ORGANOMETALLICS

One-Pot Synthesis of $[(C_6F_5)_2BH_2]^-$ from $C_6F_5MgBr/BH_3 \cdot SMe_2$ and Its in Situ Transformation to Piers' Borane

Anna Schnurr, Kamil Samigullin, Jens M. Breunig, Michael Bolte, Hans-Wolfram Lerner, and Matthias Wagner*

Institut für Anorganische und Analytische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt (Main), Germany.

Supporting Information

ABSTRACT: Depending on the crystallization procedure, the onepot reaction between 2 C_6F_5MgBr , 1 $BH_3 \cdot SMe_2$, and 1 Me_3SiCl furnishes the hydridoborate salts $[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]$ and $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2$, both of which are convenient starting materials for the in situ generation of Piers' borane $(C_6F_5)_2BH$.

Perfluoroarylboranes find applications as anion sensors, as cocatalysts in metallocene-based homogeneous olefin polymerizations, and as Lewis acid catalysts in a range of organic transformations (e.g., addition of silyl enol ethers to aldehydes, alkyl chlorides, and $\alpha_{,\beta}$ -unsaturated ketones; hydrosilylation of carbonyl functions; Diels–Alder reactions).¹ Together with sterically encumbered Lewis bases, they can form so-called "frustrated Lewis pairs (FLPs)", which have been employed for the activation of various small molecules, including H₂.²

Even though tris(pentafluorophenyl)borane, $(C_6F_5)_3B_7^{3,4}$ is still the most widely used perfluoroarylborane, much of the progress witnessed in the aforementioned application fields was due to the development of more sophisticated derivatives—among them bulky molecules such as tris(2,2',2''-perfluorobiphenyl)borane,⁵ bifunctional species,⁶ and even polymeric⁷ and dendritic⁸ perfluoroarylboranes.

The incorporation of boryl functionalities into molecular frameworks can conveniently be achieved via the hydroboration reaction. Thus, in the present context the secondary borane $(C_6F_5)_2BH$, which has been developed by Piers et al., is a key reagent for the synthesis of compounds $(C_6F_5)_2BR$, in which R (i) provides the set-screw for a fine tuning of the Lewis acidity at the boron center or (ii) bears an additional functional group as in the chelating Lewis acid $(C_6F_5)_2B(Me_3Si)C(H) - C(H)_2B(C_6F_5)_2^{-5}$ or the bridged FLP $(C_6F_5)_2BC(H)_2-C(H)_2PMes_2$ (Mes = mesityl).¹⁰ Hydroboration reactions with (C₆F₅)₂BH generally occur with high rates and regio- and chemoselectivity comparable to or better than those with other reagents. Most importantly, terminal alkynes can selectively be monohydroborated to the corresponding vinylboranes $(C_6F_5)_2BC(H)=C(H)R^{9,11}$ This offers a convenient tool to modulate the optoelectronic properties of extended conjugated π -electron systems and is therefore interesting for the design of novel boron-doped photoand electroluminescent organic materials.¹²

 $(C_6F_5)_2BH$ adopts a dimeric structure in the solid state and undergoes a monomer/dimer equilibrium in aromatic solvents.¹¹

The currently best established synthesis protocols for $(C_6F_5)_2BH$ and for its thioether adduct $(C_6F_5)_2BH \cdot SMe_2$ are outlined in Scheme 1.

Route 1. $(C_6F_5)_2BH$ can be prepared from $(C_6F_5)_2BCl^{13}$ by treatment with Me₂Si(H)Cl.^{9,11} The synthesis of $(C_6F_5)_2BCl$, in turn, starts from C_6F_5Li and Cl_2SnMe_2 and proceeds via the reaction of the resulting stannane $(C_6F_5)_2SnMe_2^{-14}$ with BCl₃.¹¹ By this method, $(C_6F_5)_2BH$ is obtained in a very satisfactory overall yield of 62%. However, the procedure has to be regarded as experimentally demanding: (i) C_6F_5Li is a thermolabile, potentially hazardous compound, (ii) Cl_2SnMe_2 and BCl₃ are toxic/corrosive, and (iii) C_6F_5 transfer from tin to boron has to be carried out at 120 °C (thick-walled glass bomb; boiling point of BCl₃ at ambient pressure: 12.6 °C) and takes 48 h.

Route 2. $(C_6F_5)_2$ BH is also accessible in a one-step procedure by heating commercially available $(C_6F_5)_3$ B and Et₃SiH in benzene to 60 °C for 3 days (69% yield).¹¹ In comparison to route 1, route 2 is less labor intensive but nevertheless suffers from certain disadvantages: (i) $(C_6F_5)_3$ B is high-priced and the commercial samples tend to be contaminated with the water adduct $(C_6F_5)_3$ B·OH₂, (ii) the reaction requires a rather long time and shows a tendency to over-reduce the borane, thereby contaminating the product with the dimer $[(C_6F_5)_2B(\mu-H)_2B-(H)(C_6F_5)]$, and (iii) one-third of the C_6F_5 rings is transferred to silicon and therefore wasted.

