Journal Pre-proofs

Synthesis of γ -lactams *via* Ru(II)–Pheox-catalyzed regioselective intramolecular Csp³ –H insertion of diazoacetamides

Takuji Fujii, Huong Dang Thi Thu, Seiji Iwasa

PII: DOI: Reference:	S0040-4039(20)30743-7 https://doi.org/10.1016/j.tetlet.2020.152276 TETL 152276
To appear in:	Tetrahedron Letters
Received Date:	24 May 2020
Revised Date:	17 July 2020
Accepted Date:	20 July 2020

Please cite this article as: Fujii, T., Thu, H.D.T., Iwasa, S., Synthesis of γ -lactams *via* Ru(II)–Pheox-catalyzed regioselective intramolecular Csp³ –H insertion of diazoacetamides, *Tetrahedron Letters* (2020), doi: https://doi.org/10.1016/j.tetlet.2020.152276

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron Letters journal homepage: www.elsevier.com

Synthesis of γ -lactams *via* Ru(II)–Pheox-catalyzed regioselective intramolecular Csp³–H insertion of diazoacetamides

Takuji Fujii, Huong Dang Thi Thu, and Seiji Iwasa *

Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi-shi, Aichi 441-8580, Japan

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: C–H Insertion γ-Lactam Ruthenium Carbene Diazoacetamide Herein, γ -lactam derivatives are obtained in high yield *via* highly regioselective intramolecular Csp³–H insertion reactions of α -diazoacetamides catalyzed by a *rac*-Ru(II)–Pheox complex. The catalytic system is applicable to a wide range of diazoacetamides under mild conditions to produce the corresponding γ -lactams.

2009 Elsevier Ltd. All rights reserved.

 γ -Lactam ring is frequently an important building block of numerous biologically active compounds, including natural products and pharmaceuticals [1]. Although its synthetic approaches, such as the cyclization of amino acids [2], intramolecular *N*-alkylation [3], and formal [3+2] annulations [4], have been commonly used for more than a hundred years, transition-metal-catalyzed reactions have recently offered opportunities to access this important heterocyclic motif [5].

Among the reported metal-catalyzed methods, intramolecular carbene C-H insertion reactions of diazoacetamides have attracted significant research attention for the preparation of lactam derivatives [6]. However, this methodology has not been extensively investigated for cyclization, because of the difficulty in controlling the chemo- and regioselectivities. Moreover, mono-substituted diazoacetamides are less commonly used than di-substituted diazoacetamides, diazoesters, and diazoketones. The extent of side reactions is determined by the catalyst and the nitrogen-protecting group. Although several nitrogenprotecting groups such as N-tert-butyl [7], N-benzyl [8], Nbis(trimethylsilyl)-methyl [9], and N-(2,3,4,5,6pentafluorobenzyloxy) [10] have been proposed, effective catalysts for regioselective intramolecular carbene C-H insertion reactions have not been widely investigated [11]. Therefore, for highly selective intramolecular C-H insertion reactions of diazoacetamides, new metal catalysts that present reactivity profiles complimentary to those of existing catalyst families are required.

In our previous studies, we have demonstrated that Ru(II)– Pheox complexes are highly efficient catalysts for carbene transfer reactions, such as asymmetric cyclopropanation, and N–H and Si–H insertion reactions [12]. Recently, we successfully reported a highly regio- and enantioselective intramolecular carbene insertion reaction into a primary Csp³–H bond of a *tert*-butyl group (Scheme 1a) and an inactive aromatic ring of a benzyl group (Büchner ring expansion) to produce the corresponding γ -lactam derivatives with diazoacetamides [12g,h]. Herein, we report that Ru(II)–

a) Previous study: Amide carbene insertion into 1° Csp³–H bond

Scheme 1. Ru(II)–Pheox-catalyzed regioselective Csp³–H insertion reaction.

