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a b s t r a c t   

Development of highly efficient and costeffective hydrogen evolution reaction (HER) electrocatalyst that 
rivals benchmark Pt is highly desirable but challengeable. In this work, the integration of uniformly dis-
persed ultra-fine Ru nanoparticles with the nitrogen-doped carbon sheets (NCs) is reported as an efficient 
electrocatalyst. The Ru/NCs composite catalyst possesses abundant catalytic activity sites, and the synergy 
effect between Ru and NCs can modulate the electronic structure and adsorption of reaction intermediate to 
enhance the HER activity. Remarkably, the optimal 20% Ru/NCs catalyst delivers an overpotential of as low 
as 13 mV at the current density of 10 mA cm−2 and with a Tafel slope of 31.8 mV dec−1, which is superior to 
most of recently reported Ru-based electrocatalysts and even, superior to the state of the art Pt/C catalyst. 
This work provides an effective strategy for the development of ultra-efficient electrocatalyst for the water 
splitting in alkaline condition. 

© 2020 Published by Elsevier B.V.    

1. Introduction 

Fuel depletion has led to a rapid increase in the demand for 
sustainable and clean energy. Driven by this, hydrogen, with the 
advantages of high gravimetric energy density, non-pollution and 
earth-abundance has evoked extensive attention [1–4]. Electro-
chemical water splitting provides an industrial-scale method for 
producing large quantities of pure hydrogen [5]. One of the key to 
develop electrochemical water splitting is to exploit a high efficient, 
long-term stable and low-cost electrocatalyst for HER. Up to now, Pt- 
based electrocatalysts are at the forefront of HER catalysts research 
field for their unparalleled activity [6–8]. However, the scarcity of Pt 
leads to an exorbitant prices, which vastly limits the practical ap-
plication of it [9,10]. Transition metals-based electrocatalysts have 
been extensively explored as potential alternatives to Pt-based 
electrocatalysts in the past few decades [11–13]. But the catalytic 
activity of most of transition metal-based is still unsatisfactory to 
meet the demand, as the adsorption energy of H* on the surface of 
transition metal-based catalysts is generally improper [14–17]. 
Therefore, development of high performance and relatively low-cost 

electrocatalyst that exceeds the Pt-based catalysts is still highly 
desirable but remains great challenging. 

An ideal HER electrocatalysts must follow the Sabatier principle, 
that is, the adsorption energy of H* on the surface of electrocatalysts 
should not be too high, nor too low [18]. Pt-group metals (M) such as 
Ru, Rh and Ir can form M-H* bond with moderate energy, which is 
conductive to regulate the adsorption and desorption of H* and ef-
fectively decrease the overpotential of HER [19,20]. Among them, Ru 
holds the lowest price and has received great attention due to its 
superior HER performance in alkaline solution. Construction of Ru- 
based composite catalyst is an effective strategy to further enhance 
the HER activity, which can be attributed to the synergistic effect of 
the different component to optimize the adsorption energy of the 
catalysts, maximize the number of active site and enhance the sta-
bility of the catalysts. For example, Li and co-workers developed the 
electrocatalyst of nano-Ru decorated cobalt carbonate hydroxides 
nanowires on carbon fiber (CF@Ru-CoCH NWs) and the electro-
catalyst displayed a low HER overpotential (66 mV@10 mA cm−2) and 
Tafel slop (65 mV dec−1) [21]. Recently, Qiao et al. prepared Ru/C3N4/ 
C hybrid electrocatalyst and obtained a much lower HER over-
potential (79 mV@10 mA cm−2) compared to the Ru/C counterpart  
[22]. In another limited example, Baek et al. have demonstrated that 
the integration of Ru nanoparticles with nitrogenated holey two- 
dimensional carbon could synergistically enhance the HER activity, 
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and a very low HER overpotential (17 mV @ 10 mA cm−2) in alkaline 
solution was achieved [23]. However, the report on the Ru-based 
composite catalyst with high HER activity superior to the benchmark 
Pt catalyst remains rare. Therefore, it is urgent but challenging to 
design novel Pt-free Ru-based composite catalyst with high-perfor-
mance HER activity. 