Route 3. An (in principle) more atom-economic variant of route 2 has been reported by Lancaster et al., who replaced Et_3SiH by $BH_3 \cdot SMe_2$, which reacts with $(C_6F_5)_3B \cdot OEt_2$ in light petroleum at room temperature within minutes to give $(C_6F_5)_2BH \cdot SMe_2$ in 54% yield.¹⁵ In a related study, Hoshi et al. recently reported that a solution of $(C_6F_5)_2BH \cdot SMe_2$ in hexane can be generated by substituent redistribution between

Received: February 28, 2011 Published: April 29, 2011

Scheme 1. Literature Syntheses of $(C_6F_5)_2BH$ and $(C_6F_5)_2BH \cdot SMe_2$

^{*a*} Legend: (i) donor = THF, Et₂O/THF, room temperature, 12 h; donor = SMe_2 , Et₂O/toluene, room temperature, 12 h. Note that the composition of the (complex) cations is unknown.

 $(C_6F_5)_3B$ and $BH_3 \cdot SMe_2$ and that $(C_6F_5)_2BH \cdot SMe_2$ catalyzes the hydroboration of alk-1-ynes with pinacolborane.¹⁶

Our interest in $(C_6F_5)_2BH$ mainly arises from applications in materials sciences: i.e., from its reactivity toward terminal alkynes and from the possibility to modulate the optoelectronic properties of extended conjugated π -systems. Since the results of Lancaster and Hoshi indicate that there is facile exchange between hydride and C_6F_5 groups in the corresponding boranes and their adducts, we decided to investigate the reaction between C_6F_5MgBr and $BH_3 \cdot SMe_2$ in order to develop a safe time- and cost-efficient method for the synthesis of $(C_6F_5)_2BH$ itself and of its adduct $(C_6F_5)_2BH \cdot SMe_2$.

RESULTS AND DISCUSSION

One-Pot Synthesis of the $[(C_6F_5)_2BH_2]^-$ **Anion.** In all studies reported herein, the Grignard reagent C_6F_5MgBr was employed, because it is thermally much more stable than the corresponding lithium compound C_6F_5Li and can therefore conveniently be prepared and handled at room temperature and above.¹⁷

In a first exploratory experiment, $BH_3 \cdot THF$ in THF was treated at room temperature with 1 equiv of C_6F_5MgBr in Et_2O . The mixture was stirred for 12 h and then investigated by ¹¹B NMR spectroscopy (C_6D_6). Three signals at -30.2 ppm (triplet, $^{1}J_{BH} = 82$ Hz), -34.1 ppm (quartet, $^{1}J_{BH} = 79$ Hz), and -39.7 ppm (quintet, $^{1}J_{BH} = 81$ Hz) were observed (integral ratio 1:3:1), which agree well with the reported shift values of $[(C_6F_5)_2BH_2]^{-,18}$ $[(C_6F_5)BH_3]^{-,19}$ and $[BH_4]^{-,20}$ We note that an increase in the amount of added C_6F_5MgBr to 2 equiv did *not* result in a significant change of the product distribution as

Figure 1. ¹¹B NMR spectra of mixtures of C_6F_5MgBr and $BH_3 \cdot SMe_2$ (C_6D_6): (a) stoichiometric ratio 2:1, Et₂O/toluene, room temperature, 12 h; (b) stoichiometric ratio 3:1, benzene, 75 °C, 18 h; (c) stoichiometric ratio 1:1, Et₂O/toluene, room temperature, 3 h; (d) stoichiometric ratio 2:1, +1 Me₃SiCl, Et₂O/toluene, room temperature, 3 h.

long as room temperature was maintained (Scheme 2). However, replacement of the solvents with benzene, addition of a third equivalent of C_6F_5MgBr ,²¹ and the application of elevated temperatures (75 °C; 14 h) led to an increase in the relative proportion of $[(C_6F_5)_2BH_2]^-$. The formation of this borohydride was further confirmed by the isolation of $[Mg_2(THF)_6Br_3][(C_6F_5)_2BH_2]$, which was structurally characterized by X-ray crystallography (cf. the Supporting Information for details). From these results we conclude that the hydride adduct $[(C_6F_5)_2BH_2]^-$ of the target molecule $(C_6F_5)_2BH$ can indeed be generated by this methodology, albeit in low yields ($\leq 10\%$).

