 1H), 2.33 (s, 1H), 2.19 (dd, J = 13.2, 7.7 Hz, 1H), 2.11–2.01 (m, 1H), 1.97–1.91 (m, 1H), 1.79 (t, J = 5.5 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 219.8, 156.9, 148.7, 147.5, 143.9, 131.1, 126.9, 121.1, 119.1, 102.4, 70.6, 64.2, 60.6, 55.5, 54.9, 41.1, 28.0, 24.8; HRMS (ESI+) calcd for $C_{18}H_{21}N_2O_3$ [M+H] + 313.1547, found 313.1533 (error 4.4 ppm); $[\alpha]_{D}^{23} = -208$ (*c* 0.700, MeOH). (R)-4-((1S,2S,4S)-5-Hydroxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (17). Compound 17 was prepared following the general procedure for C-3 oximation employing 16 (150 mg, 0.480 mmol) and hydroxylamine hydrochloride (33 mg, 0.48 mmol) to afford the title compound (126 mg, 81%, ¹H NMR indicates 5:1 diastereomeric ratio through the integral value of =N-OH protons) as a white solid: HPLC purity 97.4% (two isomers, 82.6% and 14.8%), $t_R = 10.5$ and 10.9 min; mp 212–213 °C; $R_f = 0.30$ (5:1 CH₂Cl₂–MeOH); IR (KBr) γ_{max} 3250, 2597, 1617, 1430, 1228, 939, 857; ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.42 (br s, 0.17H, minor), 12.32 (br s, 0.83H, major), 10.95 (br s, 0.17H, minor), 10.90 (br s, 0.83H, major), 8.71 (d, J = 4.5 Hz, 1H), 7.92 (dd, J = 9.2, 2.3 Hz, 1H), 7.61 (d, J = 4.5 Hz, 1H), 7.57 (d, J = 2.3 Hz, 1H), 7.38 (dd, J = 9.2, 2.3 Hz, 1H), 6.55 (d, J = 3.4 Hz, 1H), 6.33 (br s, 0.17H, minor), 6.29 (br s, 0.83H, major), 4.35–4.03 (m, 3H), 4.00 (s, 3H), 3.78 (t, J =8.3 Hz, 1H), 2.75 (s, 1H), 2.35–2.19 (m, 1H), 2.12–2.05 (m, 1H), 1.85 (t, J = 10.5 Hz, 1H), 1.44–1.25 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 157.8, 152.0, 147.3, 145.1, 143.6, 131.1, 125.5, 121.9, 118.9, 102.0, 65.5, 59.5, 56.7, 54.9, 43.3, 27.8, 22.8, 21.6; HRMS (ESI+) calcd for C₁₈H₂₂N₃O₃ [M+H] + 328.1656, found 328.1641(error 4.5 ppm); $[\alpha]_{D}^{23} = -18.9$ (*c* 0.89, MeOH).

6-Methoxy-(R)-4-[((1S,2S,4S,5Z/E)-5-methoxyimino-1-azabicyclo[2.2.2]octan-2-

vl)hvdroxymethyllquinoline (18). Compound 18 was prepared following the general procedure for C-3 oximation employing 16 (200 mg, 0.640 mmol) and O-methylhydroxylamine hydrochloride (54 mg,

0.64 mmol) to afford the title compond (185 mg, 85%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =N-OCH₃ protons) as a white solid: HPLC purity 98.9% (two isomers), t_R = 17.2 min; mp 195–197 °C; R_f = 0.31 (10:1 CH₂Cl₂–MeOH); IR (KBr) γ_{max} 3255, 2938, 2871, 2480, 1620, 1510, 1241, 1044; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 4.5 Hz, 1H), 7.98 (d, J = 9.1 Hz, 0.25H, minor), 7.97 (d, J = 9.1 Hz, 0.75H, major), 7.50 (d, J = 4.5 Hz, 0.75H, major), 7.49 (d, J = 4.5 Hz, 0.25H, minor), 7.33 (dd, J = 9.1, 2.8 Hz, 0.25H, minor), 7.32 (dd, J = 9.1, 2.8 Hz, 0.75H, major), 7.18 (d, J = 2.8 Hz, 0.25H, minor), 7.17 (d, J = 2.8 Hz, 0.75H, major), 5.69 (br s, 0.75H, major), 5.66 (br s, 0.25H, minor), 3.89 (s, 3H), 3.78 (s, 2.2H, major), 3.75 (s, 0.8H, minor), 3.69-3.48 (m, 3H), 3.43 (d, J =8.8 Hz, 1H), 3.23-3.05 (m, 1H), 2.77 (t, J = 14.9 Hz, 1H), 2.63 (s, 1H), 2.19-2.09 (m, 1H), 2.03-1.88(m, 1H), 1.77 (d, J = 14.9 Hz, 1H), 1.55 (t, J = 11.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9 and 164.1, 157.94 and 157.91, 147.6 and 146.8, 144.3, 131.8 (2C), 126.4 and 126.2, 121.7, 118.2 and 118.1, 101.0 and 100.9, 71.8, 61.43 and 61.35, 60.6 and 60.4, 56.6 and 55.8, 55.7 and 55.3, 43.4, 29.8 and 29.7, 26.0 and 25.8, 24.4 and 24.1; HRMS (ESI+) calcd for C₁₉H₂₄N₃O₃ [M+H] + 342.1812, found 342.1797 (error 4.5 ppm); $[\alpha]_{D}^{23} = -124$ (*c* 1.30, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Ethoxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (19). Compound **19** was prepared following the general procedure for C-3 oximation employing **16** (100 mg, 0.320 mmol) and *O*-ethylhydroxylamine hydrochloride (36 mg, 0.32 mmol) to afford the title compound (95 mg, 84%, ¹H NMR indicates 2:1 diastereomeric ratio through the integral value of -N=OCH₂CH₃ protons) as a white solid: HPLC purity 97.7% (two isomers), $t_R = 19.1$ min; mp 194–195 °C; $R_f = 0.33$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 4.5 Hz, 1H), 7.99 (d, J = 9.2 Hz, 0.4H, minor), 7.98 (d, J = 9.2 Hz, 0.6H, major), 7.52 (d, J = 4.5 Hz, 0.6H, major), 7.51 (d, J = 4.5 Hz, 0.4H, minor), 7.41–7.30 (m, 1H), 7.22–7.16 (m, 1H), 5.71 (br s, 0.6H, major), 5.67 (br s, 0.4H, minor), 4.12–3.93 (m, 2H), 3.90 (s, 3H), 3.76–3.49 (m, 3H), 3.46 (d, J = 3.5 Hz, 1H), 3.19 (t,

 $J = 8.1 \text{ Hz}, 1\text{H}, 2.91-2.72 \text{ (m, 1H)}, 2.64 \text{ (s, 1H)}, 2.21-2.09 \text{ (m, 1H)}, 2.03 \text{ (t, } J = 11.2 \text{ Hz}, 1\text{H}), 1.94 \text{ (t, } J = 7.9 \text{ Hz}, 1\text{H}), 1.88-1.68 \text{ (m, 1H)}, 1.20 \text{ (t, } J = 7.5 \text{ Hz}, 1.2\text{H}), 1.18 \text{ (t, } J = 7.5 \text{ Hz}, 1.8\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 162.0 \text{ and } 161.8, 157.93 \text{ and } 157.89, 147.5, 147.0 \text{ and } 146.9, 144.18 \text{ and } 144.15, 131.6, 126.4 \text{ and } 126.2, 121.7, 118.3 \text{ and } 118.2, 101.08 \text{ and } 101.04, 71.6 \text{ and } 71.5, 69.2 \text{ and } 69.0, 60.6 \text{ and } 60.4, 56.6 \text{ and } 55.8, 55.7 \text{ and } 55.4, 43.5, 29.8 \text{ and } 29.7, 25.9 \text{ and } 25.7, 24.4 \text{ and } 24.1, 14.58 \text{ and } 14.55; \text{HRMS} (ESI+) \text{ calcd for } \text{C}_{20}\text{H}_{26}\text{N}_3\text{O}_3 \text{ [M+H]}^+ 356.1969, \text{ found } 356.1959 \text{ (error } 2.8 \text{ ppm}); [\alpha]_D^{23} = -200 \text{ (c 0.300, CHCl}_3).$

6-Methoxy-(*R*)-4-{[(1*S*,2*S*,4*S*,5*Z*/*E*)-5-(2,2,2-trifluoroethoxy)imino-1-azabicyclo[2.2.2]octan-2-

yl]hydroxymethyl]quinoline (20). Compound 20 was prepared following the general procedure for C-3 oximation employing 16 (62 mg, 0.20 mmol) and *O*-1,1,1-trifluoroethylhydroxylamine hydrochloride (30 mg, 0.20 mmol) to afford of the title compound (60 mg, 74%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of $-OCH_3$ protons) as a white solid: HPLC purity 98.1% (two isomers), $t_R = 20.8$ min; mp 185–187 °C; $R_f = 0.37$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.63 (d, J = 4.5 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.47 (d, J = 4.5 Hz, 1H), 7.34 (dd, J = 9.2, 2.6 Hz, 1H), 7.17 (d, J = 2.6 Hz, 1H), 5.61 (br s, 0.67H, major), 5.58 (br s, 0.33H, minor), 4.36–4.26 (m, 2H), 3.91 (s, 2H, major), 3.90 (s, 1H, minor), 3.68–3.51 (m, 3H), 3.51–3.35 (m, 1H), 3.13 (d, J = 9.3 Hz, 1H), 2.79–2.74 (m, 1H), 2.64 (s, 1H), 2.17 (dd, J = 13.3, 8.4 Hz, 0.67H, major), 2.07 (dd, J = 13.3, 8.4 Hz, 0.33H, minor), 1.95 (t, J = 11.0 Hz, 0.66H, major), 1.84 (t, J = 11.0 Hz, 0.34H, minor), 1.81–1.64 (m, 1H), 1.59–1.55 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2 and 164.7, 157.94 and 157.89, 147.6 and 147.1, 144.21 and 144.18, 131.7, 130.40 and 130.34, 126.39 and 126.30, 123.76 and 123.71 (q, J = 278.0 Hz), 121.7, 118.2 and 118.1, 101.01 and 100.95, 71.90, 70.5 and 70.4 (q, J = 34.0 Hz), 60.5 and 60.3, 56.2 and 55.7, 55.6 and 55.1, 43.2, 25.9 and 25.7, 25.1 and 24.9, 23.9 and 22.7; ¹⁹F NMR (376 MHz, CDCl₃)

 δ -73.98 (t, J = 8.3 Hz), -73.85 (t, J = 8.3 Hz); HRMS (ESI+) calcd for C₂₀H₂₃N₃O₃F₃ [M+H] + 410.1675, found 410.1667 (error 1.9 ppm); $[\alpha]_D^{23} = -153$ (*c* 0.300, CHCl₃).

6-Methoxy-(R)-4-[((1S,2S,4S)-5-propoxyimino-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (21). Compound 21 was prepared following the general procedure for C-3 oximation employing 16 (100 mg, 0.320 mmol) and *O-n*-propylhydroxylamine hydrochloride (48 mg, 0.32 mmol) to afford the title compound (99 mg, 84%, sole product) as a white solid: HPLC purity 99.1%, $t_R = 21.9$ min; mp 196–197 °C; $R_f = 0.35$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, J = 4.4 Hz, 1H), 7.97 (d, J = 9.2 Hz, 1H), 7.50 (d, J = 4.4 Hz, 1H), 7.32 (dd, J = 9.2, 2.6 Hz, 1H), 7.17 (d, J = 2.6 Hz, 1H), 5.70 (s, 1H), 3.92 (dd, J = 6.9, 3.3 Hz, 2H), 3.89 (s, 3H), 3.71–3.49 (m, 3H), 3.27–3.08 (m, 1H), 2.91–2.69 (m, 1H), 2.64 (s, 1H), 2.15 (dd, J = 13.0, 8.1 Hz, 1H), 1.94 (d, J = 11.4 Hz, 1H), 1.77 (d, J = 12.5 Hz, 1H), 1.59 (qd, J = 13.9, 8.1 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 157.9, 147.6, 146.9, 144.2, 131.7, 126.3, 121.7, 118.2, 101.0, 75.3, 71.6, 60.6, 55.8, 55.4, 43.5, 29.8, 26.1, 25.9, 22.4, 10.4; HRMS (ESI+) calcd for C₂₁H₂₈N₃O₃ [M+H] + 370.2125, found 370.2118 (error 1.9 ppm); $[\alpha]_{D}^{23} = -80.2$ (*c* 0.300, CHCl₃).

(R)-4-((1S,2S,4S)-5-Isopropoxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (22). Compound **22** was prepared following the general procedure for C-3 oximation employing **16** (100 mg, 0.320 mmol) and *O-i*-propylhydroxylamine hydrochloride (48 mg, 0.32 mmol) to afford the title compound (77 mg, 65%, sole product) as a white solid: HPLC purity 99.2%, $t_R = 21.6$ min; mp 190–192 °C; $R_f = 0.40$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, J = 4.4 Hz, 1H), 7.94 (d, J = 9.2 Hz, 1H), 7.51 (d, J = 4.4 Hz, 1H), 7.28 (dd, J = 9.2, 2.6 Hz, 1H), 7.15 (d, J = 2.6 Hz, 1H), 5.74 (s, 1H), 4.19 (quint, J = 6.1 Hz, 1H), 3.87 (s, 3H), 3.73 (d, J = 15.0 Hz, 1H), 3.68–3.50 (m, 2H), 3.15 (d, J = 9.6 Hz, 1H), 2.87–2.72 (m, 1H), 2.65 (s, 1H), 2.16 (dd, J = 12.6, 8.1 Hz, 1H), 1.97 (t, J = 11.6 Hz, 1H), 1.78 (d, J = 12.6 Hz, 1H), 1.53 (td, J = 12.6, 3.7 Hz, 1H), 1.18 (d, J = 6.1 Hz, 3H),

1.16 (d, J = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 157.9, 147.5, 146.9, 144.1, 131.6, 126.2, 121.7, 118.2, 101.0, 75.1, 71.2, 60.7, 55.9, 55.5, 43.6, 29.8, 26.0, 25.6, 21.7 (2C); HRMS (ESI+) calcd for C₂₁H₂₈N₃O₃ [M+H]⁺ 370.2123, found 370.2118 (error 0.6 ppm); $[\alpha]_D^{23} = -65.3$ (*c* 0.300, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Allyloxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (23). Compound **23** was prepared following the general procedure for C-3 oximation employing **16** (62 mg, 0.20 mmol) and *O*-allylhydroxylamine hydrochloride (22 mg, 0.20 mmol) to afford the title compound (70 mg, 95%, ¹H NMR indicates 2:1 diastereomeric ratio through the integral value of $-OCH_3$ protons) as a white solid: HPLC purity 95.5% (two isomers), t_R = 19.8 min; mp 185– 186 °C; *R_f* = 0.36 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 4.5 Hz, 1H), 8.00 (d, *J* = 9.2 Hz, 1H), 7.64–7.46 (m, 1H), 7.36–7.33 (m, 1H), 7.18 (d, *J* = 2.6 Hz, 1H), 6.02–5.83 (m, 1H), 5.76–5.59 (m, 1H), 5.28–5.09 (m, 2H), 4.52–4.36 (m, 2H), 3.91 (s, 2H, major), 3.90 (s, 1H, minor), 3.73–3.50 (m, 2H), 3.52–3.40 (m, 1H), 3.21–3.06 (m, 1H), 2.77 (t, *J* = 14.6 Hz, 1H), 2.68–2.60 (m, 1H), 2.21–2.07 (m, 1H), 2.06–2.00 (m, 1H), 1.97–1.93 (m, 1H), 1.85–1.79 (m, 1H), 1.57–1.33 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 157.95 and 157.92, 147.7, 146.8, 144.37 and 144.34, 134.5 and 134.3, 131.8, 126.4 and 126.3, 121.7, 118.2 and 118.1, 117.5 and 117.3, 101.03 and 100.99, 74.6 and 74.4, 72.1, 60.6 and 60.4, 56.6 and 55.8, 55.7 and 55.5, 43.4, 26.1 and 25.9, 25.4 and 25.2, 24.6 and 24.2; HRMS (ESI+) calcd for C₂₁H₂₆N₃O₃ [M+H]⁺ 368.1969, found 368.1944 (error 6.6 ppm); [α]²³_D = -171 (*c* 0.500, CHCl₃).