Inspired by above reasons, in this work, we reported an ultra-effi-
cient HER catalyst, which integrated uniformly dispersed ultra-fine Ru 
nanoparticles with the nitrogen-doped carbon sheets. As carrier, 2D NCs 
not only provide the localized site for the growth of Ru nanoparticles to 
prevent the agglomeration of particles and maximizes the exposure of 
active sites, but also improve the catalytic activity and stability of Ru/ 
NCs. Remarkably, the optimal 20% Ru/NCs catalyst delivers an over-
potential as low as 13 mV at the current density of 10 mA cm−2 and with 
a Tafel slope of 31.8 mV dec−1, which is superior to most of recently 
reported Ru-based electrocatalysts and even, superior to benchmark Pt/C 
catalyst. Given ultrahigh catalytic performance and relatively low-cost, 
Ru/NCs is expected an alternative to the Pt/C electrocatalyst to apply in 
the practical water splitting. 

2. Experimental 

2.1. Synthesis of electrocatalysts 

2.1.1. Synthesis of NCs 
The NCs sample was fabricated according to previous report [24]. 

Firstly, 0.1896 g of dopamine hydrochloride and 1.892 g of 
FeCl3·6H2O were placed in a mortar and ground sufficiently to obtain 
the complex produce, until the product became a flowing black li-
quid. Secondly, the liquid was directly transferred into a tube fur-
nace. The temperature of tube furnace was raised to 700 °C with the 
rate of 5 °C min−1 under Ar atmosphere and the reaction was lasted 
for 2 h. Finally, the resulting product was cleaned with 0.5 M H2SO4 

to removed impurities during continuous stirring, and then washed 
with water and dried to obtain the NCs. As a comparison, nitrogen- 
doped carbon bulk material (denoted as NCb) was prepared by direct 
calcination of dopamine hydrochloride without adding FeCl3·6H2O 
as template. 

2.1.2. Synthesis of Ru/NCs 
NCs and RuCl3 were dispersed in 100 mL of ethylene glycol with 

the mass ratio of NCs and RuCl3 of 80 mg: 40 mg. Then, the mixture 
solution was reflowed in an oil bath at the temperature of 190 °C for 
30 min. After centrifugation, several times washes with DI water and 
drying, the final catalyst was obtained. In the end, the catalyst was 
named 20% Ru/NCs. In addition, Ru/NCs with other mass percentage 
were received by changing the mass ratio of NCs and RuCl3. In the 
above process, 20% Ru/NCb or pure Ru catalyst can be obtain if NCb 
was used instead of NCs or without the addition of NCs. 

2.2. Characterizations 

Raman scattering characterization was recorded on a Renishaw 
InVia Micro-Raman system with excitation wavelength of 532 nm. X- 
ray diffraction (XRD) analysis was performed on a Bruker D8 
Advance X-ray diffractometer. Transmission electron microscopy 
(TEM) and high-resolution TEM (HRTEM) measurements were con-
ducted on Tecnai 12 and Tecnai G2 F30 respectively to reveal the 
morphology of the samples. The X-ray photoelectron spectra (XPS) 
were determined by an ESCA PHI500 spectrometer. The nitrogen 
adsorption/desorption measurements were used to analyze 
Brunauer-Emmett-Teller (BET) surface area of the as prepared pro-
ducts on a surface area analyzer (Micromeritics Instrument 
Corporation, USA). Inductively coupled plasma-atomic emission 
spectroscopy (ICP-AES) were carried out on an Varian VISTA-MPX 
instrument. 

2.3. Electrochemical measurements 

To prepare the working electrode, the electrocatalyst (5 mg), ethanol 
(1 mL) and Nafion (40 μL) were mixed and dispersed evenly by ultra-
sonication for 30 min. Then, 5 μL of the suspension was attached to a 
cleaned glassy carbon electrode (GCE, 3 mm diameter, loading amount of 
0.34 mg cm−2). Electrochemical measurements were performed on a 
CHI-760E electrochemical workstation with a three-electrode config-
uration. In 1 M KOH (pH = 13.6) electrolyte, a modified GCE, Ag/AgCl 
electrode and graphite rod were respectively used as working electrode, 
reference electrode and counter electrode. Potentials were converted to 
hydrogen electrodes (RHE) by the equation of ERHE = EAg/AgCl + 0.197 V 
+ 0.059 × pH. Linear sweep voltammetry (LSV) curves at a scan rate of 
5 mV s−1 were selected to evaluate the electrocatalytic activities of the 
samples. The equation of η = b log j + a provided a reference for the cal-
culation of Tafel plots, where j, b and a represent the current density 
(mA cm−2), Tafel plot and intercept relative to the exchange current 
density, respectively. Mass activity (A g−1) were calculated from the mass 
loading m (0.34 mg cm−2) and the current density j at overpotential at 
− 0.07 V, according to the formula of Mass activity = j/m. The electro-
chemical active surface area (ECSA) can be estimated by the double-layer 
capacitance (Cdl), which obtained from the formula of Cdl = I/ν, where I on 
the behalf of the charging current (mA cm−2) and ν refer the scan rate 
(mV s−1). Electrochemical impedance spectroscopy (EIS) was measured 
at a frequency range of 0.01–100000 Hz. Successive CV and multistep 
chronopotential method were adopted to test the stability of 20% Ru/ 
NCs. The Faradaic efficiency of electrocatalyst was calculated according 
to the equation of Faradaic efficiency = (2 × F × NH2)/(I × t), where the 
value of F is 96485 C mol−1 and NH2, I and t are the mole of the generated 
H2, constant reduction current and time for constant reduction current, 
respectively. 