In the next step, the series of experiments was repeated with $BH_3 \cdot SMe_2$ (solution in toluene) in order to study the influence of the Lewis base on the reaction outcome. As shown in Scheme 2, the reaction with 2 equiv of C_6F_5MgBr at room temperature effected a higher proportion of $[(C_6F_5)_2BH_2]^-$ than in the case of $BH_3 \cdot THF$ (cf. Figure 1a for the ¹¹B NMR spectrum of the mixture). When the transformation was carried out in benzene at reflux temperature, $[(C_6F_5)_2BH_2]^-$ became the major product; however, significant amounts of other species were still present, as was confirmed by ¹¹B (Figure 1b) and ¹⁹F{¹H} NMR spectroscopy.

In an attempt to achieve an exchange between hydride and C_6F_5 groups under milder conditions and thereby to avoid unwanted side products, we decided to generate three-coordinate borane intermediates by means of Me₃SiCl as a hydride acceptor. In a three-step sequence (Scheme 3), a mixture of $[(C_6F_5)_2BH_2]^-$, $[(C_6F_5)BH_3]^-$, and $[BH_4]^-$ was first generated from $BH_3 \cdot SMe_2$ and 1 equiv of C_6F_5MgBr in Et₂O/toluene at room temperature (cf. Figure 1c for the ¹¹B NMR spectrum), followed by the addition of 1 equiv of neat Me₃SiCl and a further 1 equiv of the Grignard reagent (cf. the Supporting Information for the detailed synthesis protocol). According to ¹¹B (Figure 1d) and ¹⁹F{¹H} NMR spectroscopy, ¹⁸ this procedure resulted in the essentially quantitative formation of $[(C_6F_5)_2BH_2]^-$.

Finally, benefitting from the fact that C_6F_5MgBr does not react with Me₃SiCl in Et₂O at room temperature,²² the aforementioned procedure could be developed into a one-step synthesis protocol: 2 equiv of C_6F_5MgBr were treated at room temperature with 1 equiv of BH₃ · SMe₂ and immediately after with 1 equiv of neat Me₃SiCl. After workup, the dihydridoborate can be isolated by crystallization from either CHCl₃/ Et₂O or benzene.

Scheme 3. Three-Step and One-Step Syntheses of $[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]$ and $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_a^a$

crystallization from CHCl₃/Et₂O: x = 1, [cation] = [Mg₂(Et₂O)₃Br₂Cl] crystallization from benzene: x = 2, [cation] = [Mg(Et₂O)₂]

^{*a*} Legend: (i) Et₂O/toluene, room temperature, 3 h.

From CHCl₃/Et₂O, the salt $[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]$ was obtained; its composition was confirmed by elemental analysis (C, H, Cl, Br) and X-ray crystallography. Crystal data and structure refinement details for the compound are compiled in Table 1. The salt crystallizes together with 1 equiv of toluene and 2 equiv of CHCl₃ as a centrosymmetric dimer with a complex cationic core and two peripheral $[(C_6F_5)_2BH_2]^-$ anions (Figure 2). The cation can be described as consisting of two face-sharing heterocubanes, two opposite corners of which are unoccupied. The positions X(2)and X(3) are shared between Br^- and Cl^- with relative occupancy factors of 0.704(5):0.296(5) and 0.681(5):0.319(5), respectively. If both ratios are artificially forced to 0.5:0.5, the R values of the structure solution become only slightly worse (i.e., R1 (all data) = 0.1209 vs 0.1124, wR2 (all data) = 0.1252 vs 0.1061). Given this background, we used the fully refined structure for the discussion of bond lengths and angles but find it adequate to employ the idealized formula sum of $[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]$ to refer to the compound and for calculations of its molecular mass.

In the case of Mg(2), an octahedral coordination sphere is completed by two Et₂O ligands, whereas Mg(1) bears one Et₂O ligand and has one hydridoborate ion in close proximity. Using Edelstein's²³ correlation of metal—boron distances as a measure of the denticity of a hydridoborate group, a value of 1.6 ± 0.1 Å is estimated for the ionic radius of a bidentate $[R_2BH_2]^-$ ligand. In turn, a B···Mg distance of about 2.26 Å would be indicative for a $R_2BH_2-\eta^2$ -Mg coordination mode (effective ionic radius of pentacoordinate Mg²⁺: 0.66 Å²⁴). In $[Mg_2(Et_2O)_3Br_2Cl]$ - $[(C_6F_5)_2BH_2]$, the B(1)···Mg(1) distance is stretched to 2.498(7) Å, most likely as a result of steric repulsion. We refrain from a detailed discussion of the geometric parameters of the anion $[(C_6F_5)_2BH_2]^-$, because the crystal structure of the related compound $[Li(Et_2O)][(C_6F_5)_2BH_2]$ has already been described and no significant differences were observed.¹⁸

From benzene, we obtained crystals of the salt $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2$, which features two dihydridoborate ligands bonded to the Mg²⁺ ion in an η^2 fashion (B···Mg = 2.416(3) Å; the compound crystallizes together with 2 equiv of benzene; cf. the Supporting Information for details of the X-ray crystal structure analysis). However, EDX measurements revealed the presence of minor amounts of Cl⁻ and Br⁻ (\leq 3 atom %). Moreover, after the addition of water to a representative sample of the crystal crop, the signature of MgBr₂·6H₂O was visible in the