^{*} Corresponding author. E-mail: iwasa@ens.tut.ac.jp

yield under mild conditions (Scheme 1b). Initially, we tested the intramolecular insertion reaction of Ncyclopentyl-2-diazo-N-methylacetamide 1, as an amide carbene precursor, under our previously described reaction condition for the ruthenium-catalyzed functionalization of primary C-H bonds of diazoacetamides (1.0 mol% of cat. Ru(II)-Pheox, CH₂Cl₂, room temperature) [12g]. Unexpectedly, the reaction catalyzed by Ru(II)-Pheox proceeded rapidly to furnish 2 in 94% yield under the mild condition (Table 1, entry 1). To further investigate the activity and selectivity of other metals that are well-known catalysts for carbene transfer reactions, subsequently, we applied copper(I), ruthenium(II), and dirhodium(II) under the reaction conditions (Table 1, entries 2-7). Consequently, the Ru(II)-Pheox catalyst exhibited the optimal chemoselectivity for the selective formation of the five-membered lactam ring among all the considered metal catalysts. Copper catalysts such as CuI and [Cu(R,R)-Ph-box](OTf) [13] resulted in low yield (Table 1, entries 2 and 5), whereas Rh₂(OAc)₄ and [Rh₂(S-tbpttl)₄] [14] generated the desired product in moderate yields of 50 and 42%, respectively (Table 1, entries 4 and 7). In contrast to the copper and rhodium catalysts, other ruthenium complexes [15] as catalysts (Table 1, entries 3 and 6) did not afford lactam 2. Although asymmetric catalyst **3** and **6** showed 9 and 37% ee of **2** respectively (Table 1,

Table 2. Optimization of reaction conditions.^a

catalyst was conducted in order to find a suitable catalytic system for the general synthesis of *rac-y*-lactams.

To further examine the influence of other factors, reaction optimization studies were performed using a range of solvents, temperatures, and Ru(II)-Pheox catalyst loadings (Table 2). The solvent screening indicated that dichloromethane produced a higher yield than acetone, THF, diethyl ether, and toluene (Table 2, entries 1-5). The reaction temperatures were also examined, and the yield decreased leaving the unreacted substrate when the reactions were cooled to below room temperature (Table 2, entries 6 and 7). It was found that heat energy at room temperature is required for this Csp³–H insertion reaction to fully proceed. Lowering the catalyst loading amount from 1.0 to 0.5 mol% caused a significant decrease in the yield, whereas the increased loading (0.5-2.0 mol%) of Ru(II)-Pheox afforded the highest yield 2 at 1.0 mol% of the catalyst (Table 2, entries 8 and 9).

To explore the scope of this reaction, a series of amide Nsubstituents were subsequently investigated under the optimized condition. As demonstrated by the data in Table 3, all Ncyclopentyl diazoacetamides could be efficiently converted to the corresponding γ -lactams in good to high yields. Interestingly, even when the N-cyclopentyl diazoacetamides possessed alkyl groups, including secondary and tertiary Csp³-H bonds, insertion of the reactive carbene into the C-H bond of the cyclopentyl group proceeded preferentially (Table 3, 8a-c). When 7b was used as the

Table 1. Screenin $ \begin{array}{c} $	g of various metal catalysts. ^a	$\sum_{Ph} \sum_{OTf} \sum_{Ph} \sum_{Ph} \sum_{Ph} \sum_{Ph} \sum_{Ph} \sum_{Pr} \sum_{Pr}$	$Br + Br = [Rh_2(S-tbptt])_4] 6$
Entry	Catalyst	Time [min]	Yield of 2 [%]
1	<i>rac</i> -Ru(II)–Pheox	10	94
2	Cul	10	25
3	[(benzene)RuCl ₂] ₂	10	0
4	Rh ₂ (OAc) ₄	120	50
5	[Cu(<i>R</i> , <i>R</i>)-Ph-box)](OTf) 3	90	19
6	(<i>R</i> , <i>R</i>)- <i>i</i> Pr-pybox 4 + [(<i>p</i> -cymene)RuCl ₂] ₂ 5	10	0
7	[Rh ₂ (S-tbpttl) ₄] 6	10	42

^a General conditions: A solution of N-cyclopentyl-2-diazo-N-methylacetamide 1 in CH₂Cl₂ was added dropwise to a solution of the catalyst (1.0 mol%) in CH2Cl2 at RT. ^b Isolated yield.

$ \begin{array}{cccc} & & & & \\ & & & \\$								
Entry	Loading [X mol%]	Solvent	Temp. [°C]	Time [min]	Yield of 2 [%]			
1	1.0	CH ₂ Cl ₂	RT	10	94			
2	1.0	Acetone	RT	10	24			
3	1.0	THF	RT	10	49			
4	1.0	Et ₂ O	RT	120	65			
5	1.0	Toluene	RT	90	12			
6	1.0	CH ₂ Cl ₂	0	10	85			
7	1.0	CH ₂ Cl ₂	-10	2 days	17			
8	0.5	CH ₂ Cl ₂	RT	10	60			
9	2.0	CH ₂ Cl ₂	RT	1	96			

^a General conditions: A solution of N-cyclopentyl-2-diazo-N-methylacetamide 1 in each of the solvents was added dropwise to a solution of the Ru(II)-Pheox in each of the solvents. ^b Isolated yield.