6-Methoxy-(R)-4-[((1S,2S,4S,5Z/E)-5-propargyloxyimino-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (24). Compound **24** was prepared following the general procedure for C-3 oximation employing **16** (66 mg, 0.21 mmol) and *O*-(prop-2-yn-1-yl) hydroxylamine hydrochloride (23 mg, 0.21 mmol) to afford the title compound (65 mg, 84%, ¹H NMR indicates 2:1 diastereomeric ratio through the integral value of –OCH₃ protons) as a white solid: HPLC purity 95.8% (two isomers), t_R = 17.5 min; mp 199–200 °C; R_f = 0.30 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 4.5 Hz, 1H), 8.00 (d, J = 9.2 Hz, 1H), 7.51 (d, J = 4.5 Hz, 1H), 7.35 (dd, J = 9.2, 2.7 Hz, 1H), 7.19 (d, J = 2.7 Hz, 1H), 5.65 (br s, 0.66H, major), 5.62 (br s, 0.34H, minor), 4.57 (d, J = 2.4 Hz, 1.3H, major), 4.55 (d, J = 2.4 Hz, 0.7H, minor), 3.92 (s, 2H, major), 3.91 (s, 1H, minor), 3.75–3.50 (m, 2H), 3.50–3.42 (m, 1H), 3.15 (t, J = 9.6 Hz, 1H), 2.87–2.69 (m, 1H), 2.69 (t, J = 3.4 Hz, 1H), 2.41, (tt, J = 8.0, 1.7 Hz, 0.66H, major), 2.39 (tt, J = 8.0, 1.7 Hz, 0.34H, minor), 2.23–2.09 (m, 1H), 2.05 (t, J = 11.1 Hz, 1H), 1.98–1.89 (m, 1H), 1.86–1.72 (m, 1H), 1.58 (t, J = 11.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 157.95 and 157.92, 147.7, 146.85 and 146.79, 144.35 and 144.33, 131.8, 126.4 and 126.3, 121.7, 118.2 and 118.1, 101.06 and 101.00, 80.0 and 79.8, 74.3 and 74.2, 72.1, 61.0 and 60.9, 60.5 and 60.4, 56.5 and 55.73, 55.67 and 55.4, 43.3 and 43.2, 29.9 and 29.7, 26.0 and 25.9, 24.8 and 24.1; HRMS (ESI+) calcd for C₂₁H₂₄N₃O₃ [M+H]⁺ 366.1812, found 366.1801 (error 2.8 ppm); [α]²³_D = -154 (*c* 0.200, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Butoxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (25). Compound **25** was prepared following the general procedure for C-3 oximation employing **16** (100 mg, 0.320 mmol) and *O-n*-butylhydroxylamine hydrochloride (45 mg, 0.32 mmol) to afford the title compound (108 mg, 88%, ¹H NMR indicates 2:1 diastereomeric ratio through the integral value of $-OCH_3$ protons) as a white solid: HPLC purity 96.2% (two isomers, 61.2% and 35.0%), t_R = 26.1 and 26.4 min; mp 192–193 °C; $R_f = 0.38$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 4.5 Hz, 1H), 8.01 (d, J = 9.2, 0.34H, minor), 8.00 (d, J = 9.2 Hz, 0.66H, major), 7.53 (d, J =4.2 Hz, 0.66H, major), 7.52 (d, J = 4.2 Hz, 0.34H, minor), 7.36 (dd, J = 9.2, 3.1 Hz, 0.34H, minor), 7.35 (dd, J = 9.3, 3.1 Hz, 0.66H, major), 7.23–7.17 (m, 1H), 5.76 (br s, 0.66H, major), 5.71 (br s, 0.34H, minor), 4.00–3.95 (m, 2H), 3.94 (s, 2H, major), 3.93 (s, 1H, minor), 3.60 (q, J = 18.4 Hz, 2H), 3.50–3.93 (m, 1H), 3.20 (td, J = 8.6, 3.9 Hz, 1H), 2.91–2.72 (m, 1H), 2.68–2.62 (m, 1H), 2.20–2.15 (m, 1H), 2.07– 2.03 (m, 1H), 1.97–1.97 (m, 1H), 1.85–1.80 (m, 1H), 1.64–1.46 (m, 3H), 1.43–1.27 (m, 2H), 0.90 (t, J =

7.4 Hz, 2H, major), 0.88 (t, J = 7.4 Hz, 1H, minor); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 158.01 and 157.96, 147.7, 146.54 and 146.47, 144.40 and 144.37, 131.89, 126.3 and 126.2, 121.76 and 121.74, 118.17 and 118.10, 100.97 and 100.92, 73.7 and 73.5, 60.6 and 60.4, 56.6 and 55.8, 55.7 and 55.4, 43.5, 31.17 and 31.13, 29.8 and 29.7, 26.0 and 25.8, 25.2 and 25.0, 24.4 and 24.1, 19.20 and 19.18, 14.0; HRMS (ESI+) calcd for C₂₂H₃₀N₃O₃ [M+H] + 384.2282, found 384.2271 (error 2.6 ppm); $[\alpha]_D^{23} = -144$ (*c* 0.400, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Cyclobutoxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (26). Compound 26 was prepared following the general procedure for C-3 oximation employing 16 (62 mg, 0.20 mmol) and O-cyclobutylhydroxylamine hydrochloride (25 mg, 0.20 mmol) to afford the title compound (58 mg, 76%, ¹H NMR indicates 2:1 diastereomeric ratio through the integral value of -OCH₃ protons) as a white solid: HPLC purity 99.8% (two isomers, 77.2% and 22.6%), $t_R = 25.6$ and 26.7 min; mp 196–197 °C; $R_f = 0.37$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 4.5 Hz, 1H), 8.02 (d, J = 9.2 Hz, 0.34H, minor), 8.00 (d, J = 9.2 Hz, 0.66H, major), 7.54 (d, J = 4.5 Hz, 0.66H, major), 7.53 (d, J = 4.5 Hz, 0.34H, minor), 7.36 (dd, J = 9.2, 2.6 Hz, 0.34H, minor), 7.35 (dd, J = 9.2, 2.6 Hz, 0.66H, major), 7.20 (d, J = 2.6 Hz, 1H), 5.74 (br s, 0.66H, major), 5.69 (br s, 0.34H, minor), 4.52 (sext, J = 7.6 Hz, 1H), 3.92 (s, 2H, major), 3.91 (s, 1H, minor), 3.80–3.52 (m, 3H), 3.47 (t, J = 5.2 Hz, 1H), 3.22–3.09 (m, 1H), 2.91–2.69 (m, 1H), 2.65 (s, 1H), 2.33– 2.08 (m, 3H), 2.07–1.90 (m, 3H), 1.87–1.63 (m, 2H), 1.60–1.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 157.99 and 157.94, 147.7, 146.5, 144.40 and 144.37, 131.9, 126.4 and 126.2, 121.7, 118.13 and 118.06, 100.99 and 100.95, 76.2 and 76.0, 60.6 and 60.4, 56.7 and 55.8, 55.7 and 55.5, 43.5, 29.7 and 29.4, 26.0 and 25.8, 24.5 and 24.2, 22.7, 18.5, 14.1, 12.7; HRMS (ESI+) calcd for C₂₂H₂₈N₃O₃ [M+H]⁺ 382.2116, found 382.2125 (error 2.4 ppm); $[\alpha]_D^{23} = -231$ (*c* 0.100, CHCl₃).

(*R*)-4-((1*S*,2*S*,4*S*)-5-Cyclopropylmethoxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6methoxyquinoline (27). Compound 27 was prepared following the general procedure for C-3 oximation employing 18 (62 mg, 0.20 mmol) and *O*-(cyclopropylmethyl) hydroxylamine hydrochloride (25 mg, 0.20 mmol) to afford the title compound (70 mg, 92%, sole product) as a white solid: HPLC purity 98.0%, t_R = 21.7 min; mp 194-195 °C; *R_f* = 0.34 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 4.5 Hz, 1H), 7.98 (d, *J* = 9.2 Hz, 1H), 7.51 (d, *J* = 4.5 Hz, 1H), 7.32 (dd, *J* = 9.2, 2.6 Hz, 1H), 7.18 (d, *J* = 2.6 Hz, 1H), 5.70 (br s, 1H), 3.90 (s, 3H), 3.77 (dd, *J* = 7.0, 2.0 Hz, 2H), 3.73–3.49 (m, 3H), 3.17 (t, *J* = 10.3 Hz, 1H), 2.78 (t, *J* = 14.3 Hz, 1H), 2.63 (s, 1H), 2.20–2.09 (m, 1H), 2.03–1.87 (m, 1H), 1.87–1.72 (m, 1H), 1.63–1.46 (m, 1H), 1.12–0.97 (m, 1H), 0.48 (q, *J* = 4.7 Hz, 2H), 0.21 (q, *J* = 4.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 157.9, 147.6, 146.8, 144.3, 131.8, 126.3, 121.7, 118.1, 101.0, 78.4, 71.7, 60.6, 55.8, 55.5, 43.5, 29.9, 29.7, 26.0, 25.8, 10.1 (2C); HRMS (ESI+) calcd for C₂₂H₂₈N₃O₃ [M+H]⁺ 382.2107, found 382.2125 (error 4.9 ppm); [α]²³_D = -151 (*c* 0.200, CHCl₃).

(R)-4-((1S,2S,4S)-5-Cyclopentoxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (28). Compound **28** was prepared following the general procedure for C-3 oximation employing **18** (62 mg, 0.20 mmol) and *O*-cyclopentylhydroxylamine hydrochloride (57 mg, 0.20 mmol) to afford the title compound (71 mg, 93%, sole product) as a white solid: HPLC purity 98.4%, $t_R = 26.8$ min; mp 196–197 °C; $R_f = 0.35$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 4.5Hz, 1H), 7.97 (d, J = 9.2 Hz, 1H), 7.52 (d, J = 4.5 Hz, 1H), 7.31 (dd, J = 9.1, 2.5 Hz, 1H), 7.16 (d, J =2.5 Hz, 1H), 5.73 (br s, 1H), 4.67–4.45 (m, 1H), 3.89 (s, 3H), 3.72 (d, J = 7.0 Hz, 1H), 3.57 (q, J = 18.7Hz, 2H), 3.21–3.09 (m, 1H), 2.83–2.71 (m, 1H), 2.65 (s, 1H), 2.20–2.09 (m, 1H), 2.04–1.89 (m, 1H), 1.81–1.41 (m, 11H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 157.9, 147.6, 146.6, 144.3, 131.8, 126.2, 121.7, 118.2, 101.0, 84.7, 71.5, 60.6, 55.8, 55.5, 43.5, 32.10, 32.02, 29.9, 26.0 (2C), 23.9 (2C); HRMS

 (ESI+) calcd for $C_{23}H_{30}N_3O_3$ [M+H] +396.2282, found 396.2250 (error 8.0 ppm); $[\alpha]_D^{23} = -138$ (*c* 0.200, CHCl₃).

6-Methoxy-(R)-4-{[(1S,2S,4S,5Z/E)-5-(4-methoxy-4-oxo)butoxyimino-1-azabicvclo[2.2.2]octan-2-yl|hydroxymethyl}quinoline and 6-Methoxy-(R)-4-{[(1S,2S,4S,5Z/E)-5-(4-ethoxy-4oxo)butoxyimino-1-azabicyclo[2.2.2]octan-2-yl]hydroxymethyl}quinoline (29). Compound 29 was prepared following the general procedure for C-3 oximation employing 16 (62 mg, 0.20 mmol) and a mixture of ethyl 4-(aminooxy)butanoate hydrochloride and methyl 4-(aminooxy)butanoate hydrochloride (34 mg, 0.20 mmol) [in Scheme 2B, compound **31** is used as the methyl ester, but in the reaction from 32 to 33, the transesterification reaction was carried out using ethanol as a solvent, resulting in the compound 33 being a mixture of methyl ester and ethyl esters. Therefore, the result of this reaction was a mixture of methyl ester and ethyl ester] to afford the title compound (69 mg, 81%, ¹H NMR indicates 3:2 ester ratio through the integral value of -COOCH₃ protons and -COOCH₂CH₃ protons) as a white solid: HPLC purity 95.2% (two esters, 49.3% and 45.9%), $t_R = 18.2$ and 19.8 min; mp 190–192 °C; $R_f = 0.39$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 4.5 Hz, 1H), 8.01 (d, J = 9.2 Hz, 0.4H, minor), 7.99 (d, J = 9.2 Hz, 0.6H, major), 7.52 (d, J = 4.5 Hz, 1H), 7.33 (dd, J = 9.2, 2.5 Hz, 1H), 7.19 (d, J = 2.5 Hz, 1H), 5.74 (br s, 0.6H, major), 5.69 ((br s, 0.4H, minor)), 5.69 ((br s, 0.4H, minor))), 5.69 ((br s, 0.4H, minor)))4.09 (q, J = 7.1 Hz, 0.8H (COOEt), minor), 4.04–3.93 (m, 2H), 3.92 (s, 1.8H, major), 3.91 (s, 1.2H, minor), 3.70-3.65 (m, 1H), 3.63 (s, 1.8H (COOMe), major), 3.56 (s, 1H), 3.52 (s, 1H), 3.44 (s, 1H), 3.24-3.09 (m, 1H), 2.90-2.71 (m, 1H), 2.64 (s, 1H), 2.34 (q, J = 7.4 Hz, 2H), 2.21-2.09 (m, 1H), 1.98-1.80 (m, 3H), 1.79 (d, J = 10.2 Hz, 1H), 1.56 (t, J = 10.2 Hz, 1H), 1.22 (t, J = 7.2 Hz, 1.2H (COOEt), minor); ¹³C NMR (100 MHz, CDCl₃) δ 173.7 and 173.3, 162.51 and 162.45, 157.99 and 157.95, 147.6, 146.61 and 146.59, 144.35 and 144.31, 131.8, 126.3 and 126.2, 121.8 and 121.7, 118.18 and 118.12, 100.98 and 100.92, 72.63 and 72.57, 71.7 and 71.5, 60.6 (Et), 60.42 and 60.37, 56.6 and 55.8, 55.7 and

55.3, 51.6 (Me), 43.5, 32.0 and 31.0, 30.9 and 30.7, 29.8 and 29.4, 25.9 and 25.7, 24.5 and 24.1, 14.2 (Et); HRMS (ESI+) calcd for $C_{23}H_{30}N_3O_5$ and $C_{24}H_{32}N_3O_5$ [M+H] + 428.2180 and 442.2336, found 428.2150 and 442.2303 (error 7.6 and 7.1 ppm); $[\alpha]_D^{23} = -128.0$ (*c* 0.4, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Benzyloxyimino-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (30). Compound 30 was prepared following the general procedure for C-3 oximation employing 16 (66 mg, 0.21 mmol) and O-benzylhydroxylamine hydrochloride (34 mg, 0.21 mmol) to afford the title compound (75 mg, 81%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of quinoline H-2' protons) as a white solid: HPLC purity 95.6% (two isomers), $t_R = 24.1$ min; mp 202–203 °C; $R_f = 0.33$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 4.5 Hz, 1H), 8.00 (d, J = 9.2 Hz, 0.34H, minor), 7.99 (d, J = 9.2 Hz, 0.66H, major), 7.50 (d, J = 4.5 Hz, 0.66H, major), 7.49 (d, J = 4.5 Hz, 0.34H, minor), 7.35 (dd, J = 9.2, 2.5 Hz, 0.34H, minor), 7.34 (dd, J = 9.2, 2.5 Hz, 0.66H, major), 7.33–7.29 (m, 2H), 7.28–7.26 (m, 3H), 7.17 (d, J = 2.5 Hz, 1H), 5.74 (br s, 0.66H, major), 5.70 (br s, 0.34H, minor), 5.09–4.86 (m, 2H), 3.90 (s, 3H), 3.74–3.50 (m, 3H), 3.43 (s, 1H), 3.22–3.05 (m, 1H), 2.74 (t, J = 12.7 Hz, 1H), 2.65 (s, 1H), 2.20–2.07 (m, 1H), 2.01–1.87 (m, 1H), 1.76 (d, J = 13.9Hz, 1H), 1.55 (t, J = 12.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 157.94 and 157.92, 147.7, 146.85 and 146.82, 144.35 and 144.32, 138.0 and 137.8, 131.8, 128.4 and 128.3, 128.1, 127.9 and 127.8, 127.7, 126.39 and 126.31, 121.7, 118.2 and 118.1, 101.03 and 101.00, 75.7 and 75.5, 72.0 and 71.8, 60.6 and 60.4, 56.6 and 55.8, 55.7 and 55.6, 43.43 and 43.40, 29.9, 29.7, 26.1 and 25.2, 24.7 and 24.1; HRMS (ESI+) calcd for C₂₅H₂₈N₃O₃ [M+H]⁺418.2125, found 418.2108 (error 2.8 ppm); $[\alpha]_{D}^{23} = -189$ (*c* 0.300, CHCl₃).

