
J. Chem. Sci.          (2019) 131:71 © Indian Academy of Sciences
https://doi.org/10.1007/s12039-019-1649-y

REGULAR ARTICLE

Pd-catalyzed C–H bond activation of Indoles for Suzuki reaction
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Abstract. We present a practical method for Suzuki coupling by which unprotected or N -protected indoles
may be selectively arylated in the C2-position through direct C–H bond activation by electrophilic Pd(TFA)2
catalyst. The protocol is operationally simple as it is carried out in dioxane/water mixture, and air as the sole
oxidant at room temperature. Various 2-arylated indoles were obtained in good yields. The protocol works for
benzofuran, pyrrole and thiophene also.
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1. Introduction

Pd-catalyzed C–C bond formation has become a pow-
erful tool for the construction of complex molecules.1

In such reactions, aryl iodides, bromides and triflates
are commonly used as one of the reaction components.
As aryl halides or triflates are not either easily available
or need to be made from corresponding hydrocarbon
or phenol, direct C–H bond activation2 has become an
alternative method of choice.

In this direction, Ru-,3 Rh-,4 Ir-5 and Pd-6catalyzed
cross-coupling reactions have been reported through the
activation of C–H bond. Among these metals, Pd is com-
paratively cheap, easily available and its reactivity can
particularly be tuned using a suitable ligand and condi-
tions, and this chemistry has been studied well. Recently,
a few reports have been published to increase the elec-
trophilicity of Pd-catalyst for the activation of C–H bond
of indoles7 and heteroarenes.8 A pioneering work on
direct arylation of 1-tosylindole with chloropyrazines
has been reported by Ohta et al.2e Broad applications
and detailed mechanistic study on C-2 and C-3 aryla-
tion of indoles with aryl halides have been reported by
Sames and co-workers.7a,b,c Shortly after, Sanford et al.,
reported arylation with [Ar–I–Ar]BF4 on indole using
electrophilic Pd(II) catalyst.7d Larrosa et al., reported
the arylation of indoles from aryl iodide by in situ
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generation of highly active electrophilic Pd-catalyst in
the presence of Silver(I) carboxylates.7e Bellina and
co-workers also developed an excellent method for
selective palladium- and copper-mediated C-2 aryla-
tions of indoles with aryl iodides in absence of base
and ligands.8a,b All these arylation reactions have been
reported using aryl iodide as a coupling partner. Aryl
boronic acids have several advantages over aryl halides
including easy availability, non-toxicity, high stability
and environmental tolerance. Shi and co-workers made
a significant contribution by Pd(OAc)2 catalyzed direct
C-2 arylation with aryl boronic acids as an arylating
agent.7f Zhang et al., has reported the C-arylation of
indoles using aryltrifluoroborate salts.7g Pd-catalyzed
indole-aryl bond formation was reported by Fagnou
et al.,7h where unfunctionalized arene was involved in
direct cross-coupling reaction in the presence of an oxi-
dant. In all these cases Pd(II) salts have been used as
catalyst and arylation at the C-2 position of indole was
the major product.

Gaunt and co-workers7i have explored the use of
Cu(II) catalyst in selectively C-2 or C-3 arylation of
indoles. In the reaction, medium Cu-catalyst is oxidized
in the presence of diaryl-iodine(III) reagents to form a
highly electrophilic aryl-Cu(III) intermediate that is par-
ticipated in the arylation process. Pd-catalyzed C-3 ary-
lation of indoles was achieved by He and co-workers.7j
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Scheme 1. Pd catalyzed direct C–H arylation of indoles.

Successful coupling was observed in the case of
aromatic sodium sulfonates,9a arylsulfinic acids,9b aryl-
sulfonyl hydrazides9c and (hetero)arenesulfonyl chlo-
rides9d also. Recently, heterogeneous Pd-catalyzed direct
C-2 arylation of indoles using diaryliodonium salts
under mild conditions was reported by Olofsson10

and Wan’s group.11 Very recently, Markandeya’s group
reported the same transformation using phosphine free
tetradentate Pd catalyst.12

Since indoles13 are present in many biologically
and pharmacologically active compounds and our lab
is involved in the synthesis of indole-based natural
products and various indole derivatives14 for biological
screening, we are looking for a suitable methodology
for the derivatization of indole moiety.

During the course of our work, we wanted to synthe-
sis 2-arylated indole using Shi’s protocal7f (Scheme 1).
Though we obtained the clean product with clean con-
version, the reaction had to be set up in Schlenk
line without which the reaction went incomplete and
poor yield was obtained. Moreover, it requires acetic
acid as a solvent and Cu(OAc)2 as co-oxidant in
case of electron-withdrawing heterocycles. Herein, we
explored Pd(II) catalyzed selective C-2 arylation of
indoles with aryl boronic acids under mild reaction
conditions and extended to benzofuran, pyrrole and thio-
phene also.