2011013	
formula	$C_{48}H_{64}B_2Br_{4.8}Cl_{1.2}F_{20}Mg_4O_6\boldsymbol{\cdot}$
	$C_7H_8 \cdot 2CHCl_3$
fw	1992.83
color, shape	colorless, block
temp (K)	173(2)
radiation (λ (Å))	Μο Κα (0.71073)
cryst syst	orthorhombic
space group	Pbca
a (Å)	17.371(2)
b (Å)	21.4852(19)
c (Å)	21.5176(18)
α (deg)	90
β (deg)	90
γ (deg)	90
$V(Å^3)$	8030.8(13)
Z	4
$D_{\rm calcd} ({\rm g \ cm^{-3}})$	1.648
F(000)	3970
$\mu \ (\mathrm{mm}^{-1})$	2.763
cryst size (mm ³)	$0.35\times0.32\times0.27$
no. of rflns collected	42 315
no. of indep rflns (R_{int})	7552 (0.1151)
no. of data/restraints/params	7552/0/446
GOF on F^2	0.869
R1, wR2 $(I > 2\sigma(I))$	0.0505, 0.0893
R1, wR2 (all data)	0.1124, 0.1061
largest diff peak, hole (e $Å^{-3}$)	0.860, -0.860

Table 1. Selected Crystallographic Data for $\{[Mg_2(Et_2O)_3Br_{2.4}Cl_{0.6}][(C_6F_5)_2BH_2]\}_2 \cdot (toluene) \cdot 2CHCl_3$

X-ray powder diffractogram of the solid hydrolysate. In a subsequent purification step, we applied a static vacuum to a suspension of $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2$ in benzene (350 Torr; reflux temperature; 24 h), thereby driving off excess Et_2O and reducing the solubility of magnesium halide contaminants. After filtration, crystals of $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2$ were grown from the filtrate, which, according to EDX spectroscopy, now contained ≤ 1 atom % of Cl⁻/Br⁻ ions.

A critical overview of our synthesis protocol to $[(C_6F_5)_2BH_2]^$ and its suitability for the further preparation of Piers' borane has to consider the following facts: (i) The actual synthesis took an overall time of 5 h; crystallization required an additional 5 days (CHCl₃/Et₂O; yield: 68%) or 7 days (benzene; yield: 57%). The new access route has therefore considerable advantages over the literature-known method¹⁸ based on $(C_6F_5)_2BCl$. (ii) The salt $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2$ contains a lower proportion of Et₂O than the salt $[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]$. Both species proved to be suitable starting materials for the hydroboration of alk-1-ynes with in situ generated $(C_6F_5)_2BH$ (described below are the syntheses using $[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]$). (iii) The new protocol cannot be applied to the synthesis and isolation of the free borane $(C_6F_5)_2BH$, most likely because Et₂O reacts with $(C_6F_5)_2BH$ in the absence of more powerful trapping agents.

Synthesis of $(C_6F_5)_2BH \cdot SMe_2$ from $[Mg_2(Et_2O)_3Br_2CI]$ - $[(C_6F_5)_2BH_2]$. { $[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]$ }₂ · (toluene) ·2CHCl₃ was freed from toluene and CHCl₃ under a dynamic vacuum, dissolved in SMe₂, and treated with 1 equiv of Me₃SiCl.

Figure 2. Molecular structure and numbering scheme of compound $\{[Mg_2(Et_2O)_3Br_{2.4}Cl_{0.6}][(C_6F_5)_2BH_2]\}_2$ (displacement ellipsoids are drawn at the 30% probability level; H atoms except on boron and ethyl groups on coordinated Et_2O molecules are omitted for clarity; positions X are shared between Br and Cl). Selected bond lengths (Å), atom··· atom distances (Å), and angles (deg): Mg(1)-Br(1) = 2.711(2), Mg(2)-Br(1) = 2.768(2), Mg(2A)-Br(1) = 2.688(2), B(1)-C(1) = 1.625(8), B(1)-C(11) = 1.610(8), B(1)···Mg(1) = 2.498(7); Mg(1)-Br(1)-Mg(2) = 88.7(1), Mg(1)-Br(1)-Mg(2A) = 90.2(1), Mg(2)-Br(1)-Mg(2A) = 95.7(1), C(1)-B(1)-C(11) = 112.7(4). Symmetry transformation used to generate equivalent atoms: (A) -x + 1, -y + 1, -z + 1.