(R)-6-Methoxy-4-[((1S,2S,4S,5R)-5-vinyl-1-azabicyclo[2.2.2]octan-2-yl)tert-

butyldimethylsilyloxymethyl]quinoline (34). To a solution of quinine (6.28 g, 20.0 mmol, 1.0 equiv) in DMF (50 mL) was added imidazole (5.44 g, 80.0 mmol, 4.0 equiv) and TBDMSCl (9.10 g, 60.0

mmol, 3.0 equiv). The solution was stirred 5 h at 100 °C and worked up by adding toluene (50 mL) and washing with water (50 mL). The toluene was removed under reduced pressure and the crude oil was purified by flash chromatography (50:1 CH₂Cl₂–MeOH) to afford the title compund (9.11 g, 99%) as a white solid: mp 177–179 °C; R_f = 0.60 (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.73 (d, J = 4.5 Hz, 1H), 8.01 (d, J = 9.3 Hz, 1H), 7.77 (s, 1H), 7.49 (d, J = 4.5 Hz, 1H), 7.40 (dd, J = 9.3, 2.5 Hz, 1H), 6.79 (s, 1H), 5.56 (ddd, J = 17.2, 10.4, 6.8 Hz, 1H), 5.13–4.79 (m, 2H), 4.18 (s, 3H), 4.08 (s, 1H), 3.39 (t, J = 12.2 Hz, 1H), 3.26 (t, J = 9.6 Hz, 1H), 3.16 (d, J = 13.9 Hz, 2H), 2.70 (s, 1H), 2.26 (t, J = 11.0 Hz, 1H), 2.15–2.00 (m, 2H), 1.99–1.80 (m, 1H), 1.49 (t, J = 12.0 Hz, 1H), 1.01 (s, 9H), 0.39 (s, 3H), -0.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 146.6, 144.6, 144.1, 137.4, 131.8, 125.8, 123.5, 118.9, 117.5, 100.7, 67.7, 60.4, 58.1, 54.5, 42.9, 37.2, 26.9, 26.0, 24.7, 18.5, 18.0, -4.3, -4.5; HRMS (ESI+) calcd for C₂₆H₃₉N₂O₂Si [M+H] ⁺ 439.2775, found 439.2778 (error 0.5 ppm); [α]²³_D = -106 (c 0.600, CHCl₃).

(R)-4-[(1S,2S,4S,5R)-5-(1,2-Dihydroxyethyl)-1-azabicyclo[2.2.2]octan-2-yl]tert-

butyldimethylsilyloxymethyl-6-methoxyquinoline (35). Compound **34** (3.15 g, 7.18 mmol, 1.0 equiv) was added to a vigorously stirred two-phase system of K₂CO₃ (2.98 g, 21.5 mmol, 3.0 equiv) and K₃[Fe(CN)₆] (7.09 g, 21.5 mmol, 3.0 equiv) in *tert*-butyl alcohol/H₂O (1:1, 60 mL). After 45 min, an aqueous solution of osmium (VIII) oxide (0.30 mL, 2.5% in water) was added in small portions, and the reaction mixture was stirred for 16 h at room temperature. The reaction mixture was diluted with CH₂Cl₂ (200 mL) and washed successively with saturated aqueous NaHCO₃ (100 mL) and 10% aqueous NaHSO₃ (100 mL). The organic layer was dried over MgSO₄, filtered and the filtrate concentrated under reduced pressure. Purification by flash chromatography (10:1 CH₂Cl₂–MeOH) afforded the title compound (2.98 g, 88%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of quinioline H-2[′]) as a white solid: mp 225–226 °C; R_f = 0.45 (5:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz,

CDCl₃) δ 8.65 (s, 0.75H, major) , 8.57 (s, 0.25H, minor), 8.13–7.69 (m, 1H), 7.56–7.39 (m, 1H), 7.33 (d, J = 9.6 Hz, 1H), 7.24 (s, 1H), 5.61 (s, 1H), 3.92 (s, 2.2H, major), 3.88 (s, 0.8H, minor), 3.72–3.60 (m, 1H), 3.56 (s, 1H), 3.36 (d, J = 8.3 Hz, 1H), 3.28 (d, J = 9.8 Hz, 1H), 3.01 (s, 1H), 2.92 (d, J = 7.3 Hz, 1H), 2.85–2.65 (m, 1H), 2.60–2.55 (m, 1H), 2.37–2.00 (m, 2H), 1.92–1.82 (m, 1H), 1.72 (s, 1H), 1.63 (d, J = 11.2 Hz, 1H), 1.55 (s, 1H), 1.40 (d, J = 11.1 Hz, 1H), 1.20 (d, J = 7.0 Hz, 1H), 0.96 (s, 6.8H, major), 0.82 (s, 2.2H, minor), 0.10 (s, 2.2H, major), -0.01 (s, 0.8H, minor), -0.41 (s, 2.2H, major), -0.41 (s, 0.8H, minor); ¹³C NMR (100 MHz, CDCl₃) δ 158.1 and 156.7, 148.34 and 148.25, 147.2 and 147.1, 145.2 and 144.1, 131.6 and 131.2, 127.1 and 126.2, 121.6 and 121.5, 118.8 and 118.6, 100.9 and 100.8, 74.5 and 73.7, 72.6 and 72.3, 65.4 and 64.7, 61.6 and 60.9, 55.9 and 55.1, 43.4 and 43.3, 38.8 and 38.7, 28.6 and 28.1, 27.7 and 27.5, 26.0 and 25.8, 24.1 and 23.9, 22.5 and 21.0, 18.2 and 18.1, -4.2 and -4.6, -5.16 and -5.23; HRMS (ESI+) calcd for C₂₆H₄₁N₂O₄Si [M+H] +473.2830, found 473.2831 (error 0.2 ppm); [α]²³₂ = -102 (*c* 1.60, MeOH).

(R)-4-[((1S,2S,4S,5R)-5-(Z/E)-prop-1-en-1-yl)-1-azabicyclo[2.2.2]octan-2-yl)tert-

butyldimethylsilyloxymethyl]-6-methoxyquinoline (36). To a solution of **35** (823 mg, 1.74 mmol, 1.0 equiv) in *tert*-butanol (9 mL) was added a saturated solution of NaIO₄ (484 mg, 2.26 mmol, 1.3 equiv) in H₂O (3 mL) dropwise. The mixture was stirred vigorously for 16 h at at room temperature, treated with aqueous NaHCO₃ (10 mL), extracted with CH₂Cl₂ (3×20 mL), dried over MgSO₄, filtered, and the filtrate concentrated under redued pressure. Purification by flash chromatography (40:1 CH₂Cl₂–MeOH) afforded the intermediate aldehyde (587 mg, 79%) as an approximately 2:1 mixture of isomers (presumably epimers at C-3) as a white solid: R_f = 0.58 (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 9.72 (s, 0.6H, major), 9.62 (s, 0.4H, minor), 8.75–8.61 (m, 1H), 8.04–7.98 (m, 1H), 7.89–7.73 (m, 0.6H, major), 7.52–7.49 (m, 0.4H, minor), 7.45–7.33 (m, 1H), 7.15–7.10 (m, 1H), 5.73–5.47 (m, 1H), 3.96 (s, 1.8H, major), 3.94 (s, 1.2H, minor), 3.50–3.41 (m, 2H), 3.24 (dd, *J* = 13.6, 7.3 Hz, 1H),

3.12–2.99 (m, 1H), 2.95–2.85 (m, 1H), 2.77–2.57 (m, 1H), 2.45–2.25 (m, 1H), 2.04 (dd, *J* = 12.4, 8.6 Hz, 1H), 1.93–1.73 (m, 1H), 1.66–1.55 (m, 1H), 1.51–1.31 (m, 1H), 0.98 (s, 5.4H, major), 0.96 (s, 3.6H, minor), 0.18 (s, 1.8H, major), 0.15 (s, 1.2H, minor), –0.35 (s, 1.8H, major), –0.38 (s, 1.2H, minor). The resulting unstable aldehyde was immediately used in the next reaction.

To a stirred suspension of ethyltriphenylphosphonium bromide (2.05 g, 5.52 mmol, 4.0 equiv) in THF (30 mL) was added a solution of *n*-BuLi (2.5 M in Hexane, 1.93 mL, 4.82 mmol, 3.5 equiv) at 0 °C, and the resulting orange solution was stirred at 0 °C for 10 min. To the reaction mixture was added dropwise a solution of the aldehyde prepared above (587 mg, 1.38 mmol, 1.0 equiv) in THF (20 mL) via a double-tipped stainless steel needle at 0 °C. After stirring the reaction mixture for 12 h, the reaction was guenched with aqueous NaHCO₃ (20 mL), the aqueous mixture was extracted with EtOAc (3×30 mL), and the combined organic extracts were dried over Na₂SO₄, filtered, and the filtrate concentrated under reduced pressure. Purification by flash chromatography (50:1 CH₂Cl₂-MeOH) afforded the intermediate TBS protected olefin (418 mg, 67%, ¹H NMR indicates 1.1:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: mp 185–187 °C; $R_f = 0.55$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 4.5 Hz, 1H), 8.01 (d, J = 9.1 Hz, 1H), 7.61 (s, 1H), 7.50 (d, J = 4.5 Hz, 1H), 7.38 (dd, J = 9.1, 2.6 Hz, 1H), 5.58–5.27 (m, 1H), 5.11 (t, J = 10.0 Hz, 1H), 4.12 (s, 3H), 4.05-3.78 (m, 2H), 3.50-3.38 (m, 1H), 3.28-3.01 (m, 2H), 2.88 (br s, 2H), 2.25-2.10 (m, 2H), 2.05-1.70 (m, 3H), 1.55 (d, J = 8.4 Hz, 1.4H, minor), 1.55 (d, J = 8.4 Hz, 1.6H, major), 0.99 (s, 9H), 0.35 (s, 3H), -0.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4 and 159.2, 146.7 and 146.6, 144.6, 131.8, 130.8 and 130.6, 128.6, 127.8, 125.8, 123.22 and 123.21, 119.01 and 118.95, 100.63 and 100.58, 68.2, 60.8, 58.0, 57.3, 42.9, 31.7, 29.7, 26.7, 26.0, 25.8, 25.2, 19.1, 18.0, 13.2, -4.3, -4.4; HRMS (ESI+) calcd for C₂₇H₄₁N₂O₂Si [M+H]⁺ 453.2932, found 453.2932 (error 0.0 ppm); $[\alpha]_D^{23} = -103$ (*c* 0.600, CHCl₃).

6-Methoxy-(*R*)-4-{((1*S*,2*S*,4*S*,5*S*)-5-[((*Z*/*E*)-prop-1-en-1-yl)-1-azabicyclo[2.2.2]octan-2-

yllhydroxymethyl}quinoline (37). The intermediate TBS protected olefin product 36 prepared above (500 mg, 1.10 mmol) was submitted to the general procedure for TBS deprotection employing TBAF (1.11 mL, 1.11 mmol) to afford the title compound (340 mg, 91%, ¹H NMR indicates 1.1:1 diastereomeric ratio through the integral value of -CHOH) as a white solid: HPLC purity 99.8% (two isomers, 52.2% and 47.7%), $t_{\rm R} = 19.3$ and 19.5 min; mp 188–189 °C; $R_f = 0.45$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.70–8.64 (m, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.53 (d, J = 4.5 Hz, 0.45H, minor), 7.51 (d, J = 4.5 Hz, 0.55H, major), 7.32 (d, J = 9.2 Hz, 1H), 7.23 (s, 0.55H, major), 7.22 (s, 0.45H, minor), 5.63 (br s, 0.45H, minor), 5.56 (br s, 0.55H, major), 5.52-5.42 (m, 0.9H, minor), 5.42-5.29 (m, 1.1H, major), 3.88 (s, 3H), 3.47 (br s, 1H), 3.22-3.07 (m, 2H), 2.75-2.69 (m, 1H), 2.54 (d, J =12.9 Hz, 2H), 2.41 (q, J = 7.7 Hz, 1H), 1.87 (t, J = 10.9 Hz, 1H), 1.77–1.62 (m, 2H), 1.60–1.49 (m, 3H), 1.42 (dd, J = 16.4, 8.5 Hz, 1H), 1.27 (d, J = 15.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.77 and 157.75, 147.66 and 147.64, 147.50 and 147.46, 144.32 and 144.28, 134.3 and 132.9, 131.69 and 131.67, 126.66 and 126.62, 125.0 and 124.6, 121.5, 118.5, 101.3, 72.0 and 71.9, 60.1 and 59.5, 58.8 and 57.8, 55.71 and 55.68, 44.1 and 43.2, 33.6 and 32.8, 28.3 and 27.7, 27.5 and 27.1, 22.0 and 21.4, 13.2 and 13.1; HRMS (ESI+) calcd for $C_{21}H_{27}N_2O_2$ [M+H]⁺ 339.2067, found 339.2072 (error 4.4 ppm); $[\alpha]_D^{23} = -$ 97.5 (c 0.300, CHCl₃).

(R)-4-[(1S,2S,4S,5R)-5-(1,2-Dihydroxyethyl)-1-azabicyclo[2.2.2]octan-2-yl]hydroxymethyl-6-

methoxyquinoline (38). Compound **38** was prepared following the general procedure for TBS deprotection employing **35** (670 mg, 1.42 mmol) and TBAF (1.43 mL, 1.43 mmol) to afford the title compound (346 mg, 68%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of - CHOH) as a white solid: HPLC purity 98.1% (two isomers), $t_R = 5.5$ min; mp 240–241 °C, lit. mp 221 °C⁶⁶; $R_f = 0.23$ (5:1 CH₂Cl₂–MeOH); IR (KBr) γ_{max} 3351, 2944, 1621, 1511, 1096, 831, 622; ¹H NMR

(400 MHz, CD₃OD) δ 8.63 (d, J = 4.6 Hz, 1H), 7.90 (d, J = 9.2 Hz, 0.25H, minor), 7.89 (d, J = 9.2 Hz, 0.75H, major), 7.70 (d, J = 4.6 Hz, 0.25H, minor), 7.69 (d, J = 4.6 Hz, 0.75H, major), 7.46 (d, J = 2.6 Hz, 1H), 7.37 (dd, J = 9.2, 2.6 Hz, 0.25H, major), 7.36 (dd, J = 9.2, 2.6 Hz, 0.75H, major), 5.88 (br s, 0.75H, major), 5.81 (br s, 0.25H, minor), 3.99 (s, 2H, major), 3.98 (s, 1H, minor), 3.62–3.45 (m, 1H), 3.52–3.36 (m, 1H), 3.32–3.08 (m, 5H), 3.08–2.75 (m, 1H), 2.10–1.80 (m, 4H), 1.69–1.60 (m, 2H), 1.40 (dt, J = 14.8, 7.4 Hz, 2H), 1.23–1.03 (m, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 158.49 and 158.47, 148.2 and 147.9, 146.6, 143.2, 129.9, 126.5 and 126.4, 122.14 and 122.11, 118.8 and 118.7, 101.08 and 101.01, 73.4 and 72.9, 69.2 and 69.0, 64.6 and 64.1, 60.0 and 59.7, 55.50 and 55.46, 53.7 and 53.2, 43.3 and 43.2, 37.1 and 36.9, 26.2 and 26.0, 24.6 and 23.3, 19.8 and 19.6; HRMS (ESI+) calcd for C₂₀H₂₇N₂O₄ [M+H]⁺ 359.1965, found 359.1949 (error 4.7 ppm); $[\alpha]_D^{23} = -136$ (*c* 0.600, CHCl₃), lit $[\alpha]_D^{23} = -140^{66}$. All spectroscopic data were in agreement with the literature values.⁶⁷

(R)-4-((1S,2S,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

hydroxyquinoline (39, Apo-cupreine). Compound 39 was prepared following the general procedure for C-6 phenol demethylation alkaloids employing 15 (200 mg, 0.616 mmol), NaH (50 mg, 1.3 mmol) and EtSH (0.14 mL, 1.9 mmol) to afford the title compound (168 mg, 87%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =CH-CH₃) as a light yellow solid: HPLC purity 96.7% (two isomers, 7.0% and 89.7%), t_R = 16.0 and 16.7 min; mp 211–212 °C, lit. mp 205 °C⁶⁶; R_f = 0.44 (5:1 CH₂Cl₂/MeOH); IR (KBr) γ_{max} 3230, 2943, 1621, 1469, 1224, 859, 644; ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.17 (br s, 0.25H), 10.16 (br s, 0.75H), 8.67 (d, *J* = 4.3 Hz, 1H), 7.90 (d, *J* = 9.1 Hz, 1H), 7.55–7.49 (m, 2H), 7.39 (d, *J* = 9.1 Hz, 1H), 6.47 (br s, 1H), 5.99 (br s, 1H), 5.41 (d, *J* = 7.5 Hz, 0.75H, major), 5.34 (d, *J* = 7.5 Hz, 0.25H, minor), 4.29–3.83 (m, 3H), 3.56–3.46 (m, 1H), 3.40–3.25 (m, 1H), 2.60–2.58 (m, 1H), 2.20 (t, *J* = 10.6 Hz, 1H), 2.04–2.00 (m, 1H), 1.77–1.73 (m, 1H), 1.56 (d, *J* = 6.8 Hz, 0.8H, minor), 1.49 (d, *J* = 6.8 Hz, 2.2H, major), 1.28–1.24 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 156.4,

147.1, 143.4, 131.8, 131.7, 126.5, 122.0, 119.3, 118.3, 105.3, 105.1, 66.7, 60.5, 60.3, 54.6, 44.3, 31.3, 24.6, 12.8; HRMS (ESI+) calcd for $C_{19}H_{23}N_2O_2$ [M+H]⁺ 311.1754, found 311.1739 (error 4.8 ppm); [α] $^{23}_{D} = -163$ (*c* 0.800, MeOH), lit [α]²³_D = -215 (*c* 1.0, EtOH)⁴³.