^a General conditions: Each solution of the diazoacetamides in CH_2CI_2 was added dropwise to a solution of Ru(II)-Pheox in CH2CI2.^b Isolated yield. ^c Ru(II)–Pheox (3.0 mol%) was used.

^d The ratios of the products from the crude NMR spectra. (γ-lactams:sevenmembered ring compounds:β-lactams), 8d; (71:16:13), 8e; (40:60:0), 8f; (72:21:7)

substrate, increasing the catalyst loading from 1.0 to 3.0 mol% resulted in complete conversion and produced 8b in 96% yield. When 7d, 7e, and 7f possessing a benzyl group were used as substrates, intramolecular Büchner ring expansions [12h,16] and insertion reactions into the benzylic ring of C-H bonds [17] also occurred. The ratios of the compounds were determined by the integration of the characteristic ¹H-nuclear magnetic resonance (NMR) absorptions from the spectra of the crude reaction mixtures. Compared to **7f** and **7d**, **7e**, having an more electron-rich benzyl group, promoted the production of the seven-membered ring as the sole side reaction, and the γ -lactam **8e** was obtained in 39% yield. The regioselectivity of the carbene transfer reaction for 7g, which has a nitro group as the strong electron-withdrawing group, dramatically increased, producing only the desired γ -lactam 8g in 96% yield. In addition, the ortho-chloro-substituted benzyl group was found to realize the highest regioselectivity of the reaction, and 8h was obtained in 99% yield. In addition to the alkyl and benzyl groups, N-alkoxy diazoacetamide 7i was selectively converted to the corresponding γ -lactam **8i** in 95% yield.

Furthermore, the effects of a secondary amide and an ester were tested, as depicted in Scheme 2. However, Ncyclopentyl diazoacetamide 9 and cyclopentyl diazoacetate 10 [18] generated only dimers of the carbene. These results suggested that the N-substituents of the amides are necessary to hold the active site of the carbenoids close to the intramolecular C-H bonds.

Subsequently, the scope of various N-methyl diazoacetamides was also investigated (Table 4.) The

Scheme 2. Reaction of a secondary diazoacetamide and a diazoester.

reactions of diazoacetamides, 11a and 11b, presented excellent regioselectivities with cyclohexyl and cycloheptyl groups, whereas these trans-isomers were also formed with low diastereoselectivities of *trans:cis* = 33:67 (12a) and 27:73 (12b), respectively. When cyclopentyl and cyclohexyl groups containing an aromatic ring were used as the reactive sites, the carbene insertion reactions into the ArCsp²-H bonds and Büchner ring expansion reaction did not occur under the optimized conditions. Therefore, these substrates were converted to cis-y-lactams, 12c and 12d in high yield. The substrates with a long carbon chain resulted in good yield for 12e. Although the reaction of 11f was ineffective under the optimized conditions, it proceeded rapidly in the presence of 3.0 mol% of the Ru(II)-Pheox catalyst at 40 °C to produce 12f in a good yield. In contrast, a similar substrate, 11g, was smoothly converted to 12g in 79% yield at room temperature. These results suggested that a tertiary C-H bond is more reactive than a secondary one. In addition, spiro-fused γ lactam 12h was also obtained in a high yield via the selective carbene insertion reaction. The Csp³-H bond adjacent to a Boc-protected nitrogen bond was also transformed into the corresponding C–C bond to produce γ -lactam 12i.

Table 4. Substrate scope.^{a,b}

^a General conditions: Each solution of the diazoacetamides in CH₂Cl₂ was added dropwise to a solution of Ru(II)-Pheox in CH2CI2. b Isolated yield. ^c trans:cis = 33:67. ^d trans:cis = 27:73

^e Heated in 40 °C with 3.0 mol% of Ru(II)-Pheox

Journal Pre-pro

process might occur in an asynchronous manner, and a plausible reaction mechanism is proposed in Scheme 3. Initially, the diazoacetamide **1** is reduced by the Ru(II)–Pheox complex to form a ruthenium carbene complex, **A** [20]. Subsequently, a C–H bond reacts with the reactive site of the intermediate, **A**, resulting in the formation of **B**. Finally, the reductive elimination of ruthenium produces **2** with the concurrent regeneration of the Ru(II)–Pheox catalyst.

Scheme 3. Proposed reaction mechanism.