After 90 min, the ¹¹B NMR spectrum of the mixture revealed exclusively one doublet at -12.1 ppm; in the ¹H NMR spectrum, a broad multiplet at 3.58 ppm and a singlet at 1.10 ppm (integral ratio 1:6) testified to the presence of one boron-bonded H atom and one coordinated SMe₂ ligand, respectively. The adduct $(C_6F_5)_2BH \cdot SMe_2$ was isolated in 90% yield as a colorless flaky solid; all NMR shift values were in full agreement with published data¹⁵ for this compound.

In Situ Generation of $(C_6F_5)_2BH$ and Hydroboration of Alk-1-ynes. *tert*-Butylacetylene or phenylacetylene in benzene (2 equiv) was added at room temperature to a suspension of { $[Mg_2(Et_2O)_3-Br_2Cl][(C_6F_5)_2BH_2]$ } in benzene/hexane (1:1). The mixture was treated with Me₃SiCl (2 equiv) and stirred for 2 h. Reaction control by NMR spectroscopy (¹H, ¹¹B, ¹⁹F{¹H}; C_6D_6) revealed quantitative conversion to the monohydroboration products (C_6F_5)₂-BC(H)=C(H)^tBu¹¹ and (C_6F_5)_2BC(H)=C(H)Ph;¹¹ after workup, yields of 70% and 79% were respectively obtained.

CONCLUSION

The hydride adduct $[(C_6F_5)_2BH_2]^-$ of Piers' borane $(C_6F_5)_2BH$ is conveniently accessible in a one-pot procedure from C_6F_5MgBr , $BH_3 \cdot SMe_2$, and Me_3SiCl . Starting from this compound, $(C_6F_5)_2BH$ can be generated in situ and trapped with SMe_2 or *tert*-butylacetylene/phenylacetylene. We therefore suggest our method as a viable alternative to the established syntheses of $(C_6F_5)_2BH$ whenever the hydroboration of alk-1-ynes is the focus of application.

With regard to the underlying reaction mechanism, the following results are noteworthy: (i) The electron-poor C_6F_5 substituent readily takes part in aryl/hydride redistribution

reactions at a boron center. In previous work, we have shown that ferrocenylborane (FcBH₂), generated in situ from Li-[FcBH₃], immediately undergoes a condensation reaction to Fc₂BH and B₂H₆,^{25,26} whereas the corresponding cymantrenylborane dimer ((CymBH₂)₂) can readily be isolated and structurally characterized by X-ray crystallography.²⁷ So far, we have attributed the different reactivities to differences in the electron densities on the organometallic fragments. The observations described in this paper now suggest that other factors are also likely to play a role. (ii) In our one-pot protocol, the C₆F₅/hydride scrambling reaction does not lead to a statistical mixture of all conceivable products $[(C_6F_5)_xBH_{4-x}]^-$ (x = 0-4) but selectively gives $[(C_6F_5)_2BH_2]^-$ in preparatively useful yields.

EXPERIMENTAL SECTION

General Remarks. All manipulations were carried out under a nitrogen atmosphere using Schlenk tube techniques and rigorously dried solvents. NMR spectra were recorded on a Bruker Avance 300 spectrometer. Chemical shifts are referenced to residual solvent signals (¹H), external BF₃·Et₂O (¹¹B, ¹¹B{¹H}), or external CFCl₃ (¹⁹F{¹H}). Abbreviations: s = singlet, d = doublet, tr = triplet, q = quartet, quin = quintet, br = broad, n.r. = multiplet expected in the ¹H NMR spectrum but not resolved. Me₃SiCl was stirred with CaH₂ (30 min) and vacuum-transferred into a Schlenk storage vessel. SMe₂ was dried over LiAlH₄ (12 h at room temperature) and vacuum-transferred into a Schlenk storage vessel. BH₃·SMe₂ (2.0 M in toluene; Aldrich), and C₆F₅Br (fluorochem) are commercially available and were used as received.

Synthesis of $\{[Mg_2(Et_2O)_3Br_2CI][(C_6F_5)_2BH_2]\}_2$. At room temperature, a stirred solution of freshly prepared C_6F_5MgBr (8.0 mmol) in Et₂O (10 mL) was treated first with a solution of BH₃·SMe₂ in toluene (2.0 M; 2.0 mL, 4.0 mmol) and then with neat Me₃SiCl (0.52 mL, 4.1 mmol). The mixture was stirred for 3 h, the volatiles were driven off in vacuo, and the solid pale brown residue was dissolved in CHCl₃ (40 mL) and Et₂O (5 mL). After filtration from a small amount of insoluble material (mainly unconsumed Mg turnings), the light yellow filtrate was concentrated under reduced pressure until it turned slightly turbid and then stored at 5 °C. Crystallization of $\{[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]\}_2 \cdot (toluene) \cdot 2CHCl_3 \text{ started after}$ several hours and continued for another 5 days. Crystals suitable for X-ray diffraction were isolated by decantation; concentration of the mother liquor in vacuo and further storage at 5 °C yielded a second crop. Samples used for reactions were washed with a mixture of benzene (2 mL) and hexane (4 mL) and dried in vacuo over a period of 2 h to remove cocrystallized toluene and CHCl₃. Yield of {[Mg₂(Et₂O)₃- $Br_2Cl][(C_6F_5)_2BH_2]$ ≥ 2.21 g (68%). For the three-step synthesis of $\{[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]\}_2$ and for the synthesis of $[Mg(Et_2 O_{2}][(C_{6}F_{5})_{2}BH_{2}]_{2}$, see the Supporting Information.