6-Ethoxy-(R)-4-[((1S,2S,4S,5Z/E)-5-ethylidene-1-azabicyclo[2.2.2]octan-2-

yl)ydroxymethyl]quinoline (40). Compound 40 was prepared following the general procedure for C-6 phenol alkylation employing 39 (100 mg, 0.322 mmol) and bromoethane (29 µL, 0.39 mmol) to afford the title compound (101 mg, 93%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: HPLC purity 97.9% (two isomers, 14.6% and 83.3%), $t_R = 21.3$ and 22.2 min; mp 190–191 °C; $R_f = 0.49$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 4.5 Hz, 0.75H, major), 8.64 (d, J = 4.5 Hz, 0.25H, minor), 7.67 (d, J = 9.2 Hz, 1H), 7.64 (d, J = 4.5 Hz, 1H), 6.94 (dd, J = 9.2, 2.5 Hz, 1H), 6.82 (d, J = 2.5 Hz, 1H), 6.48 (s, 1H), 5.38 (q, J = 7.0 Hz, 0.75H, major), 5.30 (q, J = 7.0 Hz, 0.25H, minor), 4.73–4.50 (m, 1H), 3.92–3.81 (m, 1H), 3.82–3.73 (m, 2H), 3.71–3.54 (m, 1H), 3.43–3.26 (m, 1H), 3.16 (td, J = 12.5, 5.1 Hz, 1H), 2.55 (s, 1H), 2.41–2.10 (m, 2H), 1.91–1.75 (m, 1H), 1.53 (d, J = 6.9 Hz, 0.8 Hz, minor), 1.45 (d, J = 6.9 Hz, 2.2H, major), 1.33 (t, J = 6.9 Hz, 3H), 1.25–1.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 146.8, 143.8, 143.7, 131.3, 125.2, 122.5, 120.2, 118.5, 118.4, 99.9, 66.2, 64.9, 61.1, 55.9, 45.0, 31.5, 24.6, 23.7, 14.6, 12.8; HRMS (ESI+) calcd for C₂₁H₂₇N₂O₂ [M+H] + 339.2067, found 339.2058 (error 2.6 ppm); [α]²³_D = -64.0 (*c* 0.300, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-(2,2,2-

trifluoroethoxy)quinoline (41). Compound 41 was prepared following the general procedure for C-6 phenol alkylation employing 39 (85 mg, 0.27 mmol, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =CH-CH₃) and 1,1,1-trifluoro-2-iodoethane (32 μ L, 0.33 mmol) to afford the title compound (8 mg, 7%) as a white solid: HPLC purity 97.2% (two isomers), t_R = 17.8 min; mp 174–

175 °C; R_f = 0.50 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 4.5 Hz, 0.25H, minor), 8.69 (d, J = 4.5 Hz, 0.75H, major), 7.66 (d, J = 4.5 Hz, 1H), 7.63 (d, J = 9.1 Hz, 1H), 7.00–6.86 (m, 2H), 6.53 (br s, 0.25H, minor), 6.51 (br s, 0.75H, major), 6.20 (br s, 1H), 5.51–5.20 (m, 1H), 4.65 (td, J = 12.7, 7.0 Hz, 1H), 4.57–4.41 (m, 1H), 4.39–4.18 (m, 1H), 3.87–3.72 (m, 2H), 3.37–3.10 (m, 2H), 2.57 (s, 1H), 2.40–2.14 (m, 2H), 2.05–2.00 (m, 1H), 1.94–1.77 (m, 1H), 1.53 (d, J = 6.9 Hz, 0.8H, minor), 1.46 (d, J = 6.9 Hz, 2.2H, major); ¹³C NMR (100 MHz, CDCl₃) δ 155.5 and 155.3, 148.1 and 147.9, 144.4 and 143.9, 132.1 and 131.81, 131.78 and 130.0, 129.2, 125.0, 124.5, 122.2 (q, J = 277.7 Hz), 120.7 and 120.6, 118.63 and 118.55, 100.3, 66.0 (q, J = 34.5 Hz), 60.9 and 60.7, 57.5 and 55.9, 45.2 and 44.9, 31.9 and 31.3, 29.3 and 27.2, 25.5 and 24.52, 24.45 and 23.5, 22.8 and 22.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –73.08 (t, J = 8.2 Hz) and –73.09 (t, J = 8.2 Hz); HRMS (ESI+) calcd for C₂₁H₂₄N₂O₂F₃ [M+H]⁺ 393.1784, found 393.1774 (error 2.7 ppm); [α]_D²³ = –196 (*c* 0.800, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

propoxyquinoline (42). Compound **42** was prepared following the general procedure for C-6 phenol alkylation employing **39** (100 mg, 0.322 mmol) and 1-bromopropane (36 µL, 0.39 mmol) to afford the title compound (92 mg, 81%, ¹H NMR indicates 5:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: HPLC purity 99.0% (two isomers, 14.9% and 84.2%), $t_R = 25.8$ and 26.8 min; mp 185–187 °C; $R_f = 0.54$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 4.5 Hz, 1H), 7.77 (d, J = 9.2 Hz, 1H), 7.59 (d, J = 4.5 Hz, 1H), 7.09 (d, J = 9.2 Hz, 1H), 6.97 (br s, 1H), 6.19 (br s, 1H), 5.30 (q, J = 6.6 Hz, 0.83H, major), 5.23 (q, J = 6.6 Hz, 0.17H, minor), 3.94–3.53 (m, 4H), 3.28 (t, J = 8.5 Hz, 1H), 3.11–2.96 (m, 1H), 2.48 (s, 1H), 2.23–1.95 (m, 2H), 1.85–1.63 (m, 3H), 1.53 (d, J = 6.8 Hz, 0.5H), 1.46 (d, J = 6.8 Hz, 2.5H), 1.35–1.23 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 147.12, 147.06, 143.8, 131.4, 125.7, 122.3, 122.2, 118.43, 118.37,

100.6, 70.3, 61.0, 60.6, 56.2, 44.7, 32.2, 29.7, 25.7, 22.5, 12.7, 10.7; HRMS (ESI+) calcd for $C_{22}H_{29}N_2O_2 [M+H]^+$ 353.2224, found 353.2217 (error 1.7 ppm); $[\alpha]_D^{23} = -104$ (*c* 0.500, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

isopropoxyquinoline (43). Compound 43 was prepared following the general procedure for C-6 phenol alkylation employing 39 (100 mg, 0.322 mmol) and 2-bromopropane (38 μL, 0.39 mmol) to afford the title compound (83 mg, 73%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: HPLC purity 97.6% (two isomers, 17.6% and 80.0%), t_R = 23.5 and 24.4 min; mp 180–181 °C; R_f = 0.56 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 4.5 Hz, 1H), 7.67 (d, *J* = 9.0 Hz, 1H), 7.61 (d, *J* = 4.5 Hz, 1H), 7.02–6.88 (m, 2H), 6.52 (br s, 1H), 5.36 (q, *J* = 6.4 Hz, 0.75H, major), 5.30 (q, *J* = 6.4 Hz, 0.25H, minor), 4.94–4.74 (m, 1H), 4.58 (t, *J* = 13.2 Hz, 1H), 3.89–3.62 (m, 2H), 3.36 (t, *J* = 9.3 Hz, 1H), 3.27–3.08 (m, 1H), 2.64–2.53 (m, 1H), 2.34–2.11 (m, 2H), 1.53 (d, *J* = 6.9 Hz, 0.8H, minor), 1.44 (d, *J* = 6.9 Hz, 2.2H, major), 1.36 (d, *J* = 6.0 Hz, 3H), 1.27 (d, *J* = 5.9 Hz, 3H), 1.26–1.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 146.8, 143.6, 143.4, 131.4, 125.1, 123.3, 120.3, 118.30, 118.26, 101.1, 69.6, 66.4, 61.4, 55.9, 44.9, 31.5, 24.6, 23.7, 22.3, 21.0, 12.7; HRMS (ESI+) calcd for C₂₂H₂₉N₂O₂ [M+H]⁺ 353.2224, found 353.2220 (error 1.1 ppm); [α]²³_D = -46.1 (*c* 0.300, CHCl₃).

6-Allyloxy-(R)-4-[((1S,2S,4S,5Z/E)-5-ethylidene-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (44). Compound 44 was prepared following the general procedure for C-6 phenol alkylation employing **39** (100 mg, 0.322 mmol) and allyl bromide (33 μ L, 0.387 mmol) to afford the title compound (98 mg, 87%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: HPLC purity 96.8% (two isomers, 17.6% and 79.2%), t_R = 22.5 and 23.5 min; mp 177–179 °C; R_f = 0.50 (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, *J* = 4.4 Hz, 1H), 7.71 (d, *J* = 9.2 Hz, 1H), 7.63 (d, *J* = 4.4 Hz, 1H), 7.04 (dd, *J* = 9.2, 2.5 Hz, 1H), 6.87 (d, *J* =

 2.5 Hz, 1H), 6.56 (s, 1H), 6.10–6.03 (m, 1H), 5.45 (d, J = 17.2 Hz, 1H), 5.42 (q, J = 6.2 Hz, 0.75H, major), 5.34 (q, J = 6.2 Hz, 0.25H, minor), 5.22 (d, J = 10.7 Hz, 1H), 4.65–4.60 (m, 1H), 4.45 (q, J = 17.5 Hz, 2H), 3.82 (q, J = 16.2 Hz, 2H), 3.35 (t, J = 9.1 Hz, 1H), 3.26–3.10 (m, 1H), 2.56 (s, 1H), 2.36–2.13 (m, 2H), 1.90–1.82 (m, 1H), 1.53 (d, J = 6.8 Hz, 0.8H, minor), 1.46 (d, J = 6.8 Hz, 2.2H, major), 1.25–1.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 147.1, 143.8, 143.6, 133.3, 131.5, 130.2, 125.1, 122.5, 120.5, 118.6, 116.3, 100.5, 69.6, 66.2, 61.2, 56.0, 45.1, 31.5, 24.5, 23.8, 12.8; HRMS (ESI+) calcd for C₂₂H₂₇N₂O₂ [M+H]⁺ 351.2067, found 351.2660 (error 2.0 ppm); $[\alpha]_D^{23} = -7.8$ (*c* 0.30, CHCl₃).

(R)-4-((1S,2S,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-[(2R/S)-2-

hydroxy-1-(methyl)ethoxylquinoline (45). Compound **45** was prepared following the general procedure for C-6 phenol alkylation employing **39** (82 mg, 0.26 mmol) and 2-iodopropan-1-ol (93 mg, 0.32 mmol) to afford the title compound (60 mg, 62%, HPLC peak area indicates 0.2:1:0.4:1 diastereomeric ratio) as a white solid: HPLC purity (four isomers, 7.2%, 36.6%, 16.0% and 39.5%; total 99.3%), $t_R = 17.2$, 17.7, 18.7 and 19.2 min; mp 197–199 °C; $R_f = 0.34$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 4.5 Hz, 1H), 7.94 (d, J = 9.2 Hz, 1H), 7.58–7.53 (m, 1H), 7.33–7.26 (m, 3H), 5.93 (br s, 0.4H, minor), 5.83 (br s, 0.6H, major), 5.23–4.92 (m, 1H), 4.65 (q, J = 5.8 Hz, 1H), 3.96–3.80 (m, 1H), 3.74–3.60 (m, 1H), 3.56–3.30 (m, 1H), 3.32–3.26 (m, 1H), 3.23–2.92 (m, 1H), 2.89–2.64 (m, 1H), 2.34 (d, J = 7.1 Hz, 1H), 2.17–1.92 (m, 1H), 1.93–1.73 (m, 1H), 1.65–1.50 (m, 1H), 1.53–1.29 (m, 6H), 1.25–1.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.5 and 156.2, 147.69 and 147.65, 147.5 and 147.1, 144.1 and 144.0, 131.8 and 131.7, 126.1, 123.0 and 122.5, 118.27 and 118.22, 118.18, 116.1 and 115.7, 103.4 and 103.1, 75.4 and 75.3, 70.8 and 70.3, 65.6 and 65.3, 60.63 and 60.59, 60.2 and 58.8, 56.5 and 56.3, 44.3 and 44.2, 33.0 and 32.8, 27.1 and 27.0, 26.2 and 25.9, 12.4 and 12.3;

HRMS (ESI+) calcd for $C_{22}H_{29}N_2O_3$ [M+H] + 369.2173, found 369.2160 (error 3.4 ppm); $[\alpha]_D^{23} = -159$ (*c* 0.400, CHCl₃).

6-Butoxy-(R)-4-[((1S,2S,4S,5Z/E)-5-ethylidene-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (46). Compound 46 was prepared following the general procedure for C-6 phenol alkylation employing **39** (100 mg, 0.322 mmol) and 1-bromobutane (42 µL, 0.39 mmol) to afford the title compound (103 mg, 87%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: HPLC purity 96.9% (two isomers, 30.2% and 66.7%), t_R = 18.8 and 19.3 min; mp 180–181 °C; R_f = 0.53 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 4.5 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.60 (d, *J* = 4.5 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.87 (s, 1H), 6.32 (br s, 1H), 5.34 (q, *J* = 6.9 Hz, 0.75H, major), 5.30 (q, *J* = 6.9 Hz, 0.25H, minor), 4.55–4.41 (m, 1H), 3.97–3.58 (m, 4H), 3.30 (t, *J* = 8.8 Hz, 1H), 3.15–3.00 (m, 1H), 2.51 (s, 1H), 2.31–2.04 (m, 2H), 1.87–1.67 (m, 3H), 1.58–1.49 (m, 2H), 1.45 (d, *J* = 6.8 Hz, 3H), 1.30–1.19 (m, 2H), 1.00 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 146.9, 144.5, 143.7, 131.3, 125.4, 122.3, 119.2, 118.43, 118.37, 100.2, 68.9, 61.0, 60.7, 56.1, 44.8, 31.9, 31.3, 29.7, 24.9, 19.5, 14.2, 12.7; HRMS (ESI+) calcd for C₂₃H₃₁N₂O₂ [M+H]⁺ 367.2380, found 367.2375 (error 1.3 ppm); [α]²³/_D = -76.2 (*c* 0.300, CHCl₃).