In summary, we developed an efficient method for the synthesis of γ -lactams by the intramolecular Csp³–H insertion reaction catalyzed by a Ru(II)–Pheox complex. Various γ -lactams were successfully synthesized in moderate to high yield under mild conditions. The Ru(II)–Pheox catalyst presented higher chemoand regioselectivities for the synthesis of the γ -lactam derivatives than the conventional metal catalysts. The development of other transformations and asymmetric versions is currently being investigated in our laboratory.

This work was supported by a Grant-in-Aid for Scientific Research (B) (no.26288087) and Ikeda Bussan Co. Ltd..

Supplementary Material

Supplementary data to this article can be found online at

References

- J. Caruano, J. J. Muccioli, R. Robiette, Org. Biomol. Chem. 14 (2016), 10134–10156.
- H. Krawczyk, L. Albrecht, J. Wojciechowski, W. M. Wolf, U. Krajewska, M. Różalski, *Tetrahedron* 64 (2008), 6307–6314.
- 3. H. Ikuta, H. Shirota, S. Kobayashi, Y. Yamagishi, K. Yamada, I. Yamatsu, K. Katayama, J. Med. Chem. 30 (1987), 1995–1998.
- S. Gao, Y. Q. Tu, X. Hu, S. Wang, R. Hua, Y. Jiang, Y. Zhao, X. Fan, S. Zhang, Org. Lett. 8 (2006), 2373–2376.
- (a) L.-W. Ye, C. Shu, F. Gagosz, Org. Biomol. Chem. 12 (2014), 1373–1481.
 - (b) C. Kammerer, G. Prestat, D. Madec, G. Poli, *Acc. Chem. Res.* 47 (2014), 3439–3447.

(c) S.-Y. Hong, Y. Park, Y. Hwang, Y.-B. Kim, M.-H. Baik, S. Chang, *Science* 359 (2018), 1016–1021.

(d) F. Sanchez-Cantalejo., J. D. Priest, P. W. Davies, *Chem. Eur. J.* 24 (2018), 17215–17219.

 (a) A. Ring, A. Ford, A. R. Maguire, *Tetrahedron Lett.* 57 (2016), 5399–5406.

(b) A. Kaupang, H.-T. Bonge, Beilstein J. Org. Chem. 9 (2013), 1407–1413.

(f) H. Nakayama, S. Harada, M. Kono, T. Nemoto, J. Am. Chem. Soc. 139 (2017), 10188–10191.

7. (a) Z. Chen, Z. Chen, Y. Jiang, W. Hu, *Tetrahedron* 61 (2005), 1579–1586.

(b) L. F. R. Gomes, A. F. Trindade, N. R. Candeias, P. M. P. Gois, C. A. M. Afonso, *Tetrahedron Lett*. 49 (2008), 7372–7375.

(a) M. P. Doyle, M. Yan, I. M. Phillips, D. J. Timmons, *Adv. Synth. Catal.* 1 (2002), 91–95.
 (b) C. H. Yoon, A. Naela, C. Chan, D. Gandhi, K. W. Jung, *Org.*

(b) C. H. Yoon, A. Nagle, C. Chen, D. Gandhi, K. W. Jung, *Org. Lett.* 5 (2003), 2259–2262.

- (a) A. G. H. Wee, S. C. Duncan, G. Fan, *Tetrahedron Asymmetry* 17 (2006), 297–307.
 (b) A. G. H. Wee, S. C. Duncan, *Tetrahedron Lett.* 43 (2002), 6173–
 - (b) A. G. H. Wee, S. C. Duncan, *Tetranearon Lett.* 45 (2002), 6175-6176.
 - (c) B. Zhang, B. G. H. Wee, Org. Lett. 12 (2010), 5386–5389.
- M. Budny, M. Nowak, A. Wojtczak, A. Wolan, *Eur. J. Org. Chem.* 29 (2014), 6361–6365.
- (a) M. Grohmann, S. Buck, L. Schaffler, G. Maas, *Adv. Synth. Catal.* 348 (2006), 2203–2211.
 (b) M. Grohmann, G. Maas, *Tetrahedron* 63 (2007), 12172–12178.
 (c) W.-J. Liu, Z.-L. Chen, Z.-Y. Che, W.-H. Hu, *Tetrahedron*
- (c) W.-J. Liu, Z.-L. Chen, Z.-Y. Che, W.-H. Hu, *Tetrahedron Asymmetry* 16 (2005), 1693–1698.
 (a) A. M. Abu-Elfotoh, K. Phomkeona, K. Shibatomi, S. Iwasa,
- Angew. Chem. Int. Ed. 49 (2010), 8439–8443.
 (b) S. Chanthamath, S. Iwasa, Acc. Chem. Res. 49 (2016), 2080–2090.