3. Results and discussion 

The experiment involves the preparation of two-dimensional NCs 
by salt-templating method and followed by the fabrication of Ru 
nanoparticles through mild solvothermal method. The relevant 
processes are shown in Scheme 1. Briefly, 2D NCs with large specific 
area was obtained after complexation, calcination and washing, with 
dopamine hydrochloride as raw material and FeCl3·6H2O as tem-
plate. Then, 2D NCs was used as substrates to provide anchoring site 
for the growth of Ru nanoparticles. 

Morphology characterization was carried out by TEM and HRTEM. 
The TEM images of 20% Ru/NCs are shown in Fig. 1a–c. Figs. 1a and S1a 
and b prove that the NCs presents a large 2D flake structure, while Fig. 1b 
and c reveals a good dispersity of Ru nanoparticles on NCs. Meanwhile, 
the HRTEM image (Fig. 1d) manifests the size distribution of Ru nano-
particles is about 3 nm. However, this good dispersion disappears in pure 
Ru (Fig. S1c and d) and 20% Ru/NCb electrocatalysts (Fig. S1e and f) and 
replaced by the morphology of large particles with agglomeration. Na-
noparticles with smaller size are conductive to the exposure of active 
sites to improve catalytic efficiency [25]. Therefore, we consider that NCs 
play a significance role in the dispersion of Ru, and we can also speculate 
that the 20% Ru/NCs may have better catalytic activity than pure Ru and 
20% Ru/NCb due to the exposure of more active sites. In Fig. 1e, the 
lattice distance of 0.234, 0.214 and 0.208 nm match well with the (100), 
(002) and (101) planes of Ru (PDF card #06-0663). Similarly, the obvious 
characteristic ring corresponding to (101) plane is also shown in the 
selected area electron diffraction (SEAD) pattern (Fig. 1f), accompanied 
by the weaker spot of the (100), (110) and (112). The HAADF-STEM 
images and elemental mappings (Fig. 1g) confirm the uniform doping of 
N in carbon and the well dispersion of Ru on NCs. 

The graphitization degree of NCs and the crystalline phase of Ru/ 
NCs were analyzed by Raman spectroscopy (Fig. 2a) and XRD 
(Figs. 2b and S2a). In Raman spectra, NCs has two distinct peaks near 
1367 and 1580 cm−1, belonging to D and G band respectively, where 
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Scheme 1. Schematic presentation of synthesis of the Ru/NCs composite.  
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Fig. 1. Structure characterization. (a–c) TEM images, (d and e) RHTEM images, (f) SAED pattern, (g) HAADF-STEM image and corresponding elemental mappings of 20% Ru/NCs.  
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the D band reflects the sp3 defect site and the G band represents the 
in-plane stretch vibration of sp2 band pairs [26]. The intensity ratio 
of D band to G band is 0.91, indicating the existence of many defects 
in NCs caused by N doping [27,28]. This nitrogen-doped C will affect 
the nucleation and growth kinetics of particles catalyst, resulting in 
smaller particle size and more uniform dispersion, which ultimately 
change the catalytic efficiency [29]. Furthermore, no obvious 2D 
band peak was observed, which demonstrate that there is no pro-
nounced graphitic stacking in NCs. Subsequently, the carbon perk 
(the (002) plane) of NCs was found at 26.4° in XRD patterns [30], 
while the peaks located at 38.4°, 42.2°, 44.0°, 58.3°, 69.4° and 78.4° 
can be indexed to (100), (002), (101), (102), (110) and (103) plane of 
Ru (PDF card #06–0663). The above results prove the high graphi-
tization of NCs and good crystallinity of Ru nanoparticles. 