6-Cyclopropylmethoxy-(R)-4-[((1S,2S,4S,5Z/E)-5-ethylidene-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (47). Compound 47 was prepared following the general procedure for C-6 phenol alkylation employing **39** (85 mg, 0.27 mmol) and cyclopropylmethyl bromide (32 μ L, 0.33 mmol) to afford the title compound (78 mg, 78%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: HPLC purity 96.1% (two isomers, 23.1% and 73.0%), t_R = 20.5 and 21.5 min; mp 183–185 °C; R_f = 0.50 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 4.4 Hz, 0.75H, major), 8.65 (d, *J* = 4.4 Hz, 0.25H, minor), 7.92 (d, *J* = 9.2, 0.75H, major), 7.91 (d, *J* = 9.2 Hz, 0.25H, minor), 7.52 (d, *J* = 4.4 Hz, 1H), 7.29 (dd, *J* = 9.1, 2.5 Hz, 1H), 7.14 (d, *J* =

2.5 Hz, 0.75H, major), 7.10 (d, J = 2.5 Hz, 0.25H, minor), 5.78 (s, 1H), 5.22 (q, J = 6.7 Hz, 0.75H, major), 5.13 (q, J = 6.7 Hz, 0.25H, minor), 3.94–3.80 (m, 1H), 3.77–3.69 (m, 2H), 3.78–3.70 (m, 2H), 3.21–3.05 (m, 1H), 2.88–2.77 (m, 1H), 2.38 (s, 1H), 2.10–1.92 (m, 1H), 1.83 (t, J = 10.7 Hz, 1H), 1.69–1.57 (m, 1H), 1.52 (d, J = 6.8 Hz, 0.8H), 1.44 (d, J = 6.8 Hz, 2.2H), 1.43–1.23 (m, 2H), 0.64 (q, J = 8.0 Hz, 2H), 0.38 (q, J = 5.0, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 147.5, 146.6, 144.1, 131.6, 126.3, 122.1, 118.49, 118.45, 115.8, 101.7 and 101.6, 73.3 and 73.2, 70.9, 60.8 and 60.4, 58.8 and 56.6, 44.2, 33.0, 27.2, 25.7, 12.7 and 12.5, 10.2, 3.32, 3.26; HRMS (ESI+) calcd for C₂₃H₂₉N₂O₂ [M+H]⁺ 365.2224, found 365.2211 (error 3.4 ppm); $[\alpha]_D^{23} = -129$ (*c* 0.500, CHCl₃).

6-Cyclobutoxy-(R)-4-[((1S,2S,4S,5Z/E)-5-ethylidene-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (48). Compound **48** was prepared following the general procedure for C-6 phenol alkylation employing **39** (85 mg, 0.27 mmol) and bromocyclobutane (31 μL, 0.33 mmol) to afford the title compound (79 mg, 79%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: HPLC purity 98.2% (two isomers, 33.1% and 65.1%), t_R = 22.3 and 23.2 min; mp 179–183 °C; R_f = 0.52 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.72–8.65 (m, 1H), 7.92 (d, *J* = 9.2 Hz, 0.75H, major), 7.91 (d, *J* = 9.2 Hz, 0.25H, minor), 7.56 (d, *J* = 4.5 Hz, 1H), 7.22–7.16 (m, 1H), 7.01 (s, 0.75H, major), 6.97 (s, 0.25H, minor), 6.10–5.79 (m, 1H), 5.24 (q, *J* = 6.8 Hz, 0.75H, major), 5.18 (q, *J* = 6.8 Hz, 0.25H, minor), 4.70–4.57 (m, 1H), 3.93 (br s, 1H), 3.54 (q, *J* = 17.2 Hz, 2H), 3.18 (t, *J* = 9.9 Hz, 1H), 2.97–2.76 (m, 1H), 2.59–2.38 (m, 3H), 2.15–2.06 (m, 3H), 1.95–1.85 (m, 1H), 1.82–1.62 (m, 3H), 1.52 (d, *J* = 7.6 Hz, 0.8H, minor), 1.44 (d, *J* = 7.6 Hz, 2.2H, major), 1.40–1.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 147.4, 146.1, 144.07 and 144.04, 131.7, 126.2, 122.2, 118.52, 118.49, 116.6, 102.1 and 102.0, 71.5, 70.2, 60.9 and 60.5, 58.7, 56.5, 44.4, 32.8, 30.5 and 30.1, 26.8, 25.6, 13.4, 12.7 and 12.5; HRMS (ESI+) calcd for C₂₃H₂₉N₂O₂ [M+H] + 365.2224, found 365.2218 (error 1.5 ppm); [α]₂²³ = -85.0 (*c* 0.400, CHCl₃).
6-Cyclobutoxy-(R)-4-[((1S,2S,4S,5Z)-5-ethylidene-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (Z-48) and 6-Cyclobutoxy-(R)-4-[((1S,2S,4S,5E)-5-ethylidene-1azabicyclo[2.2.2]octan-2-yl)hydroxymethyl]quinoline (E-48). The mixture of diastereomeric Z-48 and E-48 (500 mg) was separated by preparative reverse-phase on an Ultimate XB 10 µm C18 250 × 50 mm column employing Method A to afford Z-48 (122 mg) and E-48 (51 mg).

Z-48: HPLC purity 98.4%, t_R = 22.3 min; mp 181–183 °C; $R_f = 0.52$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 4.5 Hz, 1H), 7.94 (d, J = 9.2 Hz, 1H), 7.48 (d, J = 4.5 Hz, 1H), 7.39–7.13 (m, 1H), 7.08 (d, J = 2.7 Hz, 1H), 5.60 (d, J = 4.0 Hz, 1H), 5.15 (q, J = 6.6 Hz, 1H), 4.65 (quint, J = 7.1 Hz, 1H), 3.60–3.50 (m, 1H), 3.49–3.29 (m, 2H), 3.07 (td, J = 9.1, 3.9 Hz, 1H), 2.83–2.60 (m, 1H), 2.59–2.35 (m, 3H), 2.32 (q, J = 2.4 Hz, 1H), 2.25–2.02 (m, 2H), 1.98–1.78 (m, 2H), 1.79–1.62 (m, 2H), 1.62–1.51 (m, 1H), 1.42 (dd, J = 6.7, 1.6 Hz, 3H), 1.38–1.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 147.5, 147.4, 144.1, 140.9, 131.6, 126.5, 121.9, 118.5, 114.7, 102.8, 72.2, 71.7, 60.7, 56.8, 44.1, 33.4, 30.6, 30.2, 28.1, 27.9, 13.4, 12.4; NOE ¹H NMR (400 MHz, CDCl₃) δ irradiate 5.15 (enhancements at 2.32, 1.42); irradiate 3.35 (enhancements at 3.07, 2.71, 1.42); irradiate 1.42 (enhancements at 5.15, 3.35); HRMS (ESI+) calcd for C₂₃H₂₉N₂O₂ [M+H] ⁺ 365.2224, found 365.2215 (error 2.3 ppm); [α]²³₂ = – 178 (*c* 0.900, CHCl₃).

E-48: HPLC purity 98.9%, $t_R = 23.2$ min; mp 185–186 °C; $R_f = 0.52$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 4.5 Hz, 1H), 7.97 (d, J = 9.2 Hz, 1H), 7.51 (d, J = 4.5 Hz, 1H), 7.27 (d, J = 6.8 Hz, 1H), 7.07 (d, J = 2.7 Hz, 1H), 5.63 (d, J = 4.1 Hz, 1H), 5.10 (q, J = 6.6 Hz, 1H), 4.66 (quint, J = 7.1 Hz, 1H), 3.75–3.45 (m, 1H), 3.46–3.24 (m, 2H), 3.09 (td, J = 9.1, 4.0 Hz, 1H), 2.87–2.64 (m, 2H), 2.50–2.40 (m, 2H), 2.29–2.06 (m, 2H), 1.95–1.80 (m, 2H), 1.79–1.57 (m, 2H), 1.57–1.52 (m, 1H), 1.51 (dd, J = 6.9, 2.0 Hz, 3H), 1.34 (td, J = 9.6, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 147.6, 147.2, 144.1, 139.9, 131.7, 126.5, 122.0, 118.4, 114.4, 102.7, 72.2, 71.8, 60.3, 59.3, 44.2, 30.6,

30.2, 27.2, 26.5, 26.0, 13.4, 12.7; NOE ¹H NMR (400 MHz, CDCl₃) δ irradiate 5.10 (enhancements at 3.35, 1.51); irradiate 3.35 (enhancements at 5.10, 3.09, 2.76); irradiate 1.51 (enhancements at 5.10, 2.76, 1.55); HRMS (ESI+) calcd for C₂₃H₂₉N₂O₂ [M+H] + 365.2224, found 365.2217 (error 1.9 ppm); $[\alpha]_D^{23} = -202$ (*c* 0.300, CHCl₃).

6-Cyclopentoxy-(R)-4-[((1S,2S,4S,5Z/E)-5-ethylidene-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (49). Compound 49 was prepared following the general procedure for C-6 phenol alkylation employing **39** (100 mg, 0.322 mmol) and bromocyclopentane (41 µL, 0.39 mmol) to afford the title compound (108 mg, 89%, ¹H NMR indicates 4:1 diastereomeric ratio through the integral value of =CH-CH₃) as a white solid: HPLC purity 98.5% (two isomers, 21.0% and 77.5%), $t_R = 25.8$ and 27.1 min; mp 186–187 °C; $R_f = 0.53$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, J = 4.4 Hz, 1H), 7.94 (d, J = 9.1 Hz, 1H), 7.54 (d, J = 4.4 Hz, 1H), 7.28–7.21 (m, 1H), 7.15 (s, 0.8H, major), 7.12 (s, 0.2H, minor), 5.79 (s, 1H), 5.20 (d, J = 7.0 Hz, 0.8H, major), 5.14 (d, J = 7.0 Hz, 1H), 2.87 (s, 1H), 2.08–1.68 (m, 8H), 1.64–1.55 (m, 3H), 1.52 (d, J = 6.8 Hz, 0.6H), 1.44 (d, J = 6.8 Hz, 2.4H), 1.36 (t, J = 11.6 Hz, 1H), 1.28–1.20 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 147.4, 146.6, 144.0, 131.6, 126.3, 122.7, 118.4, 115.7, 102.9, 102.8, 79.5, 71.3, 60.8, 56.7, 44.2, 33.1, 32.9, 32.5, 29.7, 27.5, 27.3, 24.1, 12.4; HRMS (ESI+) calcd for C₂₄H₃₁N₂O₂ [M+H] + 379.2380, found 379.2369 (error 2.8 ppm); [α]²³_D = –126 (*c* 0.700, CHCl₃).

6-Benzyloxy-(R)-4-[((1S,2S,4S,5Z/E)-5-ethylidene-1-azabicyclo[2.2.2]octan-2-

yl)hydroxymethyl]quinoline (50). Compound 50 was prepared following the general procedure for C-6 phenol alkylation employing 39 (100 mg, 0.322 mmol) and benzyl bromide (46 μ L, 0.39 mmol) to afford the title compound (105 mg, 81%, ¹H NMR indicates 3:1 diastereomeric ratio through the integral value of quinioline H-5[']) as a white solid: HPLC purity 98.6% (two isomers, 11.2% and 87.4%), t_R =

24.6 and 24.9 min; mp 197–199 °C; $R_f = 0.49$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, J = 4.4 Hz, 1H), 7.74 (d, J = 9.2 Hz, 1H), 7.64–7.52 (m, 3H), 7.43–7.35 (m, 2H), 7.30 (d, J =4.4 Hz, 1H), 7.12 (dd, J = 9.2, 2.8 Hz, 1H), 7.03 (s, 0.8H, major), 7.00 (s, 0.2H, minor), 6.62 (s, 1H), 5.33 (q, J = 6.9 Hz, 0.8H, major), 5.26 (q, J = 6.9 Hz, 0.2H, minor), 5.16 (d, J = 13.0 Hz, 1H), 4.96 (d, J =13.0 Hz, 1H), 4.63 (t, J = 7.5 Hz, 1H), 3.72 (q, J = 16.1 Hz, 2H), 3.31 (t, J = 9.3 Hz, 1H), 3.22–3.14 (m, 1H), 2.54 (s, 1H), 2.37–2.08 (m, 2H), 1.90–1.81 (m, 1H), 1.51 (d, J = 6.8 Hz, 0.6H, minor), 1.45 (d, J = 6.8 Hz, 2.4H, major), 1.25–1.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 147.2, 143.9, 143.7, 137.2, 131.6, 128.3, 127.4, 127.04, 126.98, 125.1, 122.7, 120.4, 118.6, 100.5, 70.6, 66.1, 61.2, 56.0, 45.2, 31.5, 24.6, 23.8, 12.9; HRMS (ESI+) calcd for C₂₆H₂₉N₂O₂ [M+H] + 401.2224, found 401.2216 (error 1.9 ppm); [α]²³_D = -182 (*c* 0.200, CHCl₃).

(S)-4-((1S,2R,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)hydroxymethyl-6-

methoxyquinoline (52). Compound **52** was prepared following the general procedure for olefin migration employing quinidine **51** (232 mg, 0.715 mmol) to afford the title compound (205 mg, 88%, ¹H NMR indicates 4:1 diastereomeric ratio through the integral value of =C**H**-CH₃) as a white solid: HPLC purity 99.4% (two isomers, 21.6% and 77.8%), $t_R = 17.5$ and 18.0 min; mp 199–200 °C, lit. mp 178–181 °C⁶⁸; $R_f = 0.50$ (10:1 CH₂Cl₂/MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 4.5 Hz, 1H), 7.94 (d, J = 9.2 Hz, 1H), 7.48 (d, J = 4.5 Hz, 1H), 7.28 (dd, J = 9.2, 2.7 Hz, 1H), 7.20 (d, J = 2.7 Hz, 1H), 5.66 (t, J = 5.3 Hz, 1H), 5.26–5.19 (m, 0.8H, major), 5.16–5.11 (m, 0.2H, minor), 4.13 (d, J = 17.2 Hz, 1H), 3.84 (s, 3H), 3.31 (d, J = 17.2 Hz, 1H), 3.20 (td, J = 8.9, 4.0 Hz, 1H), 2.91 (ddt, J = 12.7, 5.8, 3.0 Hz, 1H), 2.76 (ddd, J = 13.2, 9.9, 7.5 Hz, 2H), 2.42–2.24 (m, 1H), 2.06–1.83 (m, 1H), 1.58 (ddd, J = 10.5, 5.8, 2.3 Hz, 2H), 1.50 (d, J = 6.8 Hz, 3H), 1.42 (td, J = 9.3, 4.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 147.6, 147.5, 144.2, 141.2, 131.6, 126.5, 121.6, 118.5, 113.6, 101.2, 71.8, 59.6, 55.3, 52.4 and 51.3, 51.0 and 50.1, 33.4, 27.5, 27.2 and 26.2, 12.8 and 12.4; HRMS (ESI+) calcd for C₂₀H₂₅N₂O₂

 0.40, EtOH)⁶⁸. All NMR data were in agreement with the literature values.⁶⁸

4-((2R,3S,5R,6R)-3-Fluoro-6-vinyl-1-azabicyclo[3.2.2]nonan-2-yl)-6-methoxyquinoline (54). DAST (367 µL, 3.0 mmol, 1.5 equiv) was added dropwise to a suspension of quinine 3 (648 mg, 2.0 mmol, 1.0 equiv) in THF (4 mL) at -20 °C under an atmosphere of argon. The mixture was stirred 14 h at -20 °C, then guenched with saturated agueous NaHCO₃ solution (15 mL) and extracted with CH₂Cl₂ (3×15 mL). The organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography (10:1 CH₂Cl₂-MeOH) afforded the fluorinated diastereomers 53 (332 mg, 51%) and compound 54 (71 mg, 11%) as white solids. Data for 54: HPLC purity 97.8%, $t_{\rm R} = 25.7$ min; mp 182–183 °C; $R_f = 0.55$ (10:1 CH₂Cl₂–MeOH); IR (KBr) $\gamma_{\rm max}$ 2939, 1620, 1506, 1225, 1022, 839; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 4.6 Hz, 1H), 8.02 (d, J = 9.2 Hz, 1H), 7.47-7.31 (m, 2H), 7.31-7.23 (m, 1H), 5.94 (ddd, J = 17.0, 10.5, 6.3 Hz, 1H), 5.55-5.29 (m, 1H), 5.21-4.98 (m, 2H), 4.47 (t, J = 9.6 Hz, 1H), 3.96 (s, 3H), 3.43 (dd, J = 8.7, 4.8 Hz, 1H), 3.24–3.08 (m, 1H), 2.93 (dd, J = 15.0, 10.1 Hz, 1H), 2.87–2.63 (m, 2H), 2.46 (d, J = 5.7 Hz, 1H), 2.20 (ddt, J = 7.5, 5.6, 3.9 Hz, 1H), 2.13–1.86 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 147.5, 144.9 (d, J = 38.3 Hz), 139.9, 131.8, 128.7, 121.2, 117.5, 115.2, 102.5, 88.4 (d, *J* = 179.2 Hz), 77.3, 65.4 (d, *J* = 21.3 Hz), 55.5, 49.1, 47.4, 40.7, 37.1 (d, J = 18.6 Hz), 30.8, 29.0 (d, J = 10.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –176.3 (dt,

J = 47.5, 8.4 Hz); HRMS (ESI+) calcd for C₂₀H₂₄N₂OF [M+H] + 327.1867, found 327.1856 (error 3.3 ppm); $[\alpha]_{D}^{23} = -110$ (*c* 0.400, CHCl₃).

