
Arch Pharm Res Vol 35, No 5, 785-789, 2012

DOI 10.1007/s12272-012-0504-1

785

New Topoisomerases Inhibitors: Synthesis of Rutaecarpine Derivatives
and Their Inhibitory Activity against Topoisomerases
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A series of rutaecarpine derivatives were prepared by employing previously reported methods
and their inhibitory activities against topoisomerase I and II were evaluated. Among them,
strongly cytotoxic 10-bromorutaecarpine and 3-chlororutaecarpine showed strong inhibitory
activities against topo I and II.
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INTRODUCTION

Rutaecarpine (1a) is one of well studied indoloqui-

nazoline alkaloids isolated from Rutaceous plants

(Asahina and Kashiwaki, 1915) such as Evodia rutae-

carpa and Evodia officinalis, which have long been used

for the treatment of inflammation-related symptoms

in the traditional oriental medicinal practice (Chu,

1951). Continuous studies on rutaecarpine revealed a

variety of biological properties such as an anti-inflam-

matory (Moon et al., 1999), vasorelaxing (Chiou et al.,

1994; Chen et al., 2009), analgesic (Kong et al., 1976),

anti-platelet (Sheen et al., 1996; Sheu et al., 1996), anti-

anoxic (Yamahara et al., 1989), cytotoxic (Yang et al.,

1995; Xu et al., 2006), and anti-obesity activities (Yokoo

et al., 1997; Kim et al., 2009) as well as selective inhibi-

tory activity on human cytochrome P450 1B1 (Ueng et

al., 2002). Although the action mechanisms of anti-in-

flammatory, vasorelaxing, anti-platelet, and anti-obe-

sity effect of rutaecarpine have been studied, those of

cytotoxicity have not been systematically studied as yet.

Recently Xu et al. revealed that rutaecarpine itself

did not show any significant activity against topoiso-

merase (topo) I and topo II (Xu et al., 2006) in spite of

significant cytotoxicity of rutaecarpine on several cancer

cell lines. On the other hand, early studies on the ru-

taecarpine derivatives revealed that 10-bromorutae-

carpine and 3-chlororutaecarpine showed strong cyto-

toxicity against selected human cancer cell lines (GI50
= 3 µM for SKOV3 and DU145, Baruah et al., 2004;

IC50 for HT-29 = 12 µM, Jahng et al., 2004).

As a part of our ongoing interest in finding natural

product-based cytotoxic agents and our results of

benzo-annulated rutaecarpines against topoisomerases

(Hong et al., 2010) spurred us to pursue systematic

study on the inhibitory activities of rutaecarpine deri-

vatives against topoisomerases.

MATERIALS AND METHODS

Melting points (mp) were determined using a

Fischer-Jones melting points apparatus and are not

corrected. NMR spectra were obtained using a Bruker-

250 spectrometer 250 MHz for 1H-NMR and 62.5 MHz

for 13C-NMR and are reported as parts per million (ppm)

from the internal standard tetramethylsilane (TMS).

Chemicals and solvents were commercial reagent grade

and used without further purification. Elemental an-

alyses were taken on a Hewlett-Packard Model 185B

elemental analyzer.

2-Chloro-6,7,8,9-tetrahydro-11H-pyrido[2,1-b]qui-

nazolin-11-one (4)

A solution of 2-amino-5-chlorobenzoic acid (13.7 g,

0.10 mol), piperidin-2-one (12.0 g, 0.12 mol) and SOCl2
(20 mL, ca. 2 eq) in dry pyridine (100 mL) was re-

fluxed for 4 h. The reaction mixture was poured to ice-
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water and made basic with NH4OH (100 mL), and the

precipitate was collected as a crude product which was

recrystallized from EtOH to give 4 as white needles:

mp 106-107oC [mp 107oC (Jahng et al., 2008)]. 1H-

NMR (250 MHz, DMSO-d6) δ 8.11 (d, 1H, J = 2.3 Hz,

H1), 7.95 (dd, 1H, J = 8.8, 2.3 Hz, H3), 7.85 (d, 1H, J

= 8.8 Hz, H4), 3.94 (t, 2H, J = 6.2 Hz), 3.13 (t, 2H, J =

6.2 Hz), 1.95 (quintet, 2H, J = 6.2 Hz), 1.85 (quintet,

2H, J = 6.2 Hz).

6-Benzylidene-2-chloro-6,7,8,9-tetrahydro-11H-

pyrido[2,1-b]quinazolinon-11-one (5)

A mixture of 4 (930 mg, 3.96 mmol) and benzaldehyde

(10 mL) in Ac2O (20 mL) was refluxed for 48 h. Excess

benzaldehyde and Ac2O was removed under reduced

pressure. To the residue was added water (100 mL).