2. Experimental

2.1 Materials and physical measurements

Unless otherwise stated, all reagents were purchased from
commercial suppliers and used without further purification.
All reagent-grade solvents were purchased from commer-
cial sources and used after distillation for reaction, work-up
and purification. Reactions monitoring and determination of
Rf values for all compounds were performed by thin-layer

chromatography (TLC) on silica gel 60 F254 (Merck; layer
thickness 0.25 mm) and visualization was accomplished by
irradiation with UV light at 254 nm or vanillin stain. Col-
umn chromatography was performed on Merck silica gel
(100–200 mesh) with eluent as mentioned, unless otherwise
reported. Proton and carbon NMR spectra were recorded on
BRUKER AVANCE III 500 MHz, BRUKER AVANCE III
HD 400 MHz and BRUKER AVANCE III HD 300 MHz
spectrometers in deuterated solvents at ambient probe tem-
perature (300 K). Proton chemical shifts are reported in ppm
(δ) relative to tetramethylsilane (TMS) with the solvent reso-
nance employed as the internal standard (CDCl3 δ 7.26 ppm).
Data are reported as follows: chemical shift, multiplicity
(s = singlet, d = doublet, t = triplet, q = quartet, m =
multiplet, br = broad, dd = double doublet), coupling con-
stants (Hz) and integration. 13C chemical shifts are reported
in ppm (δ) from tetramethylsilane (TMS) with the solvent
resonance as the internal standard (CDCl3 δ 77.0 ppm). High-
resolution mass spectra were taken using micromass Q-Tof
microsystem by electron spray ionization (ESI) technique. IR
spectra were taken using a Perkin-Elmer FT Infrared Spec-
trometer Model Spectrochem Two, the wavenumbers (n) of
recorded IR-signals are reported in cm−1.

2.2 General procedure for the C–H arylation reaction

To an oven-dried 25 mL RB containing a magnetic stir bar,
heterocycle (0.6 mmol, 1.0 equiv), Pd(TFA)2 (0.06 mmol,
5 mol%), arylboronic acid (1.2 mmol, 2.0 equiv), TFA (1.2
mmol, 2.0 equiv) and 1,4-Dioxane:H2O (1.0 M, 3:1 ratio) was
added and allowed to stir in the presence of air (open atmo-
sphere) at 25 ◦C for 4–12 h. After completion of the reaction,
the mixture was filtered through celite and concentrated. The
resulting mixture was diluted with EtOAc (25 mL), washed
with aqueous NaHCO3(2 × 15 mL). The organic layers were
combined, dried over anhydrous Na2SO4, and concentrated
under reduced pressure. The crude material was purified by
column chromatography (SiO2, n-Hexane/EtOAc) to give the
desired arylated product.

2.3 Synthesis and characterization of the arylindole
derivatives

2-Phenyl-1H-indole (3a)9a: White solid; yield: 58 mg, 47%;
M.p.: 186–188 ◦C; Rf = 0.5 (12% EtOAc/n-hexane). 1H
NMR (300 MHz, CDCl3): δ 8.25 (s, 1H), 7.66–7.57 (m, 3H),
7.46–7.26 (m, 4H), 7.22–7.08 (m, 2H), 6.81 (d, J = 2.1
Hz, 1H) ppm. 13C NMR (75 MHz, CDCl3): δ 137.8, 136.8,
132.3, 129.2, 128.9, 127.7, 125.1, 122.3, 120.6, 120.2, 110.9,
99.9 ppm. HRMS (ESI): m/z [M+H]+ calcd for C14H12N:
194.0964; found 194.0966.

2-(o-Tolyl)-1H-indole (3b)9a: White solid; yield: 58 mg,
47%; M.p.: 92–94 ◦C; Rf = 0.5 (12% EtOAc/n-hexane).
1H NMR (500 MHz, CDCl3): δ 8.03 (s, 1H), 7.63 (dd,
J = 7.8, 0.4 Hz, 1H), 7.46–7.40 (m, 1H), 7.35 (dd, J =
8.0, 0.7 Hz, 1H), 7.31–7.22 (m, 3H), 7.21–7.16 (m, 1H),
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7.14–7.10 (m, 1H), 6.59 (dd, J = 2.1, 0.8 Hz, 1H), 2.47
(s, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ = 137.4,
136.1, 136.0, 132.6, 131.0, 128.9, 128.8, 127.9, 126.0,

122.0, 120.5, 120.0, 110.7, 102.9, 21.0 ppm. HRMS (ESI):
m/z [M+H]+ calcd for C15H14N: 208.1121; found 208.1123.