6-Methoxy-(*S*)-4-[((1*S*,2*S*,4*S*,5*R*)-5-vinyl-1-azabicyclo[2.2.2]octan-2-yl)fluoromethyl]quinoline (53) and 6-Methoxy-(*Z/E*)-4-[((1*S*,4*S*,5*R*)-5-vinyl-1-azabicyclo[2.2.2]octan-2vlidene)methyl]quinoline (55). Compounds 53 and 55 were prepared following the general procedure

for C-9 fluorination employing quinine **3** (108 mg, 0.333 mmol), DAST (64 μL, 0.50 mmol), and

pyridine (54 μ L, 0.67 mmol) to afford **53** (53 mg, 49%) and **55** (33 mg, 33%, ¹H NMR indicates 9:1 diastereomeric ratio through the integral value of $-OCH_3$ protons) as light yellow solids.

Data for 53: HPLC purity 97.1%, t_R = 20.6 min; mp 189–191 °C; R_f = 0.39 (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 4.4 Hz, 1H), 8.06 (d, J = 9.6 Hz, 1H), 7.45–7.34 (m, 3H), 5.86 (dd, J = 48.6, 9.4 Hz, 1H), 5.77 (ddd, J = 17.4, 10.4, 7.3 Hz, 1H), 5.03–4.96 (m, 2H), 3.95 (s, 3H), 3.63–3.42 (m, 1H), 3.38–3.19 (m, 2H), 2.90 (dt, J = 15.1, 7.8 Hz, 1H), 2.83–2.73 (m, 1H), 2.41–2.19 (m, 1H), 1.73 (dt, J = 6.1, 3.0 Hz, 1H), 1.62 (td, J = 7.8, 2.9 Hz, 2H), 1.41 (t, J = 9.8 Hz, 1H), 1.01–0.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 147.4, 144.9, 141.4, 140.4 (d, J = 18.5 Hz), 132.0, 127.0 (d, J = 2.7 Hz), 121.9, 120.2 (d, J = 6.7 Hz), 114.7, 101.8 (d, J = 3.1 Hz), 91.4 (d, J = 179.7 Hz), 59.2 (d, J= 19.7 Hz), 55.9, 55.7, 41.5, 39.5, 27.9, 27.2, 24.4 (d, J = 4.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ – 176.3 (dd, J = 48.6, 13.4 Hz); HRMS (ESI+) calcd for C₂₀H₂₄N₂OF [M+H]⁺ 327.1867, found 327.1865 (error 0.6 ppm); [α]²³_D = +78 (c 0.100, CHCl₃)

Data for 55: HPLC purity 97.0% (two isomers, 10.9% and 86.0%), t_R = 24.6 and 24.8 min; mp 175–176 °C; $R_f = 0.65$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 4.6 Hz, 1H), 7.97 (d, J = 9.2 Hz, 1H), 7.81 (d, J = 4.6 Hz, 1H), 7.33 (dd, J = 9.2, 2.8 Hz, 1H), 7.27–7.20 (m, 1H), 6.42 (s, 1H), 6.05–5.80 (m, 1H), 5.18–4.93 (m, 2H), 3.95 (s, 2.7H, major), 3.94 (s, 0.3H, minor), 3.28 (dd, J = 13.8, 9.2 Hz, 1H), 3.11–2.88 (m, 2H), 2.80–2.64 (m, 2H), 2.47–2.32 (m, 2H), 2.07–1.91 (m, 1H), 1.82–1.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 154.4, 147.9, 144.7, 140.9, 139.8, 131.5, 127.7, 121.6, 120.9, 114.8, 114.5, 102.2, 55.6, 53.8, 47.9, 39.7, 30.6, 29.7, 27.3; HRMS (ESI+) calcd for $C_{20}H_{23}N_2O$ [M+H]⁺ 307.1805, found 307.1794 (error 3.5 ppm); [α]²³_D = –128 (*c* 0.100, CHCl₃).

(S)-4-[((1S,2S,4S,5R)-5-Ethyl-1-azabicyclo[2.2.2]octan-2-yl)fluoromethyl]-6-methoxyquinoline

(56). Compound 56 was prepared following the general procedure for C-9 fluorination employing compound 4 (163 mg, 0.522 mmol), DAST (102 μ L, 0.792 mmol) and pyridine (85 μ L, 1.1 mmol) to

afford the title compound (83 mg, 50%) as a light yellow solid: HPLC purity 98.8%, $t_R = 23.1$ min; mp 192–194 °C; $R_f = 0.38$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 4.3 Hz, 1H), 8.05 (d, J = 9.1 Hz, 1H), 7.44–7.39 (m, 3H), 5.97 (dd, J = 48.4, 9.4 Hz, 1H), 3.97 (s, 3H), 3.74–3.53 (m, 1H), 3.53-3.33 (m, 2H), 3.04 (t, J = 7.8 Hz, 1H), 2.62 (dd, J = 13.4, 6.0 Hz, 1H), 1.78-1.46 (m, 4H), 1.40 (q, J = 7.2 Hz, 1H), 1.38–1.22 (m, 5H), 1.02–0.93 (m, 1H), 0.83 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 147.3, 145.0, 138.6 (d, J = 17.5 Hz), 132.0, 127.0, 122.4, 120.6 (d, J = 6.5 Hz), 101.7 (d, J = 3.2 Hz), 90.6 (d, J = 181.0 Hz), 59.5 (d, J = 20.1 Hz), 56.8, 56.1, 41.7, 36.1, 29.7, 27.0, 24.5, 23.1, 11.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –175.9 (d, J = 48.4 Hz); HRMS (ESI+) calcd for $C_{20}H_{26}N_2OF [M+H]^+$ 329.2024, found 329.2028 (error 1.9 ppm); $[\alpha]_D^{23} = +21.9$ (*c* 0.700, CHCl₃).

(S)-4-[((1S,2S,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)fluoromethyl]-6-

methoxyquinoline (57). Compound 57 was prepared following the general procedure for C-9 fluorination employing compound 15 (195 mg, 0.601 mmol), DAST (0.12 mL, 0.90 mmol) and pyridine (97 µL, 1.2 mmol) to afford the title compound (75 mg, 38%, ¹⁹F NMR indicates 3:1 diastereomeric ratio through the integral value of CH-F) as a light yellow solid: HPLC purity 98.9% (two isomers, 59.1%) and 39.8%), $t_{\rm R} = 27.5$ and 28.1 min; mp 190–191 °C; $R_f = 0.39$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.77–8.74 (m, 1H), 8.06–8.00 (m, 1H), 7.44–7.35 (m, 3H), 5.89 (dd, J = 48.3, 9.1 Hz, 1H), 5.20–5.12 (m, 1H), 3.93 (s, 3H), 3.58–3.50 (m, 3H), 3.38–3.30 (m, 1H), 2.93 (dt, J = 14.9, 7.2 Hz, 1H), 2.24 (s, 1H), 1.67 (t, J = 6.9 Hz, 2H), 1.48 (d, J = 5.0 Hz, 3H), 1.37–1.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 147.3, 144.9, 140.64 and 140.58, 140.45 and 140.39, 132.0, 126.9 (d, J = 2.2 Hz), 121.82 and 121.80, 120.1 (d, J = 6.7 Hz), 115.2 and 114.7, 102.0 (d, J = 3.1 Hz), 91.4 (d, J = 179.7 Hz), 60.1 (d, J = 19.5 Hz) and 59.9 (d, J = 19.5 Hz), 55.9 and 55.6, 42.1, 32.8 and 31.9, 31.01 and 30.97, 30.16 and 30.12, 28.3, 12.7 and 12.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –176.2 and –176.4 (dd, J = 48.3,

13.4 Hz); HRMS (ESI+) calcd for C₂₀H₂₄N₂OF [M+H]⁺ 327.1867, found 327.1855 (error 3.7 ppm); [α] ²³_p = +5.1 (*c* 0.30, CHCl₃).

(S)-4-[((1S,2R,4S,5Z/E)-5-Ethylidene-1-azabicyclo[2.2.2]octan-2-yl)fluoromethyl]-6-

methoxyquinoline (58). Compound 58 was prepared following the general procedure for C-9 fluorination employing quinidine 51 (181 mg, 0.558 mmol), DAST (0.11 mL, 0.84 mmol), and pyridine (90 μL, 1.1 mmol) to afford the title compound (66 mg, 36%, ¹H NMR indicates 5:1 diastereomeric ratio through the integral value of CH-F protons) as a light yellow solid: HPLC purity 97.6% (two isomers, 18.5% and 79.1%), $t_R = 19.4$ and 20.1 min; mp 192–193 °C; $R_f = 0.35$ (10:1 CH₂Cl₂–MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.75–8.72 (m, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.42–7.30 (m, 3H), 5.91 (dd, J = 48.4, 9.6 Hz, 0.17H, minor), 5.90 (dd, J = 48.4, 9.6 Hz, 0.83H), 5.26 (q, J = 3.5 Hz, 1H), 4.03 (d, J = 17.2 Hz, 1H), 3.91 (s, 3H), 3.73 (d, J = 9.6 Hz, 1H), 3.57 (d, J = 17.2 Hz, 1H), 3.32–2.93 (m, 2H), 2.28 (q, J = 2.6 Hz, 1H), 1.66 (ddt, J = 9.6, 7.0, 3.1 Hz, 2H), 1.56 (d, J = 6.8 Hz, 3H), 1.42–1.35 (m, 1H), 1.30–1.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 147.2, 145.0, 136.9, 132.1, 126.8, 122.8, 122.6, 120.7 (d, J = 6.1 Hz), 119.6, 101.3, 89.2 (d, J = 184 Hz), 59.6 (d, J = 20.6 Hz), 56.3, 49.7, 47.8, 31.1, 28.4, 24.3, 12.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –174.7 (d, J = 48.4 Hz); HRMS (ESI+) calcd for C₂₀H₂₄N₂OF [M+H] + 327.1867, found 327.1855 (error 3.8 ppm); [α]²³_D = +36.1 (*c* 0.400, CHCl₃).

General procedure for bacterial cultivation. Before being used for antibacterial activities of optochin and its derivatives, *S. pneumoniae, S. mitis, S. pyogenes, E. faecium* were grown to mid-log phase in Todd-Hewitt broth (BD) supplemented with 5% yeast extract (THY) at 37 °C with 5% CO₂; *A. baumannii, E. cloacae, E. coli, P. aeruginosa, S. aureus,* and *K. pneumoniae* in Luria broth; *M. tuberculosis* in 30-mL square bottles (Nalgene) containing 7H9 medium

Journal of Medicinal Chemistry

supplemented with tyloxapol (0.05% vol/vol), oleate-albumin-dextrose-catalase (OADC; Becton Dickinson 10% vol/vol), and glycerol (0.2% vol/vol).

MIC. The minimum inhibitory concentration (MIC) for each compound was experimentally measured through a microdilution method according to guidelines described by the Clinical and Laboratory Standards Institute (CLSI). Compounds were dissolved in DMSO at 20 mg/mL and serially diluted with MHB in 96 well plates affording a final concentation of 0.5% DMSO in all wells in a total volume of 100 μ L. The bacterial culture prepared above (100 μ L) was subsequently added to the plates, which were incubated for 20 h at 37 °C and growth of the bacterial culture was visually detected by evaluating the culture turbidity. The MIC was defined as the lowest concentration of each compound that completely inhibit bacterial growth. All the MIC measurements were performed twice with three replicates per experiment. Antimycobacterial activity was assessed as described.⁶⁹ Briefly, cells were inoculated into each well containing 7H9 medium (100 μ L/well) to an initial OD₆₀₀ of 0.001. Plates were incubated at 37 °C, and growth was monitored at 7 and 10 days. The MIC was determined as the minimum concentration of compound required to inhibit 90% of growth by visual inspection.

MBC. Minimum bactericidal concentration (MBC) was measured by spreading each well of the bacterial cultures at or above MIC on TSA blood plates. The plates were incubated at 37 °C with 5% CO_2 for 24 h. The MBC was defined as the lowest concentration of each compound that prevented growth of bacteria on the agar plate.

Generation of optochin-resistant mutants. Optochin resistant strains were constructed using *S*. *pneumoniae* R6 as decribed.¹⁸ Point mutations in *atpE* were prepared by substituting G for C at position 142 or substituting G for A at position 145. These two mutations conferred optochin resistance, which has already been reported.¹⁸ For constucting R6_{G142C} mutant, the up- and down-stream sequences of *atpE* were amplified using R6 genomic DNA and primer pairs Pr13331/Pr13332 and Pr13336/Pr13338,

respectively. The two products were then fused by overlap PCR before being used to transform R6 as described.⁷⁰ The transformants were selected on TSA plates containing 12.5 μ g/mL optochin. The R6_{G145A} mutant was generated with the same procedure except using primer pairs Pr13331/Pr13333 and Pr13335/Pr13338. Sequences for primer pairs: Pr13331:ttcttcagaacgacctagcttagca; Pr13332: agtttgatgtttttaggtCttgcctttattgaaggaactttctttgtaact; Pr13335: agtttgatgtttttaggtgttAcctttattgaaggaactttctttgtaact; Pr13335: aagttccttcaataaaggTaacacctaaaaacatcagaaactcag; Pr13336:

aagtteetteaataaaggeaaGaeetaaaaacateaaaetaegaaaeteag; Pr13338: taeaategtttgaategtgatatge.

Frequency of Resistance Determination. The frequency of resistance (FOR) was measured as described.¹⁸⁷¹ Briefly, the mid-log phase cultures of *S. pneumoniae* D39 (OD₆₂₀ 0.4-0.5) were spread to MHA blood plates containing various concentrations of target compounds. The plates were incubated at 37° C for 24 h before the colony forming units (CFU) were counted. The FOR was obtained by dividing CFU values of compound-containing samples with those of the samples lacking the same compounds. The *atpE* mutations of representative mutants were characterized by cultivating individual colonies from the agar plates for FOR in THY broth that was supplemented with the same concentrations of target compounds as the original agar plates, and used to purified genomic DNA. The *atpE* gene of each clone was amplified by polymerase chain reaction (PCR) with primers Pr13358 and Pr13631, and sequenced with the same primers. Specific *atpE* mutations were identified by comparing the sequence of each mutant with that of the wild type D39 (NC_008533.2). The sequence of the two primers is as followed: Pr13358: 5'-aatgttaggttctgtaaatccaataacaaa-3'; Pr13631: 5'-ttgaaatttagcaaaatggaaataatttt-3'.

Intrabacterial pH Determination. The pH-sensitive green fluorescent protein gene (pH-GFP) was amplified from the pUV15-pHGFP plasmid kindly provided by Dr. Carl Nathan⁴⁰ using primers Pr14798 5'-GAGAAAGCTTGATATCACCTTATTTGTATAGTTCA-3' and Pr14799 5'-

GAGACTCGAGATGAGTAAAGGAGAAGAACTTTTCACTG-3'. The amplicon was digested with HindIII and XhoI, and ligated to the HindIII/XhoI-digested pIB166 plasmid⁷² and transformed into *S. pneumoniae* D39 and its optochin-resistant derivatives. The optochin-resistant mutants of D39 (D39*atpE*_{G142C} and D39-*atpE*_{G145A}) were generated as described for constrution of R6-*atpE*_{G142C} and R6*atpE*_{G145A} mutants. Compound **48** was serially diluted 2-fold in a black 96-well plate from 8 μ g/mL down 0.0078 μ g/mL). CCCP and DMSO were used as positive and negative controls, respectively. All compounds were dissolved in Resuspending buffer (PBS pH 7.2 supplemented with 10 mM glucose and 0.5% DMSO). The pellet of mid-log phase cells was resuspended in Resuspending buffer, then were energized at 37 °C and added to the compound dilutions (the final cell density was OD₆₂₀ of 0.4) in a total volume of 100 μ L. The GFP fluorescence was measured immediatedly (0 min) and at 5-min intervals. The fluorescence values were converted to the pH values in reference to the calibration curve (Supporting Information Figure S1). Two independent biological experiments were performed in triplicate.

Checkerboard assay. Synergy was evaluated using a checkerboard assay as described.⁷³ The optochin analog **48** was serially diluted in MHB to a final volume of 100 μ L in 96-well plates in a lateral manner, with the highest (2 × MIC) and lowest (no compound) concentrations in the first and last columns, respectively. The second drugs were then diluted in a vertical fashion with the highest (2 × MIC) and lowest (no compound) concentrations in the first and last row, respectively. Pneumococcal cells were prepared as described above and added into the plate (10⁶ CFU in 100 μ L), incubated at 37°C with 5% CO₂ for 20 h. FICI was calculated as followed: FICI = FIC drug A + FIC drug B; FIC drug A =

[MIC of drug A in the presence of drug B]/[MIC of drug A]; FIC drug B = [MIC drug B in presence of Drug A]/[MIC of drug B].