Mixture was made basic with 50% aq. NaOH and ex-

tracted with CH2Cl2 (50 mL × 3). The organic layers

were washed with water, and dried over MgSO4. Eva-

poration of the solvent afforded an oily material which

was chromatographed on silica gel, eluting with CH2Cl2
to give the desired product (0.94 g, 75%) which was

recrystallized from EtOH to give white needles: mp

148oC. 1H-NMR (250 MHz, CDCl3) δ 8.24 (br s, 1H),

8.17 (d, 1H, J = 8.6 Hz), 7.70 (d, 1H, J = 1.9 Hz, H3),

7.50-7.43 (m, 4H), 7.39-7.32 (m, 1H), 4.13 (t, 2H, J = 5.9

Hz), 2.95 (t, 2H, J = 6.4 Hz), 2.05 (quintet, 2H, J = 6.2

Hz). 13C-NMR (62.5 MHz, DMSO-d6) δ 161.45, 152.70,

148.27, 140.03, 135.96, 135.85, 129.88, 129.48, 128.29,

127.96, 126.52, 118.34, 42.22, 25.47, 21.73.

2-Chloro-6,7,8,9-tetrahydro-11H-pyrido[2,1-b]qui-

nazoline-6, 11-dione (6)

A solution of 5 (500 mg, 2.13 mmol) in CH2Cl2 (50

mL) was cooled in acetone-dry ice bath and ozone was

bubbled through the solution until the solution turns

blue. Excess ozone was purged out and (CH3)2S (10

mL) was added  into the mixture. Evaporation of the

solvent afforded semisolid (0.65 g) which was chroma-

tographed on silica gel, eluting with CH2Cl2. The early

eluent gave the desired product as semisolid (536 mg,

78%). 1H-NMR (250 MHz, CDCl3) δ 8.16 (dd, 1H, J =

8.6 Hz, H-1), 7.91 (d, 1H, J = 2.0 Hz, H-4), 7.67 (dd,

1H, J = 8.5, 2.0 Hz, H-2), 4.13 (t, 2H, J = 5.9 Hz), 2.80

(t, 2H, J = 6.4 Hz), 2.25 (quintet, 2H, J = 6.2 Hz). 13C-

NMR (62.5 MHz, DMSO-d6) δ 190.25, 160.36, 147.45,

146.51, 139.45, 129.00, 128.47, 120.54, 42.13, 36.98,

19.78. Anal. Calcd for C12H9ClN2O2: C, 57.96; H, 3.65;

N, 11.27. Found: C, 58.05; H, 3.70; N, 11.31.

6-Phenylhydrazono-2-chloro-6,7,8,9-tetrahydro-

11H-pyrido-[2,1-b]quinazoline-6,11-dione (7)

To a solution of 6 (100 mg, 0.47 mmol) in 95% EtOH

(20 mL) was added phenylhydrazine-HCl (102 mg,

0.71 mmol, 1.5 equiv.) to yield white solids (105 mg,

66%), whose 1H-NMR showed a set of proton reson-

ances for two isomers (99%): 1H-NMR (250 MHz,

CDCl3) (E-isomer, major) δ 11.03 (s, NH), 8.18 (d, 1H,

J = 8.6 Hz, H-1), 7.91 (d, 1H, J = 1.8 Hz, H-4), 7.69-

7.62 (m, 3H), 7.46-7.28 (m, 2H), 7.06 (t, 1H, J = 7.3

Hz, H-4'), 4.22 (t, 2H, J = 5.9 Hz), 2.79 (t, 2H, J = 6.4

Hz), 2.12 (m, 2H). (Z-isomer, minor) δ 14.25 (s, NH),

8.25 (d, 1H, J = 1.9 Hz, H-4), 8.13 (d, 1H, J = 8.6 Hz,

H-2), 7.63-7.54 (m, 2H), 7.45-7.26 (m, 3H), 6.94 (t, 1H,

J = 7.3 Hz, H-4'), 3.96 (t, 2H, J = 5.9 Hz), 2.79 (t, 2H,

J = 6.4 Hz), 2.35 (m, 2H).

