PII: S0040-4039(96)01364-0

An Intermolecular Michael Addition of Benzene

Tai-Chi Wang, a,b Yeh-Long Chen, Kuan-Han Lee, b and Cherng-Chyi Tzeng*a

aSchool of Chemistry, Kaohsiung Medical College, Kaohsiung City 807, Taiwan, R. O. C. bDepartment of Pharmacy, Tajen Junior College of Pharmacy, Pingtung, Taiwan, R. O. C.

Abstract: The first intermolecular Michael addition of benzene leading to the formation of 3,3-diphenylpropionanilide is described. 2-Methoxyaniline was reacted with cinnamoyl chloride to give 2-methoxycinnamanilide (1) which was treated with aluminum chloride in benzene at 80°C to afford 2'-hydroxy-3,3-diphenylpropionanilide (4) in an 85% overall yield. Accordingly, 4'-hydroxy-2'-methyl-3,3-diphenylpropionanilide (6) was prepared from 4-methoxy-2-methylcinnamanilide (5) in 76% yield. Copyright © 1996 Elsevier Science Ltd

A number of 2(1*H*)-quinolinone derivatives have been synthesized and evaluated for their cardiovascular activities. ¹⁻⁵⁾ Recently, Fujioka *et. al.* described the preparation of 6-hydroxy-8-methyl-2(1*H*)-quinolinone, a key precursor for many novel positive inotropic agents, from 4-methoxy-2-methylaniline *via* Schotten-Baumann reaction and an intramolecular Friedel-Crafts cyclization. ²⁾ Although the cyclization mechanism which included an unusual dearylation, was previously proposed by Manimaran *et. al.*, ⁶⁾ we believe that dearylation occur *via* the enolate 2. We have been interested in the preparation of hydroxycoumarin derivatives and examining their antiplatelet activity. ^{7,8)} In an effort to expand these studies, *i.e.*, to synthesize their bioisosteric isomers, hydroxy-2(1*H*)-quinolinones, Fujioka's procedures were followed. ²⁾ 2-Methoxyaniline was reacted with cinnamoyl chloride to give 2-methoxycinnamanilide (1) in 98% yield. Cyclization of 1 with aluminum chloride in chlorobenzene at 120°C afforded the desired 8-hydroxy-2(1*H*)-quinolinone (3) in 76% yield (Scheme 1).

To optimize the cyclization reaction, chlorobenzene was replaced with benzene as the reaction solvent to provide a relatively mild condition (refluxed at 80°C). The ¹H NMR spectrum of the sole product isolated in this reaction showed a doublet at δ 3.22 ppm, a triplet at δ 4.56 ppm, and a multiplet at δ 6.69-7.63 ppm corresponding to CH₂, CH, and aromatic protons respectively. The ¹³C NMR spectrum supported the ¹H NMR spectrum in confirming the presence of a methylene carbon resonance appeared at δ 41.51 ppm and a tertiary carbon resonance at δ 46.87 ppm. The intermolecular Michael addition of 1 with benzene to give 2'-hydroxy-3,3-diphenylpropionanilide (4) seems to be a resonable deduction. However, we were reluctant to make this critical structural assignment founded only on this evidence and therefore we sought a more definitive answer; an X-ray crystallographic analysis. A view of a single molecule of the crystal revealed that an intermolecular Michael addition occurred in which the benzene functions as a Michael donor and 1 as a Michael acceptor leading to the formation of 4 instead of the expected 3. In order to establish and to further confirm this novel addition, 4-methoxy-2-methylaniline was converted into 4-methoxy-2-methylcinnamanilide (5) which was treated with aluminium chloride in refluxed benzene. 4'-Hydroxy-2'-methyl-3,3-diphenylpropionanilide (6) was obtained in 76% yield (Scheme 2). The structure of 6 was also established by ¹H NMR spectrum [δ 1.78 (s, 3H, CH₃), 3.03 (d, 2H, CH₂), 4.54 (t, 1H, CH), 6.44-7.36 (m, 13H, Ar-H), 9.10, 9.15 (2H, NH & OH)], ¹³C NMR spectum [δ 17.55, 41.43, 47.06, 112.37, 116.39, 126.14, 126.94, 127.49, 127.60, 128.31, 134.06, 144.18, 154.85, 168.99] and elemental analyses.

Acknowledgement: We thank the National Science Council of the Republic of China for the support of this study and Professor Jack E. Baldwin, F.R.S. of the Dyson Perrins Laboratory for valuable discussions.

References and Notes

- Uno, T.; Ozeki, Y.; Koga, Y.; Chu, G.-N.; Okada, M.; Tamura, K.; Igawa, T.; Unemi, F.; Kido, M.; Nishi, T. Chem. Pharm. Bull. 1995, 43, 1724-1733.
- 2. Fujioka, T.; Teramoto, S.; Mori, T.; Hosokawa, T.; Sumida, T.; Tominaga, M.; Yabuuchi, Y. J. Med. Chem. 1992, 35, 3607-3612.
- 3. Tominaga, M.; Yo, E.; Ogawa, H.; Yamashita, S.; Yabuuchi, Y.; Nakagawa, K. Chem. Pharm. Bull. 1984, 32, 2100-2110.
- 4. Nishi, T.; Tabusa, F.; Tanaka, T.; Shimizu, T.; Nakagawa, K. Chem. Pharm. Bull. 1985, 33, 1140-1147.
- 5. Tomigawa, M.; Ogawa, H.; Yo, E.; Yamashita, S.; Yabuuchi, Y.; Nakagawa, K. Chem. Pharm. Bull. 1988, 35, 3699-3704.
- 6. Manimaran, T.; Thiruvengadam, T.K.; Ramakrishnan, V.T. Synthesis 1975, 739-741.
- 7. Chen, Y.-L.; Wang, T.-C.; Lee, K.-H.; Chang, Y.-L.; Teng, C.-M.; Tzeng, C.-C. Helv. Chim. Acta in press.
- 8. Chen, Y.-L.; Wang, T.-C.; Liang, S.-C.; Teng, C.-M.; Tzeng, C.-C. Chem. Pharm. Bull. in press.