¹H NMR (300.0 MHz, CD₂Cl₂): δ 1.25 (tr, 18H, ³J_{HH} = 7.0 Hz; OCH₂CH₃), 2.03 (br q, 2H, ¹J_{BH} = 70 Hz; BH₂), 3.81 (q, 12H, ³J_{HH} = 7.0 Hz; OCH₂CH₃). ¹¹B{¹H} NMR (96.3 MHz, CD₂Cl₂): δ -30.5 ($h_{1/2}$ = 40 Hz). ¹¹B NMR (96.3 MHz, CD₂Cl₂): δ -30.5 (tr, ¹J_{BH} = 70 Hz). ¹⁹F{¹H} NMR (282.3 MHz, CD₂Cl₂): δ -164.8 (br, 4F; F_m), -159.6 (br, 2F; F_p), -133.1 (br, 4F; F_o). MS (ESI⁻): m/z (%) 347.3 (100) [(C₆F₅)₂BH₂]⁻. Anal. Calcd for C₂₄H₃₂BBr₂ClF₁₀Mg₂O₃ [813.18]: C, 35.45; H, 3.97; Br, 19.65; Cl, 4.36. Found: C, 35.07; H, 3.58; Br, 19.7; Cl, 4.87.

Synthesis of $(C_6F_5)_2BH \cdot SMe_2$. Me₃SiCl in SMe₂ (0.75 M; 0.50 mL, 0.38 mmol) was added at room temperature via syringe to a stirred solution of $\{[Mg_2(Et_2O)_3Br_2Cl]]((C_6F_5)_2BH_2]\}_2$ (0.28 g, 0.17 mmol) in SMe₂ (5 mL), whereupon a colorless precipitate immediately formed. The reaction mixture was stirred for 90 min, all volatiles were

removed under reduced pressure, and the colorless solid residue was suspended in benzene (5 mL). After filtration, the insoluble material was extracted with benzene (2 \times 5 mL) and the combined organic phases were freeze-dried in vacuo to obtain (C₆F₅)₂BH·SMe₂ as a colorless flaky solid. Yield: 0.13 g (90%). All ¹H, ¹¹B, and ¹⁹F{¹H} NMR shift values are in full agreement with

All ¹H, ¹¹B, and ¹⁹F{¹H} NMR shift values are in full agreement with the published data for $(C_6F_5)_2BH \cdot SMe_2$ (cf. the Supporting Information for details).¹⁵

General Procedure for the Hydroboration of Alk-1-ynes. $\{[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]\}_2$ was suspended in a mixture of benzene (2 mL) and hexane (2 mL). The alk-1-yne (solution in benzene) and Me₃SiCl (solution in hexane) were added at room temperature via syringe. After the mixture was stirred for 2 h, the conversion was complete (NMR spectroscopic control). The reaction mixture was filtered, the insoluble material was extracted with benzene (2 × 1 mL), and the combined organic phases were evaporated to dryness under reduced pressure to obtain the hydroboration product in pure form.

 $(C_6F_5)_2BC(H)=C(H)^{t}Bu: {[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]]_2}$ (0.10 g, 0.06 mmol), *tert*-butylacetylene (0.13 M in benzene; 0.95 mL, 0.12 mmol), and Me_3SiCl (0.27 M in hexane; 0.50 mL, 0.14 mmol); yield: 0.036 g (70%). $(C_6F_5)_2BC(H)=C(H)Ph: {[Mg_2(Et_2O)_3Br_2Cl]-[(C_6F_5)_2BH_2]]_2}$ (0.027 g, 0.017 mmol), phenylacetylene (0.17 M in benzene; 0.20 mL, 0.033 mmol), and Me_3SiCl (0.18 M in hexane; 0.20 mL, 0.037 mmol); yield: 0.012 g (79%). All ¹H, ¹¹B, and ¹⁹F{¹H} NMR shift values are in full agreement with the published data for these compounds (cf. the Supporting Information for details).¹¹