2-(4-(tert-Butyl)phenyl)-1H-indole (3c)9a: White solid;
yield: 64 mg, 43%; M.p.: 186–188 ◦C; Rf = 0.5 (15%
EtOAc/n-hexane). 1H NMR (400 MHz, CDCl3): δ 8.32 (s,
1H), 7.69–7.57 (m, 3H), 7.48 (d, J = 8.4 Hz, 2H), 7.41 (d,
J = 8.0 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.13 (t, J = 7.5
Hz, 1H), 6.81 (d, J = 1.2 Hz, 1H), 1.38 (s, 9H) ppm. 13C
NMR (75 MHz, CDCl3): δ 150.9, 137.9, 136.7, 129.5, 129.3,
125.9, 124.9, 122.1, 120.5, 120.1, 110.8, 99.5, 34.6, 31.2 ppm.
HRMS (ESI): m/z [M+H]+ calcd for C18H20N: 250.1590;
found 250.1592.

2-(Naphthalen-2-yl)-1H-indole (3d)9a: White solid;
yield: 106 mg, 73%; M.p.: 200–202 ◦C; Rf = 0.5 (10%
EtOAc/n-hexane). 1H NMR (300 MHz, CDCl3) δ 8.47 (br.
s, 1H), 8.05 (s, 1H), 7.94–7.79 (m, 4H), 7.68 (d, J = 7.7
Hz, 1H), 7.57–7.41 (m, 3H), 7.26–7.11 (m, 2H), 6.97 (dd,
J = 2.1, 0.7 Hz, 1H) ppm. 13C NMR (75 MHz, CDCl3) δ =
137.8, 137.0, 133.6, 132.8, 129.7, 129.3, 128.7, 127.9,
127.8, 126.7, 126.1, 123.8, 123.0, 122.5, 120.7, 120.3, 110.9,
100.7 ppm. HRMS (ESI): m/z [M+H]+ calcd for C18H14N:
244.1121; found 244.1127.

2-(3-(Trifluoromethyl)phenyl)-1H-indole (3e)16: White
solid; yield: 80 mg, 51%; M.p.: 145–147 ◦C; Rf = 0.5 (13%
EtOAc/n-hexane). 1H NMR (300 MHz, CDCl3): δ 8.30 (br. s,
1H), 7.86 (s, 1H), 7.78 (d, J = 6.6 Hz, 1H), 7.64 (d, J = 7.8
Hz, 1H), 7.58–7.47 (m, 2H), 7.39 (d, J = 8.0 Hz, 1H), 7.23
(t, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.87 (d,
J = 1.5 Hz, 1H) ppm. (75 MHz, CDCl3): δ 137.0, 136.2,
133.1, 131.6, 131.2, 129.5, 129.0, 128.2 (d, J =0.9 Hz, 1C),
124.10 (q, J = 3.8 Hz, 1C), 123.0, 121.8-121.6 (m, 1C),
120.9, 120.6, 111.1, 101.2 ppm. HRMS (ESI): m/z [M+H]+
calcd for C15H11F3N: 262.0838; found 262.0846.

2-(3-Fluorophenyl)-1H-indole (3f)8g: White solid; yield:
70 mg, 55%; M.p.: 128–130 ◦C; Rf = 0.5 (15% EtOAc/n-
hexane). 1H NMR (300 MHz, CD3OD): δ 7.58 (d, J = 8.2
Hz, 1H), 7.55–7.47 (m, 2H), 7.43–7.34 (m, 2H), 7.11 (m, 1H),
7.04–6.93 (m, 2H), 6.83 (s, 1H) ppm. 13C NMR (75 MHz,
CD3OD): δ 164.8 (d, J = 243.5 Hz, 1C), 139.0, 137.9, 136.6
(d, J = 8.3 Hz, 1C), 131.6 (d, J = 8.5 Hz, 1C), 130.4, 123.2,
121.9 (d, J = 2.8 Hz, 1C), 121.4, 120.7, 114.7 (d, J = 21.6
Hz, 1C), 112.6 (d, J = 23.1 Hz, 1C), 112.2, 100.8 ppm.
HRMS (ESI): m/z [M+H]+ calcd for C14H11FN: 212.0870;
found 212.0872.

2-(2-Chlorophenyl)-1H-indole (3g)9a: White solid;
yield: 61 mg, 45%; M.p.: 85–87 ◦C; Rf = 0.5 (15% EtOAc/n-
hexane). 1H NMR (300 MHz, CDCl3): δ 8.73 (br. s, 1H), 7.65
(dd, J = 7.6, 1.8 Hz, 2H), 7.47 (dd, J = 7.9, 1.4 Hz, 1H),
7.41 (dd, J = 8.1, 0.9 Hz, 1H), 7.36–7.18 (m, 3H), 7.17–
7.09 (m, 1H), 6.86 (dd, J = 2.1, 0.8 Hz, 1H) ppm. 13C NMR
(75 MHz, CDCl3): δ 136.4, 135.1, 131.3, 131.2, 130.8, 130.7,
128.8, 128.1, 127.2, 122.6, 120.8, 120.2, 111.0, 103.5 ppm.