Killing curve. Bacterial killing kinetics of compound **48** was determined essentially as described.⁷⁴ Compounds were mixed with the mid-log phase cutures of D39, which were incubated at 37 °C with 5% CO₂. At selected time points, the optical density (OD_{620}) of each culture was measured before an aliquot (40 uL) taken to determine viable bacteria (CFU) on TSA blood agar plates. The experiment was done at least three times with three replicates for each sample each time.

Cell Cytotoxicity Assay. Human liver cells (HepG2, ATCC HB-8065) cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 µg/mL streptomycin. All reactions were performed in duplicate. All the final compounds were prepared as 100 mM stock solutions in DMSO. For the highest test concentration, 1 µL of the stock solution, 99 µL of DMEM, and the 100 µL of HepG2 cells in DMEM [(2.5-5.0) × 10³ cells per well] were plated in 96-well plates, yielding a final volume of 100 µL and compound concentration of 100 µL. A serial dilution to provide final compound concentration of 50, 25, 12.5 and 6.25 µM were also prepared. Control wells contained 1% DMSO (negative control). The plate was incubated for 48 h at 37 °C in a 5% CO₂/95% air humidified atomosphere. The DMEM medium was aspirated, and Almamar Blue Kit (Fanbo BioChemcals) was added to each well, and the plate was incubated as described above for 2-4 h. The plate was read on a Multimode Plate Reader (Enspire^R, PerkinElmer) at 570 nm for formazan and 600 nm for background subtraction. Cell viability was plotted against test concentration to determine CC₅₀.

Mitochondrial toxicity assay. This was performed following the described protocol using both high-glucose (25 mM) Dulbecco's Modified Eagle Medium (DMEM) and galactose media employing

Page 83 of 93

Journal of Medicinal Chemistry

DMEM deprived of glucose, but supplemented with 10 mM galactose.⁴¹ Cell viability was evaluated after 24 h of culture by adding 10 µL of the Cell Titer Glo Reagent (Promega) to each well at room temperature and the cellular ATP concentrations were measured as per the manufacturers instructions. Pharmacokinetics Study. Animal Care and Welfare Committee of Institute of Materia Medica. Chinese Academy of Medical Sciences approved all animal protocols (1 Xian nong tan Street, Xicheng District, Beijing, China; protocol #SYXK 2014-0023). All animal programs are in compliance with the Guide for the Care and Use of Laboratory Animals issued by Beijing Association on Laboratory Animal Care (BALAC). The single dose pharmacokinetic studies were performed with male ICR mice by monitoring plasma time course of optochin 1, apo-cupreine 39, Z-48 and E-48 after administration via oral (p.o.) and intravenous (i.v.) routes. Optochin 1 and apo-cupreine 39 were respectively prepared as 2.5 mg/mL suspension with pure water (containing Tween). Z-48 and E-48 were suspend with 0.5% CMC to make a 2.5 mg/mL suspension for oral use. Optochin 1 and apo-cupreine 39 were respectively formulated as 0.25 mg/mL solution with 1.25% methanol in saline. Z-48 and E-48 were respectively formulated as 0.25 mg/mL suspension for intravenous injection. Sixty-four mice were divided into 8 groups, 10 in each oral group and 6 in each intravenous group. After fasting 12 h with free access to water, mice were given a single p.o. or i.v. dose of 25 or 2.5 mg/kg by oral gavage or injection respectively. Blood samples (50 µL) were obtained from the orbital vein at 5, 15, 30 min, 1, 2, 5, 6, 8 and 12 h after oral administration and 2, 5, 15, 30 min, 1, 2, 5, 6, 8, 12, 24 h after injection into the intravenous injection. 20 µL of plasma was separated and 40 µL of acetonitrile (200 ng/mL) containing internal standard (propranolol, 200 ng/mL) was added. After mixing, the mixture was centrifuged $(14,000 \text{ rpm} \times 5 \text{ min}, \text{ twice})$ and 1 µL of supernatant was taken for LC-MS/MS analysis.

Reverse-phase LC was performed on a Shiseido C18 column (100 mm \times 2.1 mm, 2.7 μ m particle size). Mobile phase A was 0.1% aqueous formic acid while mobile phase B was 0.1% formic acid in

methanol. Initial conditions were 10% B from 0 to 0.7 min, after which the %B was increased to 95% from 0.7 to 1.2 min. The column was washed in 95% B for 3 min, returned to 10% over 0.3 min, and allowed to re-equilibrate for 2 min in 10% B to provide a total run time of 6.5 min. The flow rate was 0.2 mL/min and the column oven was maintained at 37 °C. The injection volume was 5 μ L. All analytes were analyzed by mass spectrometry in positive ionization mode by Multiple Reaction Monitoring (MRM): m/z 341 \rightarrow 174 (optochin, 1), m/z 311 \rightarrow 184 (apo-cupreine, **39**) m/z 365 \rightarrow 146 (**Z-48**), m/z 365 \rightarrow 184 (**E-48**), m/z 263 \rightarrow 180 (internal standard: propranolol).

Analyte and internal standard peak areas were calculated (Xcalibur, version 2.0.7). Analyte peak areas were normalized to the corresponding internal standard peak areas and the analyte concentrations were determined using an appropriate standard curve for each compound. The standard solutions were prepared as follows: optochin 1, apo-cupreine **39** were dissolved in methanol (20 mg/mL), **Z-48** and **E-48** were dissolved in DMSO (20 mg/mL) the stock solutions were diluted by acetonitrile containing 200 ng/mL of the internal standard (propranolol, 200 ng/mL) to a concentration of 5, 10, 20, 50, 100, 200, 500, 800, 1000 ng/mL test solution. A solution of propranolol (200 ng/mL) in acetonitrile was prepared as the internal standard. To 20 μ L of mouse plasma blank were added 20 μ L of compound working solution of different concentrations and 20 μ L of acetonitrile containing 200 ng/mL of the internal standard (propranolol, 200 μ L of acetonitrile containing 200 ng/mL of the internal standard (propranolol, 200 μ L of acetonitrile containing 200 ng/mL of the internal standard (propranolol, 200 μ L of acetonitrile containing 200 ng/mL of the internal standard (propranolol, 200 ng/mL) respectively. After mixing, the solutions were centrifuged (14000g × 5 min, twice) and the supernatants (1 μ L) were analyzed for LC–MS/MS analysis. PK parameters were calculated from concentration-time profiles by non-compartamental analysis (Phoenix WinNonLin, version 6.3, Pharsight Corporation).

Microsomal Stability and Metabolite Identification. Microsomal studies were performed using ICR mouse liver microsomes prepared as described using differential centrifugation.⁷⁵ The liver microsome incubation system includes mouse liver microsomal protein (1 mg/mL), test compounds (10

Journal of Medicinal Chemistry

 μ M), NADPH generation system 20 μ L, alamethincin (50 μ g/mg protein), UDPGA (5 mM), Tris-HCl buffer (50 mM, pH = 7.4) in a total volume of 200 μ L. The compound-containing liver microsomes were incubated with NADPH for 10 min, and then incubated with UDPGA for 30, 60, and 90 min. 50 μ L was taken and 100 μ L of acetonitrile was added to terminate the reaction. After vortexing, centrifugation (14,000g × 5 min) was performed twice, and 3 μ L of the supernatant was taken for analysis. LC/MS/MS was performed using a Thermo ScientificTM Q ExactiveTM HF hybrid quadrupole-Orbitrap mass spectrometer. All experiments were performed in duplicate.

Reverse-phase LC was performed on a Zobax C18 (100 mm×2.1 mm , 3.5μ m). Mobile phase A was 0.1% aqueous formic acid while mobile phase B was 0.1% formic acid in methanol. The mobile phase was delivered with a gradient elution profile as follows: 0 min, 10% B; 15 min, 40% B; 17-19 min, 100% B; 20-23 min, 10% B. The total runtime for each injection was 23 min. The flow rate was 0.3 mL/min and the column oven was maintained at 30 °C.

The analysis was performed in full MS/dd-MS2 mode. For a full MS scan, the selected scan range was from m/z 100 to 500 and the resolution was 70,000, while the automatic gain control (AGC) target was set to 1.0e6 with a maximum injection time (IT) of 100 ms. For the dd-MS2 scan, the fragmentation mass spectra were recorded at a mass resolving power of 17,500 FWHM with a quadrupole isolation window of 1.5 m/z for precursor ions. AGC target and maximum IT for the dd-MS2 scan was 2.0e5 and 50 ms.

XCalibur 4.1 software (Thermo Fisher Scientific, San Jose, CA, USA) was used for instrument control and data processing. Compound Discover 2.0 software was used for metabolite identification.

ASSOCIATED CONTENT

Supporting Information: Copies of ¹H NMR and ¹³C NMR spectra of all new compounds, HPLC chromatograms of all final compounds, and molecular formula strings. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

- Phone +86 17319037727. Email: ccaldrich@imm.ac.cn or aldri015@umn.edu •
- Phone: +86 10 62795892. Email: zhanglab@tsinghua.edu.cn

Author Contributions. The manuscript was written with contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes. The authors declare no competing financial interests.

ACKNOWLEDGMENTS

This work was supported by the grant of The State Key Laboratory of Bioactive Substance and Function of Natural Medicines (SKLBSFNM) and by the Union Scholar Chair Professor in Peking Union Medical College (PUMC) to C.C.A.

ABBREVIATIONS USED

 $[\alpha]$, specific rotation; ATP, adenosine triphosphate; AUC, area under the curve; CC₅₀, 50% cytotoxicity concentration; CFU, colony forming unit; Cl, clearance; CLSI, clinical & laboratory standard institute; C_{max}, maximum serum concentration following an oral dose; CMC, carboxymethyl cellulose; DAST, diethylaminosulfurtrifluoride; DBU, 1,8-diazabicyclo[5,4,0]undec-7-ene; DMEM, Dulbecco's modified eale medium; DMF, N,N-dimethylformamide; DMSO, dimethylsulfoxide; DRSP, drug-resistant Streptococcus pneumoniae; ETC, electron transport chain; F, bioavailability; FBS, fetal bovine serum; FDA, Food and Drug Administration; FICI, fractional inhibition concentration indices; FOR, frequency of resistance; HCl, hydrogen chloride; HPLC, high-pressure liquid chromatography; HRMS, high-

resolution mass spectrometry; ICR, institute of cancer research; IR, infrared; *i.v.*, intravenous; LC-MS, liquid chromatography-mass spectrometry; MBC, minimum bactericidal concentration; MHB, Muller-Hinton broth; MIC, minimum inhibitory concentration; MLM, mouse liver microsomes; MOA, mechanism of action; *Mtb*, *Mycobacterium tuberculosis*; NOE, nuclear Overhauser effect; OD, optical density; PCV 7, 7-valent pneumococcal conjugate vaccine; PCV 13, 13-valent pneumococcal conjugate vaccine; PD, pharmacodynamic; PK, pharmacokinetic; *p.o.*, oral; R_{f} , retention factor (in chromatography); SAR, structure-activity relationships; SI, selectivity indexes; $t_{1/2}$, terminal elimination half-life following an oral dose; TBAF, tetra-*n*-butylammonium bromide; TBS, *tert*-butyldimethylsilyl; THF, tetrahydrofuran; THY, Todd-Hewitt broth plus 0.5% yeast extract; TAC, tricarboxylic acid cycle; VD_{ss}, steady state volumes of distribution.

Statement

Authors will release the atomic coordinates and experimental data upon article publication.

REFERENCES

- (1) Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013, <u>https://www.cdc.gov/drugresistance/threat-report-2013/</u>.
- (2) <u>http://www.who.int/mediacentre/factsheets/fs331/en/</u>.
- (3) Olarte, L.; Kaplan, S. L.; Barson, W. J.; Romero, J. R.; Lin, P. L.; Tan, T. Q.; Hoffman, J. A.; Bradley, J. S.; Givner, L. B.; Mason, E. O.; Hulten, K. G. Emergence of multidrug-resistant pneumococcal serotype 35B among children in the United States. *J. Clin. Microbiol.* **2017**, *55*, 724–734.
- (4) Kawaguchiya, M.; Urushibara, N.; Kobayashi, N. Multidrug resistance in non-PCV13 serotypes of *Streptococcus pneumoniae* in northern Japan, 2014. *Microb. Drug. Resist.* **2017**, *23*, 206–214.
- (5) Richter, S. S.; Diekema, D. J.; Heilmann, K. P.; Dohrn, C. L.; Riahi, F.; Doern, G. V. Changes in pneumococcal serotypes and antimicrobial resistance after introduction of the 13-valent conjugate vaccine in the United States. *Antimicrob. Agents Chemother.* **2014**, *58*, 6484–6489.
- (6) Lewis, K. Platforms for antibiotic discovery. *Nat. Rev. Drug Discov.* **2013**, *12*, 371–387.
 - (7) Wright, G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. *Nat. Rev. Microbiol.* **2007**, *5*, 175–186.
 - (8) Morgenroth, J.; Levy, R. Chemotherapie der Pneumokokkeninfektion. *Berl. Klin. Wochenschr.* **1911**, *48*, 1560–1561.
 - (9) Leschke, E. Erfahrunge über die Behandlung der Kriegsseuchen. *Berl. Klin. Wochenschr.* 1911, 48, 634–641.
- (10) Moore, H. F.; Chesney, A. M. The study of ethylhydrocuprein (optochin) in the treatment of acute lobar pneumonia. *Arch. Int. Med.* **1917**, *19*, 611–682.
- (11) Renfrew, A. G.; Cretcher, L. H. Structure and antipneumococcic activity in the cinchona series. *Chem. Rev.* **1942**, *30*, 49–68.
- (12) The contemporary definition of an antibiotic is a natural product or natural product derivative with selective antimicrobial activity. Although, extracts had shown antibacterial activity prior to the report of optochin, the composition and chemical structure(s) of the constituents were not reported. See reference #9 for a discussion of this topic.
- (13) Bennett, J. W. In *Antibiotics: Current Innovations and Future Trends*; Sánchez, S., Demain, A. L., Eds.; Caister Academic Press: Norfolk, U. K., 2015, p 18.
- (14) Bowers, E. F.; Jeffries, L. R. Optochin in the identification of *Str. pneumoniae*. J. Clin. Pathol. **1955**, *8*, 58–60.
- (15) Deckers-Hebestreit, G.; Altendorf, K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. *Annu. Rev. Microbiol.* **1996**, *50*, 791–824.
- (16) Ferrándiz, M. a. J.; de la Campa, A. G. The membrane-associated F0F1 ATPase is essential for the viability of *Streptococcus pneumoniae*. *FEMS Microbiol. Lett.* **2002**, *212*, 133–138.
- (17) Andries, K.; Verhasselt, P.; Guillemont, J.; Gohlmann, H. W.; Neefs, J. M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner,

2	
3	
4 5	
6	
7	
8	
9 10	
11	
12	
13	
14	
16	
17	
18	
20	
21	
22	
23 24	
24	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36	
37	
39	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51	
52 53	
54	
55	
56 57	
57 58	
59	

60

S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of *Mycobacterium tuberculosis*. *Science* **2005**, *307*, 223–227.