X-ray Crystal Structure Analysis of [Mg2(THF)6Br3]- $[(C_6F_5)_2BH_2], \{[Mg_2(Et_2O)_3Br_{2,4}Cl_{0,6}][(C_6F_5)_2BH_2]\}_2 \cdot (toluene) \cdot$ 2CHCl₃, and $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2 \cdot 2(benzene)$. Data were collected on a STOE IPDS II two-circle diffractometer with graphitemonochromated Mo Ka radiation. Empirical absorption corrections were performed using the MULABS²⁸ option in PLATON.²⁹ The structures were solved by direct methods using the program SHELXS³⁰ and refined against F^2 with full-matrix least-squares techniques using the program SHELXL-97.31 Five of the six coordinating THF molecules in $[Mg_2(THF)_6Br_3][(C_6F_5)_2BH_2]$ are disordered over two positions with occupancy factors of 0.51(1), 0.53(3), 0.54(2), 0.60(4), and 0.53(2) for the major occupied sites. The C atoms of the disordered THF molecules were isotropically refined. Bond lengths and angles of the disordered THF molecules were restrained to be equal to those of the nondisordered THF molecule. In $\{[Mg_2(Et_2O)_3Br_{2.4}Cl_{0.6}][(C_6F_5)_2BH_2]\}_2 \cdot (toluene) \cdot 2CHCl_3,$ the toluene molecule is disordered over two equally occupied positions. One of the Br atoms (Br(1)) was refined as being fully occupied, the remaining two halogen positions were refined as being disordered with Cl but sharing the same coordinates and the same displacement parameters. The respective site occupation factors refined to 0.704(5) for Br(2) and 0.681(5) for Br(3). If both ratios are artificially forced to 0.5:0.5, several peaks appear in the residual electron density map slightly below 1 e $Å^{-3}$ at distances of ca. 0.5 Å from X(2) and X(3) (cf. Figure 2). If the ratio Br⁻:Cl⁻ is refined freely, no significant peak arises close to X(2) and X(3). In $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2 \cdot 2(benzene), the H atoms bonded to B were$ freely refined.

 $\begin{array}{l} CCDC \ reference \ numbers: \ 813324 \ ([Mg_2(THF)_6Br_3][(C_6F_5)_2BH_2]), \\ 813325 \ (\{[Mg_2(Et_2O)_3Br_{2.4}Cl_{0.6}][(C_6F_5)_2BH_2]\}_2 \cdot (toluene) \cdot 2CHCl_3), \\ and \ 813326 \ ([Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2 \cdot 2(benzene)). \end{array}$

ASSOCIATED CONTENT

Supporting Information. Synthesis and crystallization of $[Mg_2(THF)_6Br_3][(C_6F_5)_2BH_2]$, three-step synthesis of $\{[Mg_2(Et_2O)_3Br_2Cl][(C_6F_5)_2BH_2]\}_2$, and synthesis of $[Mg(Et_2O)_2]-[(C_6F_5)_2BH_2]_2$.¹H, ¹¹B, and ¹⁹F $\{^{1}H\}$ NMR spectra of $(C_6F_5)_2BH \cdot SMe_2$, $(C_6F_5)_2BC(H)=C(H)^{t}Bu$, and $(C_6F_5)_2BC(H)=C(H)Ph$.

Selected crystallographic data, plots of the molecular structures, and selected geometric parameters of $[Mg_2(THF)_6Br_3][(C_6F_5)_2BH_2]$ and $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2 \cdot 2(benzene)$ and ORTEP plot of $\{[Mg_2(Et_2O)_3Br_2_4Cl_{0.6}][(C_6F_5)_2BH_2]\}_2$. CIF files for $[Mg_2(THF)_6Br_3][(C_6F_5)_2BH_2]$, $\{[Mg_2(Et_2O)_3Br_2_4Cl_{0.6}]](C_6F_5)_2BH_2]\}_2 \cdot (toluene) \cdot 2CHCl_3$, and $[Mg(Et_2O)_2][(C_6F_5)_2BH_2]_2 \cdot 2(benzene)$. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Fax: +49 69 798 29260. E-mail: Matthias.Wagner@ chemie.uni-frankfurt.de.

ACKNOWLEDGMENT

M.W. acknowledges financial support by the Beilstein Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC.

REFERENCES

(1) For selected reviews, see: (a) Piers, W. E.; Chivers, T. Chem. Soc. Rev. **1997**, 26, 345–354. (b) Ishihara, K.; Yamamoto, H. Eur. J. Org. Chem. **1999**, 527–538. (c) Chen, E. Y.-X.; Marks, T. J. Chem. Rev. **2000**, 100, 1391–1434. (d) Chivers, T. J. Fluorine Chem. **2002**, 115, 1–8. (e) Piers, W. E. Adv. Organomet. Chem. **2005**, 52, 1–76. (f) Focante, F.; Mercandelli, P.; Sironi, A.; Resconi, L. Coord. Chem. Rev. **2006**, 250, 170–188. (g) Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P. Chem. Rev. **2010**, 110, 3958–3984.

