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Abstract—A series of ferrocenyl chalcones were synthesized and evaluated for in vitro antimalarial activity against a chloroquine-
resistant strain of Plasmodium falciparum. The most active compounds were 1-(3-pyridyl)-3-ferrocenyl-2-propen-1-one (6) and
1-ferrocenyl-3-(4-nitrophenyl)-2-propen-1-one (28) with IC50 of 4.5 and 5.1 mM, respectively. Differences in activity were not readily
explained by the size and lipophilicity characteristics of these compounds. # 2002 Elsevier Science Ltd. All rights reserved.

Many reports of ferrocene-based antimalarial drugs
have emerged in the past 5 years. The most outstanding
compound reported so far is ferrochloroquine, the fer-
rocenyl analogue of chloroquine (CQ).1�3 The anti-
malarial activity of ferrochloroquine is notable in that
its in vitro activity is greater against CQ resistant Plas-
modium falciparum strains than CQ susceptible strains. 1

Ferrochloroquine has a curative effect when given to
mice infected with Plasmodium vinckei (CQ resistant
and susceptible strains).1 It has been proposed that the
ferrocene ring in ferrochloroquine may interfere with
the mode of resistance,2 but it is not known how this is
achieved. The ferrocene ring has also been incorporated
into other known antimalarial agents but with variable
outcomes. For example, only one member (an amine
derivative) among a series of ferrocenic artemisinin
derivatives has activity comparable to artemisinin against
P. falciparum in vitro.4 Ferrocenyl analogues of meflo-
quine and quinine are less active than the parent
compounds.5 An investigation of ellagitannins as anti-
malarial agents showed that derivatives with ferrocene and
biphenic acid entities exhibit micromolar to submicro-
molar activity, but derivatives that lack either groups are
inactive or have significantly less activity.6 A novel series
of benzylimidazolium compounds carrying ferrocenyl
substituents have also been reported to have antimalarial
activity.7

Ferrocene is a lipophilic, electron donating entity with no
hydrogen bond donor or acceptor property.8 Its p (2.46)

and s (sm �0.15, sp �0.18) values are close to those
of the cyclohexyl ring (p 2.51, sm �0.15, sp �0.22),
but the ferrocene ring has a significantly larger molar
refractivity (48.26), possibly due to the presence of the
ferrous ion sandwiched between two negatively charged
cyclopentadienyl rings. The ferrous ion can undergo
reversible oxidation–reduction and the nature of the
substituents on the ferrocene ring has a marked influence
on this process.9

Thus far, the role of the ferrocene ring in antimalarial
activity remains uncertain. It may be related to the
physicochemical properties of the ring (lipophilicity,
electronic effects, size) which may be optimal for trans-
port or delivery processes. It is also possible that the
ring exerts a unique biological effect, not associated
with other structural entities. In the design of the ferro-
cenic artemisinin derivatives, it was suggested that the
ferrous ion in ferrocene may induce a homolytic clea-
vage of the peroxide linkage.4

In order to investigate the role of ferrocene in anti-
malarial activity, several ferrocenyl chalcones have been
synthesized in this study. The choice of the ferrocenyl
chalcones is two-fold. Firstly, their syntheses are readily
achieved by conventional methods and a good number
of members can be synthesized for evaluation. Secondly,
we have investigated the antimalarial activities of
alkoxylated and hydroxylated chalcones in an earlier
study10 and the results of these two classes of chalcones
can be compared to give useful conclusions.

Two series of ferrocenyl chalcones were synthesized in this
investigation (Table 1). Series A (1–12) is characterized by
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the presence of ferrocene as Ring A, and various
alkoxylated/hydroxylated phenyl substituents, hetero-
cyclic or aromatic bicyclic rings as Ring B. Series
B (13–31) has ferrocene as Ring B, and substituted
phenyl, heterocyclic or aromatic bicyclic rings as Ring
A. The substituents on the phenyl ring were chosen
using the Craig Plot in order to ensure a reasonable cov-
erage of lipophilic and electron donating/withdrawing
properties. For compounds that do not have hydroxyl
substituents on Ring A or B, synthesis was readily
achieved by a base-catalyzed Claisen–Schmidt condensa-
tion between ferrocene aldehyde and an appropriately
substituted aromatic ketone (for Series A), and acetyl-
ferrocene with an appropriately substituted aromatic

aldehyde (for Series B) (Scheme 1).11 In the case of
compounds with hydroxyl substituents on Ring A or B,
prior protection of the hydroxyl group using 2H-3,4-
dihydropyran was necessary before reaction (Scheme 2).
The protecting group was subsequently removed by acid
hydrolysis.12 No protection was necessary for hydroxyl
groups at the ortho position of Ring A or B.

