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Facile synthesis of two new series of tetracyclic azepine and oxazocine analogs is described. These ana-
logs were evaluated for their potential as MAPKAP-K2 (MK2) inhibitors and several were found to be
potent at inhibiting MK2 with a non-ATP competitive binding mode.
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Mitogen-activated protein kinases (MAPKs) belong to the Ser/Thr based on empirical reports that rigidity in the molecule would ren-

kinase family, to control cytoskeletal remodeling and regulate the
cell cycle. Because of their biological roles, MAPK have been targeted
for various chronic inflammatory diseases such as rheumatoid
arthritis (RA), Alzheimer’s disease, atherosclerosis and cancer.1

MAPKAP-K2 (MK2), a direct downstream substrate of p38, plays a
crucial role in signaling and synthesis of proinflammatory cytokines,
such as TNFa, IL-6 and IFNc.2 MK2 knockout mice show a strong
reduction in disease incidence and disease severity in arthritis mod-
els.3 As MK2 is downstream of p38, its inhibition is expected to pro-
duce the same beneficial effect as p38 MAPK inhibition but with
reduced side effects. In spite of the strong rationale for MK2 inhibi-
tors for treating human diseases, direct proof of concept in clinical
settings has yet to be demonstrated. Several ATP-competitive inhib-
itors have been published recently, and efforts are continuing to
identify novel and more selective MK2 inhibitors.4 In contrast,
non-ATP competitive inhibitors may provide distinct advantages
with respect to these issues. In this study we wish to disclose our dis-
covery efforts in targeting this kinase with a non-ATP competitive
binding mode and our strategy towards further modification of
our lead 1 obtained from the high-throughput Automated Ligand
Identification System (ALIS)5 screening hit I leading to the tetracy-
clic series (Fig 1).

A medicinal chemistry effort was carried out to optimize this
encouraging hit into a lead by substitution of the secondary amide
in I with various alkyl and heteroaryl groups.6 We hypothesized
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der proper orientation in the binding pocket since the amide bear-
ing substituents are conformationally flexible and rotation about
the amide bond is extremely facile. With this effort we have iden-
tified structurally restricted compounds of type 2 and 3 with im-
proved activity (Fig 2).7 We hypothesized that further restricting
the conformation by combining the structural features of 2 and 3
resulting in tetracyclic derivatives may improve MK2 activity and
selectivity. We focused our attention on the development of a prac-
tical synthetic route to tetracyclic azepine derivatives 4 and oxazo-
cine derivatives 5.

The synthesis started with preparing the appropriate intermedi-
ate 8 as outlined in Scheme 1. Conversion of 5-(4-chlorophenyl)-
furan-2-carboxylic acid ethyl ester 9 to benzhydryl alcohol 12
was achieved by reacting 9 with Knochel base and trapping the
Mg intermediate with aldehyde 8 (Scheme 2).8 Reduction of the ni-
tro group was effected with Zn in acetic acid to afford 15 in 90%
yield. Triethylsilane reduction of 15 in TFA afforded the benzyl
derivative 18 in 59% yield. Upon treatment with LiHMDS, 18
smoothly underwent cyclization to give 21 in 78% yield. Likewise,
azepinones 22 and 23 were synthesized in a similar manner de-
scribed for 21 in 95% yield. The 4-fluorophenyl derivative 24 was
obtained from bromide 23 by Suzuki cross-coupling.9 Compound
23 provides an expedient way to incorporate other aryl groups
through changes on the left-hand side of the azepine core. Depro-
tection of the N-Cbz group with TMSI afforded the tricyclic analogs
25 and 26.

To construct the fourth ring in the molecule, we decided to acti-
vate the lactam with POCl3 to generate the reactive chloroiminium
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Figure 1. ALIS hit-to-lead modification.
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Figure 2. Conformational restraint on hit-to-lead compound 1.
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Scheme 1. Synthetic route for the preparation of intermediate 8. Reagents and
conditions: (a) DIEA, DMF, 80 �C, 12 h, 76%.
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ion intermediate 27 (Scheme 3). Thus POCl3 treatment of 21 gener-
ated the active intermediate 27 which upon reaction with amino-
acetaldehyde dimethyl acetal followed by a reflux under acidic
conditions conveniently led to the preparation of tetracyclic deriv-
ative 28. In a similar fashion, the chloroiminium ion intermediate
27 generated from 21, 22 and 24 were coupled with formic hydra-
zide to afford triazoloazepines (30–32). The analogous methyl
substituted imidazo- and triazolo-azepine (33 and 34) were ob-
tained by heating 27 with propargylamine and acetic hydrazide,
respectively.10 Considering the ring constraint with the tetracyclic
systems, these imidazole and triazole forming conditions are use-
ful techniques.
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Scheme 2. Synthetic route for the preparation of azepinone derivatives 21–26. Reagents
TFA, CH2Cl2, 1 h; (d) LiHMDS, THF, 0 �C, 3 h; (e) Pd(dppf)2Cl2�CH2Cl2, K3PO4, dioxane, 10
The synthesis of oxazocine derivative started with the conver-
sion of the commercially available 5-(4-chlorophenyl)-2-formylfu-
ran-3-carboxylic acid ethyl ester 35 to dihydroimidazole by
reacting with 1,2-ethylenediamine followed by NBS treatment
(Scheme 4).11 Oxidation with iodophenyl acetate12 afforded imid-
azole derivative 36, followed by the reduction of ester 36 using DI-
BAL-H to afford 37. N-Arylation of imidazole 37 with 3-fluoro-4-
iodonitro benzene in the presence of Cs2CO3 gave a 76% yield of
38 which upon treatment with t-BuOK gave a low yielding (25%)
nitro derivative 39. Reduction of nitro group using Zn in acetic acid
gave the aniline intermediate in moderate yields, which was sub-
sequently dialkylated with bis(2-bromoethyl)amine hydrogen bro-
mide and basic alumina under neat conditions to yield 40.