(2) For reviews on FLPs, see: (a) Stephan, D. W. Org. Biomol. Chem.
2008, 6, 1535–1539. (b) Stephan, D. W. Dalton Trans.
2009, 3129–3136. (c) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46–76.

(3) Massey, A. G.; Park, A. J.; Stone, F. G. A. Proc. Chem. Soc. 1963, 212.

(4) Sundararaman, A.; Jäkle, F. J. Organomet. Chem. 2003, 681, 134–142.

(5) Chen, Y.-X.; Stern, C. L.; Yang, S.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 12451–12452.

(6) Piers, W. E.; Irvine, G. J.; Williams, V. C. Eur. J. Inorg. Chem. 2000, 2131-2142.

(7) Qin, Y.; Cheng, G.; Sundararaman, A.; Jäkle, F. J. Am. Chem. Soc. **2002**, 124, 12672–12673.

(8) Roesler, R.; Har, B. J. N.; Piers, W. E. Organometallics 2002, 21, 4300-4302.

(9) Parks, D. J.; Spence, R. E. v. H.; Piers, W. E. Angew. Chem., Int. Ed. Engl. 1995, 34, 809–811.

(10) Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D. W. *Chem. Commun.* **2007**, 5072–5074.

(11) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics 1998, 17, 5492–5503.

(12) Jäkle, F. Chem. Rev. 2010, 110, 3985-4022.

(13) Chambers, R. D.; Chivers, T. J. Chem. Soc. 1965, 3933-3939.

(14) $(C_6F_5)_2SnMe_2$ is also accessible from C_6F_5MgBr and Br_2SnMe_2 . However, use of C_6F_5Li and the less expensive Cl_2SnMe_2 (which can, moreover, be recycled) gives the target compound in higher purity and better yield.¹¹

(15) Fuller, A.-M.; Hughes, D. L.; Lancaster, S. J.; White, C. M. Organometallics **2010**, *29*, 2194–2197.

(16) Hoshi, M.; Shirakawa, K.; Okimoto, M. *Tetrahedron Lett.* 2007, 48, 8475–8478.

(17) Tamborski, C.; Soloski, E. J.; Ward, J. P. J. Org. Chem. 1966, 31, 4230-4232.

(18) Douthwaite, R. E. *Polyhedron* **2000**, *19*, 1579–1583. The anion $[(C_6F_5)_2BH_2]^-$ has also been obtained by Berke et al. upon reaction of

the FLP $Mes_3P/(C_6F_5)_2BH$ with H_2 . The primary product $[Mes_3-PH][(C_6F_5)_2BH_2]$ undergoes further reaction to $[Mes_3PH][(C_6F_5)_3-BH]$ and $[Mes_3PH][(C_6F_5)BH_3]$, which represents a C_6F_5 /hydride redistribution similar to that exploited in our synthesis: Jiang, C.; Blacque, O.; Berke, H. *Organometallics* **2009**, *28*, 5233–5239.

(19) Biscoe, M. R.; Breslow, R. J. Am. Chem. Soc. 2003, 125, 12718-12719.

(20) Lorbach, A.; Nadj, A.; Tüllmann, S.; Dornhaus, F.; Schödel, F.; Sänger, I.; Margraf, G.; Bats, J. W.; Bolte, M.; Holthausen, M. C.; Wagner, M.; Lerner, H.-W. *Inorg. Chem.* **2009**, *48*, 1005–1017.

(21) The use of excess C_6F_5MgBr was necessary, because the compound gradually decomposes at elevated temperatures.¹⁷

(22) Edmondson, R. C.; Jukes, A. E.; Gilman, H. J. Organomet. Chem. 1970, 25, 273–276. We have reinvestigated the reactivity of C_6F_5MgBr toward Me₃SiCl in different solvents. As reported in this reference, $C_6F_5SiMe_3$ is only formed in THF, not in Et₂O.

(23) Edelstein, N. Inorg. Chem. 1981, 20, 297-299.

(24) Shannon, R. D. Acta Crystallogr. 1976, A32, 751-767.

(25) Scheibitz, M.; Bats, J. W.; Bolte, M.; Lerner, H.-W.; Wagner, M. Organometallics **2004**, 23, 940–942.

(26) Scheibitz, M.; Li, H.; Schnorr, J.; Sánchez Perucha, A.; Bolte, M.; Lerner, H.-W.; Jäkle, F.; Wagner, M. J. Am. Chem. Soc. 2009, 131, 16319–16329.

(27) Eckensberger, U. D.; Weber, M.; Wildt, J.; Bolte, M.; Lerner, H.-W.; Wagner, M. Organometallics **2010**, *29*, 5301–5309.

(28) Blessing, R. H. Acta Crystallogr. **1995**, A51, 33–38.

(29) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13.

(30) Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467-473.

(31) Sheldrick, G. M. SHELXL-97. A Program for the Refinement of

Crystal Structures; Universität Göttingen, Göttingen, Germany, 1997.