HRMS (ESI): m/z [M+H]+ calcd for C14H11ClN: 228.0575;
found 228.0576.

2-(2-Bromophenyl)-1H-indole (3h)17,18: White plates; yield:
65 mg, 40%; M.p.: 75–77 ◦C; Rf = 0.5 (10% EtOAc/n-
hexane). 1H NMR (300 MHz, CDCl3): δ 8.64 (s, 1H), 7.69 (t,
J = 7.5 Hz, 2H), 7.62 (dd, J = 7.7, 1.7 Hz, 1H), 7.47–7.34
(m, 2H), 7.27–7.20 (m, 2H), 7.20–7.11 (m, 1H), 6.83 (dd,
J = 2.18, 0.91 Hz, 1H) ppm. 13C NMR (75 MHz, CDCl3) δ

136.2, 133.9, 133.5, 131.4, 129.2, 128.2, 127.7, 122.6, 121.3,
120.8, 120.2, 111.0, 103.6 ppm. HRMS (ESI): m/z [M+H]+
calcd for C14H11NBr: 272.0069; found 272.0068.

2-(4-Bromophenyl)-1H-indole (3i)9a,18: White solid; yield:
101 mg, 62%; M.p.: 210–212 ◦C; Rf = 0.5 (10% EtOAc/n-
hexane). 1H NMR (400 MHz, CDCl3): δ 8.28 (s, 1H),
7.64 (d, J = 7.8 Hz, 1H), 7.57 (d, J = 8.5 Hz, 2H),
7.51 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.0 Hz,
1H), 7.22 (t, J = 7.4 Hz, 1H), 7.14 (t, J = 7.4 Hz,
1H), 6.82 (s, 1H) ppm. 13C NMR (75 MHz, DMSO-d6):
δ = 137.1, 136.2, 131.7, 131.4, 128.4, 128.3, 126.8, 121.8,

120.2, 120.1, 119.5, 111.3 ppm. HRMS (ESI): m/z [M+H]+
calcd for C14H11NBr: 272.0069; found 272.0066.

2-(4-Methoxyphenyl)-1H-indole (3j)9a: White solid;
Yield: 104 mg, 78%; M.p.: 228–230 ◦C; Rf = 0.5 (20%
EtOAc/n-hexane). 1H NMR (300 MHz, DMSO-d6): δ 11.40
(br. s, 1H), 7.79 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 7.7 Hz,
1H), 7.37 (d, J = 7.9 Hz, 1H), 7.11–6.92 (m, 4H), 6.75 (s,
1H), 3.80 (s, 3H) ppm. 13C NMR (75 MHz, DMSO-d6): δ

158.7, 137.7, 136.8, 128.7, 126.3, 124.8, 120.9, 119.6, 119.1,
114.2, 110.9, 97.2, 55.1 ppm. HRMS (ESI): m/z [M+H]+
calcd for C15H14NO: 224.1070; found 224.1071.

4-(1H-Indol-2-yl)benzonitrile (3k)18: Yellow solid;
yield: 38 mg, 29%; M.p.: 190–192 ◦C; Rf = 0.5 (20%
EtOAc/n-hexane). IR (Neat) = 3350, 2224, 1605, 1446,

1429, 1301, 1177 cm−1. 1H NMR (300 MHz, CDCl3): δ 8.49
(s, 1H), 7.82–7.60 (m, 5H), 7.43 (d, J = 8.1 Hz, 1H), 7.30–
7.22 (m, 1H), 7.16 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 1.2Hz,
1H) ppm. 13C NMR (75 MHz, CDCl3): δ 137.4, 136.5, 135.5,
132.8, 128.9, 127.9, 125.2, 123.6, 121.2, 120.8, 118.8, 111.2,
102.6 ppm. HRMS (ESI): m/z [M+H]+ calcd for C15H11N2:
219.0917; found 219.0918.

4-(1H-Indol-3-yl)benzonitrile (4k)19: Yellow solid;
yield: 30 mg, 23%; M.p.: 165–167 ◦C; Rf = 0.5 (5%
EtOAc/n-hexane). IR (Neat): 3339, 2226, 1602, 1537, 1458,
1431, 1334, 1178 cm−1. 1H NMR (500 MHz, CDCl3): δ 8.47
(s, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.78 (d, J = 8.3 Hz,
2H), 7.71 (d, J = 8.3 Hz, 2H), 7.51–7.45 (m, 2H), 7.30
(t, J = 7.2 Hz, 1H), 7.27–7.23 (m, 1H) ppm. 13C NMR
(75 MHz, CDCl3): δ 140.6, 136.8, 132.6, 127.4, 125.1, 123.1,
123.0, 121.1, 119.5, 119.4, 116.7, 111.7, 108.9 ppm. HRMS
(ESI): m/z [M+H]+ calcd for C15H11N2: 219.0917; found
219.0916.

