
LETTER ▌2353

letterNew Syntheses of 3-Aroylflavone Derivatives; Knoevenagel Condensation and 
Oxidation versus One-Pot Synthesis
3-Aroylflavone DerivativesPatrícia A. A. M. Vaz, Diana C. G. A. Pinto,* Djenisa H. A. Rocha, Artur M. S. Silva,* José A. S. Cavaleiro
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
Fax +351(234)370084; E-mail: diana@ua.pt; E-mail: artur.silva@ua.pt

Received: 17.06.2012; Accepted after revision: 30.07.2012

Abstract: Two syntheses of 3-aroylflavones have been established.
In the first synthesis the use of microwave irradiation led to an im-
provement in the yields of both the Knoevenagel condensation of
β-diketones with aldehydes to afford 3-aroylflavanones and of their
oxidation to 3-aroylflavones. In the second and more general syn-
thesis, a novel and efficient procedure for 3-aroylflavones involves
a one-pot reaction between 2-hydroxyacetophenones and aroyl
chlorides in the presence of lithium bis(trimethylsilyl)amide.

Key words: Claisen condensation, Knoevenagel condensation,
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Flavones constitute an important class of low molecular
weight molecules widely distributed in the plant kingdom,
where they impart interesting biological activities.1

Among the naturally occurring flavones and their synthet-
ic analogues, several compounds display anticancer,2 anti-
inflammatory3 and antioxidant4 activities, to mention a
few examples. The presence of substituents at the flavone
nucleus is considered to be an important structural feature.
For instance, a few years ago we reported that 3-alkyl-
flavones5 and 3-(3,4-dihydroxybenzoyl)-3′,4′,5,7-tetra-
hydroxyflavone5b are potent antioxidant agents.

Recent growing interest in 3-aroylflavones has focused on
other important pharmacological properties demonstrated
by some derivatives, in particular the moderate antitubulin
activity of 3-(3,4,5-trimethoxybenzoyl)-4′-methoxy-
flavone6 and the potent topoisomerase I inhibitory activity
of 3-(4-nitrobenzoyl)-7-benzoyloxy-4′-nitroflavone.7

Consequently, a search for new or improved routes to-
wards the synthesis of 3-aroylflavones is still a challenge.
We have proven that microwave irradiation can dramati-
cally improve the transformation of 2′,6′-bisaroyloxyaceto-
phenones into the corresponding 3-aroylflavones through
the Baker–Venkataraman rearrangement.8 It was also re-
ported that the Knoevenagel condensation of β-diketones
(which exist in equilibrium with their enolic form) with
aldehydes afforded 3-aroylflavanones, which were then
oxidized to 3-aroylflavones, although in low overall
yield.6

Following our interest in these compounds, we initiated a
study on the synthesis of 3-aroylflavones and tried to im-
prove this methodology by using microwave irradiation as
an alternative source of energy (Scheme 1). 3-Aroylflava-

nones 2 were obtained in good yields (over 60%) (30 min
at 300 W),9–11 and their oxidation to 3-aroylflavones 3
were also performed in good yields (over 70%) (8 min at
500 W).12–14

We then studied the one-pot synthesis of 3-aroylflavones
by the reaction of 2′-hydroxyacetophenones with aroyl
chlorides in the presence of 1,8-diazabicyclo[5.4.0]un-
dec-7-ene (DBU) as base.7 By treating acetophenone
(1 equiv) with aroyl chloride (3 equiv) and DBU (3
equiv), in anhydrous pyridine at 70–80 °C (12–24 h), fla-
vones were obtained as the main products (56–61%) and
3-aroylflavones as by-products (less than 5% yield).

Next we considered the reaction of 2′-hydroxyaceto-
phenones with aroyl chlorides in the presence of LiHMDS
as base. This base was already used in the synthesis of
β-diketones, from ketones and aroyl chlorides,15 from
O-silyl-protected methyl salicylate with acetophenones,16

and also from hydroxylated 2′-hydroxyacetophenones
with acid chlorides.17 We started by investigating the re-
action of 2′-hydroxyacetophenone (4a) with benzoyl chlo-
ride (5a). Optimal conditions were established as the
reaction of 4a with 5a (3 equiv) and base LiHMDS (4
equiv), followed by treatment with hydrochloric acid
(20%),18 to give 3-aroylflavone 6a in good yield (67%).
With lower amounts of benzoyl chloride and/or base, 2-
acetylphenyl benzoate (7) was obtained as the major prod-
uct (72%; Scheme 2). These results contradict the results
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reported by Cushman and Nagarathnam,17 who reported
that C-2 aroylation of the acetophenone enolate took place
rather than O-aroylation. Next, our study was extended to
the use of p-nitro- and p-methoxybenzoyl chlorides (5b
and 5c). In these cases, a larger amount of the aroyl chlo-
ride derivative was necessary to obtain the desired 3-aro-
ylflavones in good yields.18 With lower amounts of
LiHMDS or aroyl chloride, the (Z)-3-aryl-3-hydroxy-1-
(2-hydroxyphenyl)prop-2-en-1-ones 8a and 8b were ob-
tained as the major products (48–52%; Scheme 2).