XPS characterization was used to analyze chemical valence states of 
the electrocatalyst. In the spectrum of C 1s and Ru 3d (Fig. 2c), the C1s 
peak are well fitted with four peaks at 284.6, 285.3, 286.5 and 289.0 eV, 
ascribing to the existent of C-C/C˭C, C˭N, C-N/C-O and C˭O, and the re-
latively strong intensity of C˭N portends the relatively high N doping  
[31]. Two peaks located at 280.4 and 281.5 eV are attributed to Ru0 and 
Ru-N coordination, respectively [32]. For the N 1s (Fig. 2d), the binding 
energy at 398.5, 400.0, 401.3 and 404.0 eV are corresponding to pyr-
idinic-N, pyrrolic-N, graphitic-N and quaternary-N+-O−, respectively [31]. 
ICP-AES analysis shows that the mass contain of Ru is around 20% for 
20% Ru/NCs. It can be inferred from the above results that the existence 
of N has affected the electronic structure of Ru, which may be more 
beneficial for HER reaction [33]. 

For powdery electrocatalyst, the influence of surface area on 
electrocatalytic performance should not be underestimated. 
Therefore, N2-adsorption-desorption measurement was performed 
to study the surface area and pore distribution of electrocatalysts. As 
shown in Fig. S2b, the type IV isotherm suggests the presence of 
mesopores. The Brunauer-Emmett-Teller surface area of NCs, 20% 
Ru/NCs and 20% Ru/NCb were 1312, 770 and 54 m2 g−1, respectively. 
High BET surface area of the 20% Ru/NCs could provide a large 
number of active site, which is favorable for the catalytic activity. 

The HER activity of as-prepared electrocatalysts were tested in 
1.0 M KOH. Based on the polarization curves in Fig. 3a, the over-
potential comparison diagram (Fig. 3b) of catalysts at current density 
of 10 and 100 mA cm−2 is given. First, it is clearly observed that the 
NCs have low catalytic activity in the measurement. Then, the 20% 
Ru/NCs shows the lowest overpotential (13 mV at 10 mA cm−2 and 
133 mV at 100 mA cm−2) than 20% Ru/NCb (89 mV at 10 mA cm−2 and 
387 mV at 100 mA cm−2) and pure Ru electrocatalysts (26 mV at 
10 mA cm−2 and 181 mV at 100 mA cm−2). Combining the above 
overpotential date with the results of TEM and BET, it can be de-
monstrated that the combination of ultra-small Ru nanoparticles 
and NCs is beneficial to HER activity. Finally, the HER performance of 
20% Ru/NCs is found to be superior to the commercial 20% Pt/C 
(17 mV at 10 mA cm−2 and 167 mV at 100 mA cm−2). Which is mainly 
attributed to the interaction between metal particles and the carbon 
substrates, which optimizes the electronic structure of the metal 
particles to make catalyst show improved HER activity. This superior 
electrochemical activity to the commercial Pt/C confirms our pre-
diction of XPS result. Furthermore, the polarization curves of Ru/NCs 
with other mass percentages of Ru are shown in Fig. S3a. When the 
Ru content increased from 5% to 10%, 20% and 30%, the corre-
sponding overpotential at the current density of 10 mA cm−2 were 
22, 19, 13 and 13 mV, which were all lower than the 26 mV of pure 
Ru, proving that the more Ru dispersed in NCs, the more favorable to 
catalysis, but excess Ru will also hinder the further enhancement of 
performance. Moreover, to further explore the catalytic activity of 
20% Ru/NCs, HER performance in 0.1 M and 30 wt% KOH and near- 
neutral BPS (1 M, pH = 6.9) were also measured (Fig. S3b–d). As we 
can see, 20% Ru/NCs exhibits higher performance than 20% Pt/C in 
0.1 M and 30 wt% KOH, while the overpotential is lower than 20% Pt/ 
C in 1 M PBS, indicating that 20% Ru/NCs work better in alkaline 
electrolyte. 