3-(1H-Indol-2-yl)benzonitrile (3l): Yellow solid; yield: 82
mg, 63%; M.p.: 165–167 ◦C; Rf = 0.5 (15% EtOAc/n-
hexane). IR (Neat): 3347, 3055, 2236, 1603, 1485, 1431,
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1364, 1306, 1233 cm−1. 1H NMR (300 MHz, CDCl3): δ 8.49
(br. s, 1H), 7.94 (s, 1H), 7.89 (td, J = 7.3, 1.7 Hz, 1H), 7.66
(d, J = 7.8 Hz, 1H), 7.62–7.51 (m, 2H), 7.44 (d, J = 8.1 Hz,
1H), 7.30–7.21 (m, 1H), 7.19–7.12 (m, 1H), 6.89 (d, J = 1.3
Hz, 1H) ppm. 13C NMR (75 MHz, CDCl3): δ 137.2, 135.2,
133.7, 130.7, 129.8, 129.2, 128.9, 128.4, 123.3, 121.0, 120.7,
118.6, 113.2, 111.2, 101.6 ppm. HRMS (ESI): m/z [M+H]+
calcd for C15H11N2: 219.0917; found 219.0924.

2-(4-Methoxyphenyl)-1-methyl-1H-indole (3m)20:
White solid; yield: 107 mg, 75%; M.p.: 118–120 ◦C; Rf = 0.5
(10% EtOAc/n-hexane). 1H NMR (400 MHz, CDCl3): δ 7.63
(d, J = 7.8 Hz, 1H), 7.44 (d, J = 8.6 Hz, 2H), 7.36 (d,
J = 8.2 Hz, 1H), 7.27–7.20 (m, 1H), 7.14 (t, J = 7.4 Hz,
1H), 7.01 (d, J = 8.6 Hz, 2H), 6.51 (s, 1H), 3.88 (s, 3H), 3.73
(s, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ 159.4, 141.4,
138.1, 130.6, 127.9, 125.2, 121.4, 120.2, 119.7, 113.9, 109.5,
100.9, 55.3, 31.0 ppm. HRMS (ESI): m/z [M+H]+ calcd for
C16H16NO: 238.1226; found 238.1228.

1-Butyl-2-(4-methoxyphenyl)-1H-indole (3n): Colourless
oil: yield: 117 mg, 70%; Rf = 0.5 (12% EtOAc/n-hexane). 1H
NMR (400 MHz, CDCl3): δ 7.71 (d, J = 7.8 Hz, 1H), 7.53–
7.41 (m, 3H), 7.30 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 7.5 Hz,
1H), 7.06 (d, J = 8.7 Hz, 2H), 6.55 (s, 1H), 4.20 (t, J = 7.5
Hz, 2H), 3.93 (s, 3H), 1.81–1.69 (m, 2H), 1.35–1.20 (m, 2H),
0.89 (t, J = 7.3 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ
159.3, 141.1, 137.1, 130.6, 128.2, 125.6, 121.1, 120.3, 119.6,
113.8, 109.9, 101.4, 55.2, 43.6, 32.0, 19.9, 13.6 ppm. HRMS
(ESI): m/z [M+H]+ calcd for C19H22NO: 280.1696; found
280.1698.

5-Bromo-2-(4-methoxyphenyl)-1H-indole (3o): White solid;
Yield: 67 mg, 37%; M.p.: 178–180 ◦C; Rf = 0.5 (22%
EtOAc/n-hexane). 1H NMR (300 MHz, DMSO-d6): δ 11.64
(s, 1H), 7.79 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 1.7 Hz,
1H), 7.33 (d, J = 8.5 Hz, 1H), 7.16 (dd, J = 8.5, 1.8 Hz,
1H), 7.04 (d, J = 8.7 Hz, 2H), 6.75 (d, J = 1.5 Hz, 1H),
3.80 (s, 3H) ppm. 13C NMR (75 MHz, DMSO-d6): δ 159.0,
139.3, 135.5, 130.7, 126.5, 124.2, 123.3, 121.6, 114.3, 112.9,
111.6, 96.8, 55.1 ppm. HRMS (ESI): m/z [M+H]+ calcd for
C15H13BrNO: 302.0175; found 302.0174.

2-(4-Methoxyphenyl)-1H-indol-5-ol (3p): White solid; yield:
103 mg, 72%; M.p.: 237–239 ◦C; Rf = 0.5 (25% EtOAc/n-
hexane). 1H NMR (400 MHz, CD3OD): δ 7.67 (d, J = 8.8
Hz, 2H), 7.18 (d, J = 8.6 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H),
6.88 (d, J = 2.1 Hz, 1H), 6.63 (dd, J = 8.6, 2.3 Hz, 1H), 6.52
(s, 1H), 3.83 (s, 3H) ppm. 13C NMR (100 MHz, CD3OD): δ

160.6, 151.7, 140.2, 133.8, 131.6, 127.4, 127.2, 115.3, 112.3,
112.2, 105.1, 98.0, 55.8 ppm. HRMS (ESI): m/z [M+H]+
calcd for C15H14NO2: 240.1019; found 240.1026.