(c) L. D. Ho, N. Otog, I. Fujisawa, S. Iwasa, Org. Lett. 21 (2019), 7470–7474.

(d) M. Kotozaki, S. Chanthamath, T. Fujii, K. Shibatomi, S. Iwasa, *Chem. Commun.* 54 (2018), 5110–5113.

(e) S. Chanthamath, S. Thongjareun, K. Shibatomi, S. Iwasa, *Tetrahedron Lett.* 53 (2012), 4862–4865.

(f) Y. Nakagawa, S. Chanthamath, I. Fujisawa, K. Shibatomi, S. Iwasa, *Chem. Commun.* 53 (2017), 3753–3756.

(g) Y. Nakagawa, S. Chanthamath, Y. Liang, K. Shibatomi, S. Iwasa, J. Org. Chem. 84 (2019), 2607–2618.

(h) N. T. T. Phan, M. Tone, H. Inoue, I. Fujisawa, S. Iwasa, *Chem. Commun.* 55 (2019), 13398–13401.

- (a) T. A. Brouder, C. N. Slattery, A. Ford, U. B. R. Khandavilli, E. Skorepova, K. S. Eccles, M. Lusi, S. E. Lawrence, A. R. Maguire, J. Org. Chem. 84 (2019), 7543–7563.
 (b) C. J. Flynn, C. J. Elcoate, S. E. Lawrence, A. R. Maguire, J. Am. Chem. Soc. 132 (2010), 1184–1185.
 (c) J. M. Fraile, P. Lopez-Ram-de-Viu, J. A. Mayoral, M. Roldan, J. Santafe-Valero, Org. Biomol. Chem. 9 (2011), 6075–6081.
- (a) K. Dong, C. Pei, Q. Zeng, H. Wei, M. P. Doyle, X. Xu, ACS Catal. 8 (2018), 9543–9549.
 (b) T. Goto, K. Takeda, N. Shimada, H. Nambu, M. Anada, M. Shiro, K. Ando, S. Hashimoto, Angew. Chem. Int. Ed. 50 (2011), 6803–6808.
 (c) T. Goto, K. Takeda, M. Anada, K. Ando, S. Hashimoto, Tetrahedron Lett. 52 (2011), 4200–4203.
- H. Nishiyama, Y. Itoh, Y. Sugawara, H. Matsumoto, K. Aoki, K. Itoh, *Bull. Chem. Soc. Jpn.* 68 (1995), 1247–1262.
- 16. (a) E. Buchner, T. Curtius, Ber. Dtsch. Chem. 18 (1885), 2377–2379.

(b) S. Mo, X. Li, J. Xu, J. Org. Chem. 79 (2014), 9186-9195.

- 17. (a) L.-Z. Huang, Z. Xuan, H. J. Jeon, Z.-T. Du, J. H. Kim, S. Lee, *ACS Catal.* 8 (2018), 7340–7345.
 (b) D. Sole, F. Perez-Janer, M. Bennasar, I. Fernandez, *Chem Eur. J.* 32 (2018), 4446–4455.
- M. P. Doyle, A. B. Dyatkin, G. H. P. Roos, F. Canas, D. A. Pierson, A. V. Basten, P. Mueller, P. Polleux, *J. Am. Chem. Soc.* 116 (1994), 4507–4508.
- (a) J. S. Clark, Y.-S. Wong, R. J. Townsend, *Tetrahedron. Lett.* 42 (2001), 6187–6190.
 (b) S. Hashimoto, N. Watanabe, M. Anada, S. Ikegami, *J. Synth. Org. Chem. Jpn.* 54 (1996), 988–999.
 (c) D. F. Taber, K. K. You, A. L. Rheingold, *J. Am. Chem. Soc.* 118 (1996), 547–556.
- H. Nishiyama, Y. Itoh, H. Matsumoto, S. B. Park, K. Itoh, J. Am. Chem. Soc. 116 (1994), 2223–2224.

C

Artv

menu or by embedding the graph as an OLE object.' Make sure you embed, rather than link the object. Depending on the amount of detail, you can choose to display artwork in one column (20 pica wide) or across the page (42 pica wide). Scale your artwork in your graphics program before incorporating it in your text. If the

Journal Pre-proofs Make sure graphics program and re-import it or use the sizing

Click here to remove instruction text...

through linked and embedded objects. For instance you can import an Excel® graph into Word® by using 'Paste special....' on the 'Edit' menu or, essentially the same, using the option on the 'Tables and figures' menu.

[†] OLE: Object Linking and Embedding; a program-integration technology you can use to share information between programs. All of the Office programs support OLE, so you can share information