In order to probe the HER kinetics, the Tafel plots of the elec-
trocatalyst were collected. As shown in Fig. 3c, the Tafel slope of 
31.8 mV dec−1 for 20% Ru/NCs, which is smaller than that of 186.0 mV 
dec−1 for 20% Ru/NCb and of 55.2 mV dec−1 for Ru. Meanwhile, the 

Fig. 2. (a) Raman spectra of NCs. (b) XRD pattern of 20% Ru/NCs. High-resolution XPS spectra of (c) C 1s+Ru 3d, (d) N 1s.  
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approximate Tafel slope with 20% Pt/C (32.0 mV dec−1) indicates that 
the rate-controlling step of 20% Ru/NCs is Tafel-Volmer mechanism. 
Compared the above electrochemical performance with recently 
reported noble-metal-based catalysts (Fig. 3d and Table S1), our 
catalyst performs competitive activity [20–22,31–45]. To define the 
catalytic properties, mass activity was calculated (Fig. 3e). At an 
overpotential of − 0.07 V vs RHE, the 20% Ru/NCs presents a mass 
activity of 150.5 mA g−1, which is 1.33, 1.66 and 8.55 folds to that of 
the 20% Pt/C, Ru and 20% Ru/NCb, respectively, proving the excellent 
catalytic performance of 20% Ru/NCs. 

To further get insight into the excellent activity of 20% Ru/NCs, 
electrochemical impedance spectroscopies (ESI) and electrochemical 
active areas (ECSA) were measured. One can see from Fig. 3f, at a 
potential of − 1.04 V vs Ag/AgCl, the diameter of the semicircle of 20% 

Ru/NCs is much smaller than Ru and 20% Ru/NCb, portending that 
the synergy between NCs and Ru results in the lowest contact and 
charge-transfer impedance of 20% Ru/NCs. According to CV curves at 
the scan rates of 10, 20, 40, 60, 80 and 100 mV within potential range 
of 0.052–0.152 V (Fig. S4a–c), Cdl were fitted in Fig. 3g to evaluate the 
ECSA. It was calculated that the ECSA of 20% Ru/NCs, Ru and 20% Ru/ 
NCb were 36.6, 27.8 and 3.6 mF cm−2, respectively. Benefiting from 
the large specific surface area of NCs, 20% Ru/NCs exposed more 
activate sites, which could enhance the HER activity. 

The stability of 20% Ru/NCs was proved by CV and multistep 
chronopotential method. Fig. 3h shows two similar LSV curves of 
20% Ru/NCs before and after 3000 cycles, revealing that 20% Ru/NCs 
possess good stability. In addition, the multistep chronopotential 
curve in Fig. 3i further confirm the long-term durability of 20% Ru/ 
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NCs in 1 M KOH. The electrocatalyst was tested for 5 h respectively at 
the current density of 10, 20, 50, 80 and 100 mA cm−2, and the curves 
at each step were relatively stable. The good stability is not only 
attributed to the good corrosion resistance provided by carbon 
material, but also since the doping of N enhances the chemical bond 
between the catalyst and the substrate, resulting in increased sta-
bility. TEM images in S5a demonstrate that the morphology of the 
post catalyst changed little after long-term durability. XPS spectra of 
C 1s+Ru 3d of post catalyst is shown in Fig. S5b, indicating the for-
mation of RuO2, which is the main reason for the declining perfor-
mance of the 20% Ru/NCs. In the end, the Faradaic efficiency of 20% 
Ru/NCs for HER is determined to be 94.4% from theoretical value and 
detected hydrogen amounts (Fig. 3j), which confirms the practic-
ability of our electrocatalyst. 

4. Conclusions 

In summary, we have developed a novel Ru/NCs electrocatalyst by 
early carbonization and subsequent solvothermal reaction. The carbon 
sheets prepared by the template method provide a large specific surface 
area which are conducive to the anchoring of Ru. The resulting Ru na-
noparticles show uniform dispersion with an average diameter of 3 nm. 
Remarkably, the optimal 20% Ru/NCs catalyst delivers an overpotential of 
as low as 13 mV at the current density of 10 mA cm−2 and with a Tafel 
slope of 31.8 mV dec−1, which is superior to most of recently reported 
Ru-based electrocatalysts and even, superior to the state of the art Pt/C 
catalyst. In view of ultrahigh catalytic performance and relatively low- 
cost, Ru/NCs is consider to be a substitute for Pt/C electrocatalyst to 
apply in the practical water splitting. 
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