2-(4-Methoxyphenyl)-1H-indole-5-carbonitrile (3q):
Yellow solid; yield: 37 mg, 25%; M.p.: 122–124 ◦C; Rf =
0.5 (32% EtOAc/n-hexane). IR (Neat): 3338, 2219, 1614,
1470, 1421, 1347, 1323, 1221 cm−1. 1H NMR (300 MHz,
DMSO-d6): δ 12.04 (s, 1H), 8.00 (s, 1H), 7.81 (d, J = 8.8
Hz, 2H), 7.52 (d, J = 8.4 Hz, 1H), 7.41 (dd, J = 8.4, 1.5
Hz, 1H), 7.05 (d, J = 8.8 Hz, 2H), 6.89 (s, 1H), 3.80 (s,

3H) ppm. 13C NMR (75 MHz, DMSO-d6): δ 159.4, 140.5,
138.8, 128.7, 126.9, 125.0, 123.9, 120.9, 115.7, 114.5, 112.3,
101.3, 97.9, 55.3 ppm. HRMS (ESI): m/z [M+H]+ calcd for
C16H13N2O: 249.1028; found 249.1027.

3-(4-Methoxyphenyl)-1H-indole-5-carbonitrile (4q):
Yellow solid; yield: 43 mg, 29%; M.p.: 165–167 ◦C; Rf =
0.5 (32% EtOAc/n-hexane). IR (Neat): 3337, 2961, 2841,
2221, 1608, 1503, 1276, 1250, 1181 cm−1. 1H NMR
(500 MHz, CDCl3): δ 8.74 (s, 1H), 8.22 (s, 1H), 7.52 (d,
J = 8.7 Hz, 2H), 7.50–7.43 (m, 2H), 7.40 (d, J = 2.4 Hz,
1H), 7.03 (d, J = 8.7 Hz, 2H), 3.88 (s, 3H) ppm. 13C NMR
(75 MHz, CDCl3): δ 158.6, 138.1, 128.7, 126.4, 125.8, 125.6,
125.0, 123.1, 120.8, 118.8, 114.5, 112.3, 102.9, 55.3 ppm.
HRMS (ESI):m/z [M+H]+ calcd for C16H13N2O: 249.1022;
found 249.1026.

3-(4-Methoxyphenyl)-2-methyl-1H-indole (3r)21: Yellow
solid; yield: 44 mg, 31%; M.p.: 127–129 ◦C; Rf = 0.5 (5%
EtOAc/n-hexane). 1H NMR (300 MHz, CDCl3): δ 7.92 (br.
s, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 8.7 Hz,
2H), 7.33 (d, J = 8.2 Hz, 1H), 7.21–7.06 (m, 2H), 7.05–
6.99 (m, 2H), 3.88 (s, 3H), 2.49 (s, 3H) ppm. 13C NMR
(75 MHz, CDCl3): δ 157.8, 135.1, 130.9, 130.4, 128.0, 127.7,
121.4, 119.8, 118.7, 114.1, 113.9, 110.2, 55.3, 12.4 ppm.
HRMS (ESI): m/z [M+H]+ calcd for C16H16NO: 238.1226;
found 238.1230.

2-(4-Methoxyphenyl)benzofuran (3s)22: Colourless
flakes; yield: 51 mg, 38%; M.p.: 149–151 ◦C; Rf = 0.5 (5%
EtOAc/n-hexane). 1H NMR (300 MHz, DMSO-d6): δ 11.40
(br. s, 1H), 7.79 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 7.7 Hz,
1H), 7.37 (d, J = 7.9 Hz, 1H), 7.11–6.92 (m, 4H), 6.75 (s,
1H), 3.80 (s, 3H) ppm. 13C NMR (75 MHz, DMSO-d6): δ

157.9, 149.9, 149.6, 146.5, 130.9, 129.9, 127.7, 116.6, 116.1,
115.6, 114.3, 113.3, 54.9 ppm. HRMS (ESI): m/z [M+H]+
calcd for C15H13O2: 225.0916; found 225.0918.