Table 1 gives the IC50 of the ferrocenyl chalcones for the
inhibition of [3H]hypoxanthine uptake into a CQ resis-
tant strain of P. falciparum (K1).10 It can be seen that
chalcones with ferrocene as Ring B are generally more
active than chalcones that have ferrocene as Ring A (the
other ring being kept the same). For example, 13 (Ring

Table 1. Structure and in vitro antimalarial activity of ferrocenyl chalcones

Series A Series B

No. Ring B Ring A IC50
a (mm) No. Ring B Ring A IC50

a (mM)

1 Phenyl Fcb 175 13 Fc Phenyl 19
2 1-Methoxyphenyl Fc 410 14 Fc 4-Methoxyphenyl 17
3 2,4-Dimethoxyphenyl Fc 24.5c 15 Fc 2,4-Dimethoxyphenyl 18
4 2-Naphthalenyl Fc 21 16 Fc 2-Naphthalenyl 73.5
5 1-Naphthalenyl Fc 47.4 17 Fc 1-Naphthalenyl 48.3
6 3-Pyridinyl Fc 4.6 18 Fc 3-Pyridinyl 17
7 4-Hydroxyphenyl Fc 36d 19 Fc 4-Hydroxyphenyl 20.6
8 2,4-Dihydroxyphenyl Fc 31.5 20 Fc 4-Methylphenyl 147
9 2-Hydroxyphenyl Fc 73.5 21 Fc 4-Chlorophenyl 14.5
10 2,3,4-Trimethoxyphenyl Fc 22.5e 22 Fc 3-Chlorophenyl 36.2
11 4-Ethoxyphenyl Fc 200f 23 Fc 2-Chlorophenyl 42.4
12 4-Butoxyphenyl Fc 80 24 Fc 2,4-Dichlorophenyl 29.4

25 Fc 4-Fluorophenyl 12.1
29 Fc 4-Cyanophenyl 26.5 26 Fc 2,4-Difluorophenyl 23.2
30 Fc 3-Quinolinyl 18.2 27 Fc 4-Trifluoromethylphenyl 58.4
31 Fc 4-Quinolinyl 14 28 Fc 4-Nitrophenyl 5.1

aIC50 values for inhibition of [3H]hypoxanthine uptake into P. falciparum (K1) in the presence of drug, following the method described in ref. 10.
IC50 for chloroquine=0.250 mM. All readings are the average of two or more separate determinations.
bFc, ferrocene.
cIC50 of Ring A=phenyl derivative of 3 is 55.5 mM.10
dIC50 of Ring A=phenyl derivative of 7 is 29.6 mM.10
eIC50 of Ring A=phenyl derivative of 10 is 15.8 mM.10
fIC50 of Ring A=phenyl derivative of 11 is 43.0 mM.10

Scheme 1. (a) KOH, EtOH, rt. R are substituents listed in Table 1.
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B=ferrocene, Ring A=phenyl) is 9 times more active
than 1 (Ring B=phenyl, Ring A=ferrocene). Other
compound pairs, namely 2/14, 3/15, 7/19, further attest
to this observation. In all these cases, the other ring is a
substituted phenyl ring. Interestingly, when the other
ring is a heterocyclic or bicyclic ring, the compound
with ferrocene as Ring A is now more active. The
2-naphthalenyl derivatives 4 and 16, and the 3-pyridinyl
derivatives 6 and 18 are such examples. However, an
exception is seen in the 1-naphthalenyl derivatives 5 and
17.

When compared with the previous series of chalcones,10

the ferrocenyl chalcones are seen to be less active. For
example, a comparison of chalcones 3, 7, 10, 11 (Ring
A=ferrocene) with previously investigated derivatives
in which Ring A is phenyl shows that only 3 (IC50 24.5
mM) is more active than its Ring A phenyl derivative
(IC50 55.5 mM10). The rest are less active than their
phenyl counterparts.

Several Series B ferrocenyl chalcones (Ring B=ferro-
cene) have been synthesized in which Ring A is a phenyl
ring substituted with groups of varying electronic and
lipophilic characteristics (13–15, 19–29). A few interest-
ing structure–activity observations can be made for this
subset. It is evident that the unsubstituted phenyl ring
(13) is quite active per se (IC50 19 mM). In general,
inclusion of electron donating or withdrawing groups
adversely affects activity (4-methyl 20, 4-CF3 27) or
leave it unchanged (2,4-dimethoxy 15, 2,4-difluoro 26).
Only substitution with 4-nitro markedly enhanced
activity (28, IC50 5.1 mM). The 4-cyano derivative 29 is
significantly less active, despite the fact that both nitro
and cyano are polar, electron withdrawing groups. An
attempt was made to quantify the structure–activity
relationships using the p values of the Ring A phenyl
substituent,13 molecular weight and 13C chemical shifts
(to denote electronic effects of the Ring A substituent)10

of these compounds using multiple linear regression.14

However, no significant relationship could be obtained.

Another interesting observation is the reasonably good
activity associated with the quinolinyl derivatives (30,
31). This is in contrast to the poorer activities of naph-
thalenyl derivatives (16, 17), which have a comparable
size but lack a basic center.

The results gathered from this fairly limited number of
ferrocenyl chalcones suggest that the physicochemical

properties of the ferrocene ring do not contribute sig-
nificantly to antimalarial activity. The Ring B ferrocenyl
chalcones like 13, 14, 15 and 19 have the same mole-
cular weight (size) and comparable lipophilicity as their
counterparts with ferrocene as Ring A (1–3, 7). Yet the
Ring B ferrocenyl chalcones show greater activity.
Similarly, it would be difficult to use physicochemical
differences to explain the difference in activity between
the structurally related analogues 4/16 and 6/18. The
preliminary QSAR study carried out with the Series B
ferrocenyl chalcones also shows that size, lipophilicity
and electronic factors have a limited role in activity but
these results may be due to the small number of com-
pounds investigated (n=14) and the type of physico-
chemical parameters used in the quantification. If
physicochemical properties are not important factors
for activity, one may then query the biological character
of the ferrocene ring and its role in antimalarial activity.
This question remains unanswered but investigations in
this direction would be useful in identifying the target of
action for these compounds and, ultimately, the design
of more effective antimalarial drugs.
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