3-Chlororutaecapine (8)

The mixture of (E)- and (Z)-isomers of 7 (60 mg, 0.18

mmol) was dissolved in PPA (5 mL) and heated at

180oC for 1.5 h to yield white needles (50 mg, 88%): mp

321-322oC [lit. mp 314-316oC (Bergman and Bergman,

1985); lit. mp 320-322oC (Chen et al., 2009)]. 1H-NMR

(250 MHz, DMSO-d6) δ 11.88 (s, NH), 8.14 (d, 1H, J =

8.6 Hz, H-4), 7.65 (d, 1H, J = 8.6 Hz, H-12), 8.63 (d,

1H, J = 1.8 Hz, H-4), 7.52-7.47 (m, 2H, H-2 & H-9),

7.27 (td, 1H, J = 7.3, 0.8 Hz, H-10), 7.09 (t, 2H, J = 7.3

Hz, H-11), 4.43 (t, 2H, J = 6.8 Hz), 3.18 (t, 2H, J = 6.8

Hz). 13C NMR (62.5 MHz, DMSO-d6) δ 160.32, 148.79,

146.82, 139.15, 139.04, 128.96, 126.99, 126.35, 125.55,

125.29, 125.03, 120.35, 120.09, 119.76, 118.86, 112.87,

41.13, 19.09.

RESULTS AND DISCUSSION

Rutaecarpine (1a R = H) (Lee et al., 2001) and its

derivatives with a substituent on ring A (1b R = 9-F;

1c R = 10-F; 1d R = 11-F; 1e R = 12-F; 1f R = 9-Cl; 1g

R = 10-Cl; 1h R = 11-Cl; 1i R = 12-Cl; 1j R = 9-Br; 1k

R = 10-Br; 1l R = 11-Br; 1m R = 12-Br; 1n R = 9-CH3;

1o R = 10-CH3; 1p R = 11-CH3; 1q R = 12-CH3) (Lee

et al., 2005) were prepared by employing previously

reported methods in which Fischer indole synthesis

was employed as a key reaction.

Although a couple of synthetic procedures for the

preparation of 3-chlororutaecarpine have been reported

a few cases in the literature (Bergman and Bergman,

1985; Hamid et al., 2006; Chen et al., 2009; Lee et al.,

2009), a detailed synthetic procedure for 3-chlororutae-
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carpine has been not reported as yet. The same syn-

thetic method described above was applied to substi-

tuted anthranilic acids to give a series of rutaecarpine

derivatives on the ring E.

One-pot reaction of 2-amino-5-chlorobenzoic acid (2)

and piperidin-2-one (3) in the presence of SOCl2 afford-

ed 2-chloro-6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quina-

zolin-11-one (4) in 86% yield (Jahng et al., 2008). Sub-

sequent acetic anhydride-mediated condensation of 4

with benzaldehyde gave the corresponding 6-benzyli-

dene compound 5 in 75% yield, which was then sub-

jected to ozonolysis to yield the corresponding ketone

6 in 78% yield. Fischer indole synthesis was applied to

the ketone 7 with phenylhydrazine-HCl yielded the

desired 3-chlororutaecarpine (8) in 88% yield. The struc-

ture was confirmed by spectroscopic methods.

The conversion of supercoiled pBR 322 plasmid DNA

to relaxed DNA by topo I and II was evaluated to inves-

tigate the inhibitory activity of rutaecarpine derivatives

(1b-q and 8) against topo I and II by employing previ-

ously reported methods (Fukuda et al., 1996). As illus-

trated in Figs. 1 and 2, compounds 1k and 8, showed

strong inhibitory activity on both topo I and II and

data are summarized in Table I. Although 1k and 8

did not show any selectivity on topo I and II, their in-

hibitory activities on topo I and II were somewhat

stronger than that of CPT and etoposide, respectively.

Although no obvious correlation between the cyto-

toxicity of rutaecarpine and any inherent activity on

DNA relaxation and decatenation by DNA topo I and

II was observed, cytotoxicities of 10-bromorutaecar-

pine (Baruah et al., 2004) and 3-chlororutaecarpine

(Jahng et al., 2004) were closely correlated to their

inhibitory activities against topo I and II.

Scheme 1. Synthesis of 3-chloroutaecarpine

Fig. 1. Inhibitory activities of rutaecarpines 1a-q and 8 against DNA topoisomerase I. Lane 1: DNA; Lane 2: DNA + topo I;
Lane 3: DNA + topo I + CPT (20 µM); Lane 4: DNA + topo I + CPT (100 µM); Lane 5: DNA + topo I + 10-bromorutaecarpine
(1k) (20 µM); Lane 6: DNA + topo I + rutaecarpine (1a) (20 µM) … Lane 21: DNA + topo I + 3-chlororutaecarpine (8) (20
µM); Lane 22: DNA + topo I + 12-methylrutaecarpine (1q) (20 µM)
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In conclusion, inhibitory activities of the derivatives

of rutaecarpine against topoisomerases I and II were

evaluated. Among the compounds tested, 10-bromoru-

taecarpine (1k) and 3-chlororutaecarpine (8) were

shown strong inhibitory activities against topo I and

II. Studies on the synthesis of additional derivatives of

rutaecarpine and evaluation of their biological proper-

ties are in progress, which will be due in the near future.
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