2-(4-Methoxyphenyl)-1H-pyrrole (3t): White solid;
yield: 46 mg, 44%; M.p.: 143–145 ◦C; Rf = 0.5 (15%
EtOAc/n-hexane). 1H NMR (300 MHz, CDCl3): δ 8.35 (s,
1H), 7.41 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H),
6.82 (d, J = 1.3 Hz, 1H), 6.50–6.24 (m, 2H), 3.84 (s, 3H)
ppm. 13C NMR (75 MHz, CDCl3): δ 158.2, 132.1, 125.8,
125.2, 118.1, 114.3, 109.8, 104.8, 55.3 ppm. HRMS (ESI):
m/z [M+H]+ calcd for C11H11NO: 174.0913; found 174.09.

2-(4-Methoxyphenyl)thiophene (3u)23: White solid;
yield: 26 mg, 38%; M.p.: 107–109 ◦C; Rf = 0.5 (5%
EtOAc/n-hexane). 1H NMR (300 MHz, CDCl3): δ 7.53 (d,
J = 8.8 Hz, 2H), 7.39–7.32 (m, 3H), 6.94 (d, J = 8.8 Hz,
2H), 3.84 (s, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ =
158.9, 142.0, 128.7, 127.5, 126.2, 126.0, 118.9, 114.2, 55.3
ppm.

Mechanistic Investigation:

Catalyst Poisoning Test24: To investigate the reaction mech-
anism, Hg(0) poisoning test was performed using Hg(0)
(1.0 mmol, 1 equiv) with indole (0.6 mmol, 1.0 equiv)
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Table 1. Optimization of reaction conditions.a

Entry Catalyst Oxidant Additive (Equiv) Solvent Time (h) Yield (%)

1 Pd(MeCN)2Cl2 BQ H2SO4 (2) Toluene 12 N.R.
2 Pd(OAc)2 BQ H2SO4 (2) MeCN 12 Trace
3 Pd(OAc)2 BQ H3PO4 (2) MeCN 12 Trace
4 Pd(OAc)2 BQ AcOH (2) MeCN 12 11
5 Pd(OAc)2 BQ AcOH (2) EtOAc 12 17
6 Pd(TFA)2 BQ TFA (2) EtOAc 12 18
7 Pd(TFA)2 Cu(OAc)2 TFA (2) EtOAc 12 32
8 Pd(TFA)2 K2S2O8 TFA (2) EtOAc 12 N.R.
9 Pd(TFA)2 Ag2O TFA (2) EtOAc 12 5
10 Pd(TFA)2 Air TFA (2) EtOAc 12 38
11 Pd(TFA)2 Air TFA (2) Dioxane : H2O(3 : 1) 4 78
12 Pd(TFA)2 Air TFA (3) Dioxane:H2O (3:1) 4 76
13 Pd(TFA)2 Air TFA (1) Dioxane:H2O (3:1) 4 54
14b Pd(TFA)2 Air TFA (2) Dioxane:H2O (3:1) 4 46
15c Pd(TFA)2 Air TFA (2) Dioxane:H2O (3:1) 4 74

aUnless otherwise stated, all the reactions were carried out using 1a (0.2 mmol, 1.0 equiv), 2a (0.4
mmol, 2.0 equiv), catalyst (5 mol%), oxidant (0.34 mmol, 1.7 equiv), additive (0.4 mmol, 2.0 equiv)
for 4–12 h at 25 ◦C in open atmosphere. bWith 2 mol% Pd(TFA)2. cWith 10 mol% Pd(TFA)2.
N.R. = no reaction.

and 4-methoxyphenylboronic acid (1.2 mmol, 2.0 equiv) as
coupling partners, Pd(TFA)2 (0.06 mmol, 5 mol%), TFA (1.2
mmol, 2.0 equiv) following general procedure. The reaction
afforded the desired product (3j) in comparable yield (76%)
suggesting that the reaction goes through homogeneous catal-
ysis.

3. Results and Discussion

Initially, the reaction was studied using indole as a sub-
strate and 4-methoxyphenylboronic acid as an arylating
agent to screen the optimal conditions, and the results are
summarized in Table 1. Pd(OAc)2 and Pd(MeCN)2Cl2

turned out to be less efficient catalysts for this coupling
reaction (Table 1, entries 1 to 5) whereas the use of
Pd(TFA)2 gave better yields (entries 6 to 10). When
the reaction was carried out in Toluene, MeCN, 1a
was almost completely recovered (Table 1, entries 1–
4). Pleasingly, when EtOAc was used as a solvent with
TFA as an additive under an aerobic condition, the 2-
arylindole was obtained in 38% yield (Table 1, entry
10). More surprisingly, 78% yield was obtained when
a mixture of 1,4-dioxane and water (3:1) was used as a
solvent (Table 1, entry 11).

Subsequently, different acids such as H2SO4, H3PO4,
AcOH were tested, but none of them could give compa-
rable results as with TFA. Screening of oxidant revealed

that air was the most effective for the promotion of
reaction (Table 1, entries 10, 11). Other organic and inor-
ganic oxidants gave inferior results under these reaction
conditions. In order to drive the reaction to completion,
the reaction mixture was allowed to heat at 70 ◦C for a
long time but no improvement was observed. The homo-
coupling product from boronic acid was obtained as
a minor product which could be separated by column
chromatography. Reducing the amount of catalyst from
5 to 2 mol% affected the yield significantly (Table 1,
entry 14). However, increasing the catalyst loading did
not affect the yield to a great extent (Table 1, entry 15).