Under the optimal conditions,18 4′-nitro-3-(4-nitrobenzo-
yl)flavone (6b) was obtained in very good yield,19 but in
the reaction of 4a with p-methoxybenzoyl chloride (5c),
the 1H NMR spectrum of the obtained product showed, in
addition to the 3-aroylflavone A, B and D ring proton res-
onances, two singlets at δ = 6.65 and 16.69 ppm.20 The
data indicate that we had not obtained the expected 3-aroyl-
flavone 6c, but, rather, the intermediate 2-hydroxy-3-(4-
methoxybenzoyl)-2-(4-methoxyphenyl)chroman-4-one
(9). The intramolecular hydrogen bond between the 2-hy-
droxyl proton and the 3-aroyl carbonyl group 9 deters wa-
ter elimination (9; Scheme 2).20 The referred singlets were
assigned to the H-3 and 2-OH proton resonances, respec-
tively.

To overcome this problem we used commercial hydro-
chloric acid (37%), because we considered that the final
acidification with 20% hydrochloric acid was not suffi-
cient to induce water elimination. Under these conditions
the desired 3-aroylflavone 6c was obtained in good yield
(72%), but only after stirring the reaction mixture at room
temperature for eight hours (TLC analysis).

Scheme 2

The results indicate that both C- and O-aroylation may be
occurring and an intermediate such as structure 10 can be
formed (Scheme 3, path a). Compound 10 can be trans-
formed into 11 through a base-catalyzed Baker–
Venkataraman rearrangement; although structure 11 can
also be obtained by bisaroylation of the C-2 acetophenone
enolate (Scheme 3, path b). Finally, acid-catalyzed cycli-
zation and water elimination leads to the expected 3-aroyl-
flavones 6.

The next step in our synthetic strategy was to use other
2′-hydroxyacetophenone derivatives 4b and 4c bearing
extra hydroxyl groups, which give rise to important 3-ar-
oylflavones that are suitable for biological evaluations.
The desired products 6d and 6e were obtained in good
yields (>50%), revealing the most challenging aspect of
the work, which was the optimization of base and benzoyl
chloride amounts and the reaction time needed to accom-
plish the synthesis. By this method it was possible to pre-
pare polyhydroxy-3-aroylflavones without the need for
protection and deprotection steps and also without the use
of 2′,6′-dihydroxyacetophenone, which proceed through a
bis-Baker–Venkataraman rearrangement.8

Scheme 3

In summary, we have established two successful method-
ologies to perform the synthesis of 3-aroylflavones. The
first involves a Knoevenagel condensation followed by
oxidation of the intermediate 3-aroylflavanones, under
microwave irradiation. This methodology provides facile
access to new derivatives in shorter reaction times and
higher yields, although it is necessary to protect the hy-
droxyl groups of the starting material 2′-hydroxy-
acetophenone. The second approach constitutes a new and
efficient one-pot synthesis of 3-aroylflavones, starting
from hydroxylated 2′-hydroxyacetophenones and aroyl
chlorides. To the best of our knowledge, this method rep-
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resents the most efficient route for the synthesis of 3-aroyl-
flavones. Application of this method in the synthesis of
other pharmaceutically useful compounds is being pur-
sued and the results will be disclosed in due course.
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(20) 2-Hydroxy-4′-methoxy-3-(4-methoxyphenyl)flavanone 
(9): Yellow solid; 1H NMR (300 MHz, CDCl3): δ = 3.84 (s, 
3 H, OCH3), 3.88 (s, 3 H, OCH3), 6.65 (s, 1 H, H-3), 6.80 (d, 
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7.67 (d, J = 8.3 Hz, 1 H, H-2′′,6′′), 7.93 (dd, J = 1.8, 7.7 Hz, 
1 H, H-5), 8.20 (d, 8.8 Hz, 2 H, H-2′,6′), 16.69 (1 H, 2-OH). 
13C NMR (75 MHz, CDCl3): δ = 55.4 (OCH3), 55.5 (OCH3), 
96.4 (C-3), 105.0 (C-2), 113.7 (C-3′′,5′′), 114. 0 (C-3′,5′), 
121.5 (C-1′), 123.9 (C-8), 126.2 (C-6), 127.9 (C-1′′), 129.3 
(C-2′′,6′′), 129.5 (C-4a), 129.8 (C-5), 132.5 (C-2′,6′), 149.0 
(C-8a), 163.1 (C-4′′), 164.1 (C-4′), 182.4 (C-4), 186.2 
(C=O). MS (ESI+): m/z (%) = 427 (100) [M + Na]+. Anal. 
Calcd for C24H10O6: C, 71.28; H, 4.98; Found: C, 70.95; H, 
4.99.
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