- (18) Fenoll, A. R.; Muñoz, E.; García, E.; De la Campa, A. G. Molecular basis of the optochinsensitive phenotype of pneumococcus: characterization of the genes encoding the F0 complex of the *Streptococcus pneumoniae* and *Streptococcus oralis* H1-ATPases. *Mol. Microbiol.* **1994**, *12*, 587–598.
- Morgenroth, J.; Levy, R. Chemotherapie der Pneumokokkeninfektion. II. *Berl. Klin. Wochenschr.* 1911, 48, 1979–1983.
- (20) Moore, H. F. The action of ethylhydrocuprein (optochin) on type strains of Ppneumococci in vitro and in vivo, and on some other microorganisms in vitro. *J. Exp. Med.* **1915**, *22*, 269–285.
- (21) Palacio, C.; Connon, S. J. A new class of urea-substituted cinchona alkaloids promote highly enantioselective nitroaldol reactions of trifluoromethylketones. *Org. Lett.* **2011**, *13*, 1298–1301.
- (22) Feutrill, G. I.; Mirrington, R. N. Demethylation of aryl methyl ethers with thioethoxide ion in dimethyl formamide. *Tetrahedron. Lett.* **1970**, *11*, 1327–1328.
- (23) Furuya, T.; Strom, A. E.; Ritter, T. Silver-mediated fluorination of functionalized aryl stannanes. *J. Am. Chem. Soc.* **2009**, *131*, 1662–1663.
- (24) Arrington, M. P.; Bennani, Y. L.; Göbel, T.; Walsh, P.; Zhao, S.-H.; Sharpless, K. B. Modified cinchona alkaloid ligands: Improved selectivities in the osmium tetroxide catalyzed asymmetric dihydroxylation (AD) of terminal olefins. *Tetrahedron Lett.* **1993**, *34*, 7375–7378.
- (25) Nakano, A.; Ushiyama, M.; Iwabuchi, Y.; Hatakeyama, S. Synthesis of an enantiocomplementary catalyst of beta-isocupreidine (beta-ICD) from quinine. *Adv. Synth. Catal.* 2005, 347, 1790–1796.
- (26) Pappo, R.; Allen, J. D. S.; Lemieux, R. U.; Johnson, W. S. Notes osmium tetroxide-catalyzed periodate oxidation of olefinic bonds. *J. Org. Chem.* **1956**, *21*, 478–479.
- (27) Frackenpohl, J.; Hoffmann, H. M. Synthesis of enantiopure 3-quinuclidinone analogues with three stereogenic centers: (1*S*, 2*R*, 4*S*)- and (1*S*, 2*S*, 4*S*)-2-(hydroxymethyl)-1-azabicyclo[2.2.2]octan-5-one and stereocontrol of nucleophilic addition to the carbonyl group. *J. Org. Chem.* **2000**, *65*, 3982–3896.
- (28) Bender D. R.; Coffen D. L. Synthetic quinine, analogs. V. Quinolinemethanols related to desvinylquinine. *J. Heterocycl. Chem.* **1971**, *8*, 937–942.
- (29) Kim, J. N.; Kim, K. M.; Ryu, E. K. Improved synthesis of *N*-alkoxyphthalimides. *Synth. Commun.* **1992**, *22*, 1427–1432.
- (30) Karakurt, A.; Dalkara, S.; Ozalp, M.; Ozbey, S.; Kendi, E.; Stables, J. P. Synthesis of some 1-(2-naphthyl)-2-(imidazole-1-yl)ethanone oxime and oxime ether derivatives and their anticonvulsant and antimicrobial activities. *Eur. J. Med. Chem.* **2001**, *36*, 421–433.
- (31) Rowan, S. J.; Reynolds, D. J.; Sanders, J. K. M. Effects of shape on thermodynamic cyclizations of cinchona alkaloids. *J. Org. Chem.* **1999**, *64*, 5804–5814.
- (32) Toyooka, N.; Zhou, D.; Nemoto, H.; Tezuka, Y.; Kadota, S.; Andriamaharavo, N. R.; Garraffo, H. M.; Spande, T. F.; Daly, J. W. Efficient enantio- and diastereodivergent synthesis of poison-frog alkaloids 2510 and trans-223B. *J. Org. Chem.* 2009, *74*, 6784–6791.

- (33) Bucher, C.; Sparr, C.; Schweizer, W. B.; Gilmour, R. Fluorinated quinine alkaloids: synthesis, X-ray structure analysis and antimalarial parasite chemotherapy. *Chemistry* **2009**, *15*, 7637–7647.
- (34) Dawadi, S.; Viswanathan, K.; Boshoff, H. I.; Barry, C. E., 3rd; Aldrich, C. C. Investigation and conformational analysis of fluorinated nucleoside antibiotics targeting siderophore biosynthesis. *J. Org. Chem.* **2015**, *80*, 4835–4850.
- (35) Martin-Galiano, A. J.; de la Campa, A. G. High-efficiency generation of antibiotic-resistant strains of *Streptococcus pneumoniae* by PCR and transformation. *Antimicrob. Agents Chemother.* 2003, 47, 1257–1261.
- (36) Foster, J. W.; Hall, H. K. Inducible pH homeostasis and the acid tolerance response of *Salmonella typhimurium. J. Bacteriol.* **1991**, *173*, 5129–5135.
- (37) Cotter, P. D.; Gahan, C. G.; Hill, C. Analysis of the role of the *Listeria monocytogenes* F0F1 ATPase operon in the acid tolerance response. *Int. J. Food Microbiol.* **2000**, *60*, 137–146.
- (38) Krulwich, T. A.; Sachs, G.; Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. *Nat. Rev. Microbiol.* **2011**, *9*, 330–343.
- (39) Miesenbock, G.; De Angelis, D. A.; Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. *Nature* **1998**, *394*, 192–195.
- (40) Vandal, O. H.; Pierini, L. M.; Schnappinger, D.; Nathan, C. F.; Ehrt, S. A membrane protein preserves intrabacterial pH in intraphagosomal *Mycobacterium tuberculosis*. *Nat. Med.* **2008**, *14*, 849–854.
- (41) Marroquin, L. D.; Hynes, J.; Dykens, J. A.; Jamieson, J. D.; Will, Y. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. *Toxicol. Sci.* **2007**, *97*, 539–547.
- (42) Pussard, E.; Bernier, A.; Fouquet, E.; Bouree, P. Quinine distribution in mice with *Plasmodium* berghei malaria. *Eur. J. Drug Metab. Pharmacokinet.* **2003**, *28*, 11–20.
- (43) Butler, C. L.; Cretcher, L. H. Cinchona alkaloids in pneumonia. III. Apocupreines (Apoquinine). *J. Am. Chem. Soc.* **1935**, *57*, 1083–1085.
- (44) Sanders, N. G.; Meyers, D. J.; Sullivan, D. J. Antimalarial efficacy of hydroxyethylapoquinine (SN-119) and its derivatives. *Antimicrob. Agents. Chemother.* **2014**, *58*, 820–827.
- (45) Marcsisin, S. R.; Jin, X.; Bettger, T.; McCulley, N.; Sousa, J. C.; Shanks, G. D.; Tekwani, B. L.; Sahu, R.; Reichard, G. A.; Sciotti, R. J.; Melendez, V.; Pybus, B. S. CYP450 phenotyping and metabolite identification of quinine by accurate mass UPLC-MS analysis: a possible metabolic link to blackwater fever. *Malar. J.* 2013, *12*, 214.
- (46) Kunin, C. M.; Ellis, W. Y. Antimicrobial activities of mefloquine and a series of related compounds. *Antimicrob. Agents Chemother.* **2000**, *44*, 848–852.
- (47) Martin-Galiano, A. J.; Gorgojo, B.; Kunin, C. M.; de la Campa, A. G. Mefloquine and new related compounds target the F(0) complex of the F(0)F(1) H(+)-ATPase of *Streptococcus pneumoniae*. *Antimicrob*. *Agents Chemother*. **2002**, *46*, 1680–1687.
- (48) Karbwang, J.; White, N. J. Clinical pharmacokinetics of mefloquine. *Clin. Pharmacokinet.* **1990**, *19*, 264–279.

- (49)Balemans, W.; Vranckx, L.; Lounis, N.; Pop, O.; Guillemont, J.; Vergauwen, K.; Mol, S.; Gilissen, R.; Motte, M.; Lancois, D.; De Bolle, M.; Bonroy, K.; Lill, H.; Andries, K.; Bald, D.; Koul, A. Novel antibiotics targeting respiratory ATP synthesis in gram-positive pathogenic bacteria. Antimicrob. Agents Chemother. 2012, 56, 4131-4139. (50) Tantry, S. J.; Markad, S. D.; Shinde, V.; Bhat, J.; Balakrishnan, G.; Gupta, A. K.; Ambady, A.; Raichurkar, A.; Kedari, C.; Sharma, S.; Mudugal, N. V.; Narayan, A.; Naveen Kumar, C. N.; Nanduri, R.; Bharath, S.; Reddy, J.; Panduga, V.; Prabhakar, K. R.; Kandaswamy, K.; Saralaya, R.; Kaur, P.; Dinesh, N.; Guptha, S.; Rich, K.; Murray, D.; Plant, H.; Preston, M.; Ashton, H.; Plant, D.; Walsh, J.; Alcock, P.; Naylor, K.; Collier, M.; Whiteaker, J.; McLaughlin, R. E.; Mallya, M.; Panda, M.; Rudrapatna, S.; Ramachandran, V.; Shandil, R.; Sambandamurthy, V. K.; Mdluli, K.; Cooper, C. B.; Rubin, H.; Yano, T.; Iyer, P.; Narayanan, S.; Kavanagh, S.; Mukherjee, K.; Balasubramanian, V.; Hosagrahara, V. P.; Solapure, S.; Ravishankar, S.; Hameed, P. S. Discovery of imidazo[1,2-a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J. Med. Chem. 2017, 60, 1379-1399. (51)
 - (51) Lamontagne Boulet, M.; Isabelle, C.; Guay, I.; Brouillette, E.; Langlois, J. P.; Jacques, P. E.; Rodrigue, S.; Brzezinski, R.; Beauregard, P. B.; Bouarab, K.; Boyapelly, K.; Boudreault, P. L.; Marsault, E.; Malouin, F. Tomatidine is a lead antibiotic molecule that targets *Staphylococcus aureus* ATP synthase subunit C. *Antimicrob. Agents. Chemother.* 2018, *62*, e02197-02117.
 - (52) Hoskins, J.; Alborn, W. E., Jr.; Arnold, J.; Blaszczak, L. C.; Burgett, S.; DeHoff, B. S.; Estrem, S. T.; Fritz, L.; Fu, D. J.; Fuller, W.; Geringer, C.; Gilmour, R.; Glass, J. S.; Khoja, H.; Kraft, A. R.; Lagace, R. E.; LeBlanc, D. J.; Lee, L. N.; Lefkowitz, E. J.; Lu, J.; Matsushima, P.; McAhren, S. M.; McHenney, M.; McLeaster, K.; Mundy, C. W.; Nicas, T. I.; Norris, F. H.; O'Gara, M.; Peery, R. B.; Robertson, G. T.; Rockey, P.; Sun, P. M.; Winkler, M. E.; Yang, Y.; Young-Bellido, M.; Zhao, G.; Zook, C. A.; Baltz, R. H.; Jaskunas, S. R.; Rosteck, P. R., Jr.; Skatrud, P. L.; Glass, J. I. Genome of the bacterium *Streptococcus pneumoniae* strain R6. *J. Bacteriol.* 2001, *183*, 5709–5717.
 - Koul, A.; Dendouga, N.; Vergauwen, K.; Molenberghs, B.; Vranckx, L.; Willebrords, R.; Ristic, Z.; Lill, H.; Dorange, I.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines target subunit c of mycobacterial ATP synthase. *Nat. Chem. Biol.* 2007, *3*, 323–324.
 - (54) Koul, A.; Vranckx, L.; Dendouga, N.; Balemans, W.; Van den Wyngaert, I.; Vergauwen, K.; Gohlmann, H. W.; Willebrords, R.; Poncelet, A.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. *J. Biol. Chem.* 2008, 283, 25273–25280.
 - (55) Koul, A.; Vranckx, L.; Dhar, N.; Gohlmann, H. W.; Ozdemir, E.; Neefs, J. M.; Schulz, M.; Lu, P.; Mortz, E.; McKinney, J. D.; Andries, K.; Bald, D. Delayed bactericidal response of *Mycobacterium tuberculosis* to bedaquiline involves remodelling of bacterial metabolism. *Nat. Commun.* 2014, *5*, 3369.
 - (56) Lamprecht, D. A.; Finin, P. M.; Rahman, M. A.; Cumming, B. M.; Russell, S. L.; Jonnala, S. R.; Adamson, J. H.; Steyn, A. J. Turning the respiratory flexibility of *Mycobacterium tuberculosis* against itself. *Nat. Commun.* **2016**, *7*, 12393.
 - ACS Paragon Plus Environment

- (57) Hards, K.; McMillan, D. G. G.; Schurig-Briccio, L. A.; Gennis, R. B.; Lill, H.; Bald, D.; Cook, G. M. Ionophoric effects of the antitubercular drug bedaquiline. *Proc. Natl. Acad. Sci. USA* 2018, *115*, 7326–7331.
- (58) Hards, K.; Robson, J. R.; Berney, M.; Shaw, L.; Bald, D.; Koul, A.; Andries, K.; Cook, G. M. Bactericidal mode of action of bedaquiline. *J. Antimicrob. Chemother.* **2015**, *70*, 2028–2037.
- (59) Boyer, P. D. The ATP synthase--a splendid molecular machine. *Annu. Rev. Biochem.* **1997**, *66*, 717–749.
- (60) Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown. *Biochem. Soc. Trans.* **2013**, *41*, 1–16.
- (61) Petrella, S.; Cambau, E.; Chauffour, A.; Andries, K.; Jarlier, V.; Sougakoff, W. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. *Antimicrob. Agents Chemother.* **2006**, *50*, 2853–2856.
- (62) Segala, E.; Sougakoff, W.; Nevejans-Chauffour, A.; Jarlier, V.; Petrella, S. New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. *Antimicrob. Agents Chemother.* **2012**, *56*, 2326–2334.
- (63) Preiss, L.; Langer, J. D.; Yildiz, O.; Eckhardt-Strelau, L.; Guillemont, J. E.; Koul, A.; Meier, T. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. *Sci. Adv.* **2015**, *1*, e1500106.
- (64) Heidelberger, M.; Jacobs, W. A. Syntheses in the cinchona series. I. The simpler cinchona alkaloids and their dihydro derivatives. *J. Am. Chem. Soc.* **1919**, *41*, 817–833.
- (65) Li, F.; Li, Y.; Jia, Z.; Xu, M.; Tian, P.; Lin, G. Biscinchona alkaloids as highly efficient bifunctional organocatalysts for the asymmetric conjugate addition of malonates to nitroalkenes at ambient temperature. *Tetrahedron* **2011**, *67*, 10186-10194.
- (66) Suszko, J.; Kaminska, B. Oxidative transformations of the side chain of quinine. *Bull. Acad. Pol. Sci. Ser. Sci. Chim.* **1959**, *7*, 377–379.
- (67) Diaz-Arauzo, H.; Cook, J. M.; Christie, D. J. Synthesis of 10,11-dihydroxydihydroquinidine *N*-oxide, a new metabolite of quinidine. Preparation and 1H-nmr spectroscopy of the metabolites of quinine and quinidine and conformational analysis via 2D COSY nmr spectroscopy. *J. Nat. Prod.* **1990**, *53*, 112124.
- (68) Carroll, F. I.; Abraham, P.; Gaetano, K.; Mascarella, S. W.; Wohl, R. A.; Lind, J.; Petzoldt, K. (3S)-3-Hydroxyquinidine, the major biotransformation product of quinidine. Synthesis and conformational studies. X-Ray molecular structure of (3S)-3-hydroxyquinidine methanesulphonate. J. Chem. Soc., Perkin Trans. 1991, 3017–3026.
- (69) Dillon, N. A.; Peterson, N. D.; Rosen, B. C.; Baughn, A. D. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. *Antimicrob. Agents Chemother.* **2014**, *58*, 7258–7263.
- (70) Bricker, A. L.; Camilli, A. Transformation of a type 4 encapsulated strain of *Streptococcus* pneumoniae. FEMS Microbiol. Lett. **1999**, 172, 131–135.

- (71) Evans, M. E. Determining the frequency of resistance of *Streptococcus pneumoniae* to ciprofloxacin, levofloxacin, trovafloxacin, grepafloxacin, and gemifloxacin. *Eur. J. Clin. Microbiol. Infect. Dis.* **2001**, *20*, 883–885.
- (72) Biswas, I.; Jha, J. K.; Fromm, N. Shuttle expression plasmids for genetic studies in *Streptococcus mutans. Microbiology* **2008**, *154*, 2275–2282.
- (73) Jenkins, S. G.; Schuetz, A. N. Current concepts in laboratory testing to guide antimicrobial therapy. *Mayo. Clin. Proc.* **2012**, *87*, 290–308.
- (74) Barry, A. L.; Craig, W. A.; H., N.; Reller, L. B.; Sanders, C. C.; Swenson, J. M. Methods for determining bactericidal activity of antimicrobial agents; approved guideline. (National Committee for Clinical Laboratory Standards, 1999). 18th ed.; National Committee for Clinical Laboratory Standards, CLSI, 1999; Vol. 18.
- (75) Wu, X.; Zhang, Q.; Guo, J.; Jia, Y.; Zhang, Z.; Zhao, M.; Yang, Y.; Wang, B.; Hu, J.; Sheng, L.; Li, Y. Metabolism of F18, a derivative of calanolide A, in human liver microsomes and cytosol. *Front. Pharmacol.* 2017, *8*, 479.