An alternate approach for the preparation of oxazocinone deriv-
atives using 35 required the preparation of 45 and this synthesis
was carried out with relative ease as shown in Scheme 5. Treat-
ment of 35 with TMPMgCl�LiCl and quenching with DMF provided
aldehyde 39. Reduction of aldehyde 41 to alcohol was achieved
using NaBH4 followed by the formation of the nitro derivative 43,
which was prepared using standard Mitsunobu conditions from
42, obtained by a similar route as in Scheme 1.13 Reduction of 43
to amine 44 followed by ring closure using LiHMDS generated
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Scheme 3. Synthetic route for the preparation of 27–34. Reagents and conditions: (a) POCl3, 100 �C, 2 h; (b) (i) aminoacetaldehyde dimethyl acetal, THF, reflux, 2 h; (ii) 4 N
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45, which could be a useful building block that can be functional-
ized to give desired tetracyclic products such as imidazo- and triaz-
olo-derivatives as discussed in Scheme 3. Removal of the Boc-
group with TFA afforded the tricyclic oxazocine derivative 46 in
75% yield.

Regarding MK2 inhibition (IC50)14 and/or cellular activity
(EC50),15 the conformationally restricted tetracycles proved to be
clearly superior to the non-cyclized compound 1 and tricyclic ana-
logs 25, 26 and 46 (Table 1). Thus, a comparison of 1 and azepine
28 revealed that the former was more potent in cell-based activity,
while the cyclized analog 28 was 16-fold more potent against
MK2. We attributed the lack of cellular activity due to their differ-
ences in solubility (20 lM vs >200 lM). A similar level of potency
improvement was observed while comparing 28 with the tricyclic
analogs 25 and 26. The corresponding cyano derivative 29 restored
cellular activity at high nanomolar concentration (EC50 = 0.26 lM).
Compounds 30 and 33 with chloro substitution showed high MK2
affinity but with reduced cellular activity. On the other hand cyano
derivative 31 showed similar MK2 and cellular inhibition profiles
as 29. Compound 32 had no major effect on MK2 inhibition however
the fluoro substitution had a favorable effect on solubility. Interest-
ingly, the less soluble derivatives 29 and 31 showed improved cellu-
lar activity indicating that cellular potency depend upon various
additional parameters. The IC50 for MK2 inhibition for the oxazocine
derivative 40 was determined to be 18 nM with improved solubility
and was 6-fold more potent than the corresponding tricyclic analog
46. The mode of inhibition of MK2 by azepine 31 and oxazocine 40
with respect to peptide substrate, TAMRA peptide was determined
by analysis of MK2 activity in the presence of saturating ATP and
varying concentrations of peptide substrate and the inhibitor (Fig
3). The results identified a non-ATP competitive binding mode
throughout the series.16

In conclusion, we have demonstrated practical synthetic routes
for generating tetracyclic azepine and oxazocine pharmacophores
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Table 1
Conformationally restricted MK2 inhibitors

Compd MK2a IC50 (nM) p-HSP27b EC50 (lM) Solubilityd (lM)

1 110 0.35 >200
25 96 ± 20 NDc NDc

26 110 ± 10.0 NDc NDc

28 7.0 ± 0.23 1.5 ± 0.14 20
29 2.9 ± 0.31 0.26 ± 0.04 <16
30 9.3 ± 0.92 2.1 ± 0.38 10
31 3.8 ± 0.55 0.26 ± 0.06 16
32 15 ± 0.57 NDc 33
33 9.2 ± 0.95 2.5 ± 0.49 20
34 880 ± 22 NDc 10
40 18 ± 3.2 NDc 38
46 110 ± 11 NDc NDc

Data represent the average values of duplicates or triplicates ± standard deviation.
a MK2 IMAP assay.
b Inhibition of HSP27 phosphorylation in LPS-stimulated THP-1 cells.
c ND, not determined.
d Kinetic solubility measured at 7.4 pH.

A. U. Rao et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1068–1072 1071
that show potent inhibition against MK2 with a non-ATP compet-
itive binding mode as well as inhibiting HSP27 phosphorylation in
THP-1 cells. Highly constrained tetracyclic synthons 21, 22, 24 and
45 can be easily generated through the use of the chemistry
described herein and are flexible building blocks that can be func-
tionalized to give products such as 28–34 and 40. Compounds of
this series may offer an excellent tool for specifically exploring
and validating MK2 biology.
Figure 3. MK2 non-competitive inhibitio
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