With the optimized reaction conditions in hand
Pd(TFA)2 (5 mol%), air, TFA (2 equiv), 1,4-dioxane/
water (3:1) at RT, direct C-2 arylation of indoles
was extended to various boronic acids as summarized
in Table 2. Both electron-donating and electron-with-
drawing substituents on the phenyl ring of the boronic
acids underwent the transformation in moderate to good
yields. However, phenylboronic acids bearing electron-
withdrawing groups were shown to be less compatible
under these reaction conditions. In addition, boronic
acids with an ortho substituent delivered the desired
products in lower yields indicating that steric hin-
drance could play a role in this reaction (Table 2,
compound 3b, 3g). 2-Napthylboronic acid also under-
went coupling and provided the desired product 3d
in 73% yield within 4 h. Moreover, halogen atom (F,
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Table 2. Direct Arylation of Indoles, Benzofuran, Pyrrole and Thiophene with various Arylboronic
acids.a

aReaction conditions;, all the reactions were carried out with heterocycle (0.6 mmol, 1.0 equiv),
boronic acid (2.0 equiv), Pd(TFA)2 (5 mol%), 1,4-dioxane/H2O (3:1 2.0 mL), 0.5 M) in presence
of air (open atmosphere) for 4–12 h; yield refers to isolated materials. bBoth the products were
isolated.

Cl, Br) substituted aryl rings in indole derivatives can
be used as a precursor for elaboration by transition
metal-catalyzed coupling reactions. Unfortunately, no
product was obtained when cyclohexylboronic acid was
used in the current reaction system, and the starting
material was completely recovered. With the positive
results above, various structurally diverse indole deriva-
tives were explored to further expand their substrate
scope. N -alkyl indoles were well-tolerated under this
protocol (Table 2, compound 3m, 3n). Irrespective of
the electronic nature of substituents on the 5- posi-
tion of the indole ring, the coupling reaction could be
performed affording the desired products in moderate
yields (Table 2, compound 3o, 3p, 3q, 4q). Surprisingly,
in case of 5-cyano indole and 4-cyanophenylboronic

acid C-3 arylated products 4k, 4q were obtained along
with C-2 arylated indole derivatives. 2-Methyl indole
exhibited lower yield to arylation affording the corre-
sponding 3-arylindole derivative (Table 2, compound
3r). We were pleased that benzofuran, pyrrole and thio-
phene were also compatible with the current protocol
(Table 2, compounds 3s, 3t, 3u). However, when imida-
zole and 7-azaindole were subjected to these conditions,
no desired products were obtained.

On the basis of the above experimental results,
a plausible mechanism for this reaction is proposed
in Scheme 2. Initially, the reaction of Pd(II) with
arylboronic acid afforded the palladium intermediate.
Following this step, indole coordination occurs at the
metallic centre through C-3 position and then C3–C2
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Scheme 2. Proposed mechanism for direct C-H arylation of
indole with boronic acid.

migration of the Pd centre afforded the complex lead-
ing to the C-2 regioisomer. Furthermore, blocking the
C2–H position by a –Me group showed low conversion
towards the C-3 regioisomer supporting the fact that
the presence of –Me group at C-2 position inhibits the
C3–C2 migration. Additionally, in substrates containing
electron-withdrawing group (e.g.- cyano) the migra-
tion from C3–C2 becomes slow as expected (which
provides extra stability to the palladium intermediate
leading to the formation of a mixture of C-3 and C-
2 aryl indole derivatives). Though the exact role of
TFA is not known, it might be said that deprotona-
tion of Pd intermediate formed through electrophilic
substitution is favoured in acidic conditions allowing
C3–C2 migration.15 In order to know the homogeneity
of the catalyst, we performed the reaction in the pres-
ence of an excess of Hg(0) w.r.t Pd(TFA)2 in catalyst
poisoning experiment,24 where no inhibitory activity
of the catalyst was noticed (see the Experimental Sec-
tion).

4. Conclusions

In summary, we have standardized the Suzuki reac-
tion for the conversion of indole to C-2 arylated indole
derivatives using air as the sole oxidant and Pd(II)
as a catalyst. Particularly, free –NH indoles are well-
tolerated for this transformation, thus expected to show
great potentiality in the formation of complex molecules
used in many pharmaceutical chemistries.

Supplementary Information (SI)
1H, 13C NMR spectra for the characterization of compounds
are given in the supporting information. Supplementary Infor-
mation is available at www.ias.ac.in/chemsci.
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