

PII: S0957-4166(96)00372-2

pH-SENSITIVE EXCITON CHIRALITY CHROMOPHORE. SOLVATOCHROMIC EFFECTS ON CIRCULAR DICHROISM SPECTRA

Stefan E. Boiadjiev and David A. Lightner*

Department of Chemistry, University of Nevada, Reno, Nevada 89557-0020 USA

Abstract: Diesters (1 and 3) of (15,25) and (1*R*,2*R*)-cyclohexanediol and diamides (2 and 4) of (15,25) and (1*R*,2*R*)diaminocyclohexane with *p*-hydroxycinnamic acid exhibit intense bisignate circular dichroism spectra in CH₃OH: 1 $\Delta \varepsilon$ +55 (323 nm), -34 (287 nm); 2 $\Delta \varepsilon$ +75 (318 nm), -55 (281 nm) and in (CH₃)₂SO: 1 $\Delta \varepsilon$ +53 (328 nm), -33 (292 nm); 2 $\Delta \varepsilon$ +65 (319 nm), -50 (280 nm). Added NaOH causes a bathochromic shift of ~50 nm in CH₃OH and ~80-90 nm in (CH₃)₂SO. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

The search for new types of chromophores useful in forming derivatives of diols and diamines for exciton chirality¹ studies has uncovered a variety of carboxylic acids ranging from *para-substituted* benzoic and cinnamic acids to naphthoic and anthroic acids,² from dipyrrinone acids³ to porphyrin acids.^{4,5} The last are especially useful for long-range exciton coupling. In the current work, we focussed attention on the *p*-hydroxy-cinnamate chromophore for exploring a potential pH shift on exciton Cotton effects. Previously, *p*-methoxy and *p*-dimethyl-amino cinnamic acid esters have been used in exciton studies,² but to the best of our knowledge, the *p*-hydroxy has not. Yet, one can anticipate that its carboxylic acid esters and amides should exhibit large bathochromic ultraviolet (UV) and circular dichroism (CD) spectral shifts in the neutral to basic *pH* range. Consequently, we prepared *p*-acetoxycinnamic acid as the key chromophore to be used in our syntheses.

HO \leftarrow CH=CH-C-XR $\stackrel{\text{increase } pH}{\underset{\text{decrease } pH}{\overset{\text{o}}{\underset{300}{\overset{\text{max}}}}} 24,000} (X=0 \text{ or NH}) \qquad \varepsilon \stackrel{\text{max}}{\underset{350}{\overset{30}{\overset{\text{max}}}} 30,000}$

RESULTS AND DISCUSSION

Synthesis. As outlined in the Synthetic Scheme, p-hydroxycinnamic acid was acetylated in 89% yield using acetic anhydride in pyridine.⁶ The product was converted with thionyl chloride to the corresponding acid chloride, which was reacted smoothly with (1S,2S) or (1R,2R)-trans-cyclohexanediol in dry dichloromethane

^a CH₃ONa, then HCl; ^b SOCl₂; ^c (CH₃CO)₂O, Pyridine.

in the presence of triethylamine and a catalytic amount of 4-dimethylaminopyridine to afford bis-*p*-acetoxycinnamate esters 5 or 7 in 83-91% isolated yield. Using the same procedure, bis-amides 6 or 8 were prepared from (1S,2S) or (1R,2R)-*trans*-1,2-diaminocyclohexane in 83-89% isolated yield. Amide formation using unprotected *p*-hydroxycinnamic acid has been recently reported.⁷ The *p*-acetyl group could be cleaved selectively in each derivative using 1.5 equivalents sodium methoxide in chloroform-methanol.⁸ The resulting diesters 1 and 3 were purified by radial chromatography (65-77% yield); the diamides 2 and 4 were purified by crystallization from ether-methanol (84-88% yield). For purposes of spectral comparison the mono-amides (9 and 10) of cyclohexylamine were prepared similarly.

CD Spectra. The CD spectra of the bis-*p*-acetoxycinnamate ester (5) of (1S,2S)-cyclohexanediol (Fig. 1, spectrum 1) and the bis-*p*-hydroxycinnamate ester (1) (Fig. 1, spectra 2-5) show the typical bisignate behavior of an exciton system.¹ In this case, a positive exciton chirality is observed throughout Fig. 1, as predicted for the (1S,2S) configuration from the exciton chirality rule.¹ In addition, there are strong spectral shifts. The *p*-acetoxy derivative (5) in methanol is blue-shifted by ~30 nm from the *p*-hydroxy derivative (1). A similar shift was also observed in chloroform solvent (Table 1). However, there is little difference between spectra of 5 run in chloroform and methanol, and there is little difference between spectra of 1 run in chloroform and

SYNTHETIC SCHEME

methanol. An entirely analogous CD behavior is found in the bis-amides 6 and 2 (Fig. 2 and Table 1). This type of spectral shift p-OH and p-OAc has been noted previously on the intramolecular charge transfer UV absorption band of benzoic acids and cinnamic acids.

FIGURE 1. Circular dichroism spectra of 2.4×10^{-5} M solutions of (15,25)-5 in methanol (spectrum 1) and (15,25)-1 in chloroform (spectrum 2), methanol (spectrum 3), 0.1 M sodium hydroxide in methanol (spectrum 4), and dimethyl sulfoxide containing 0.1 M sodium hydroxide in methanol 50:1 v/v (spectrum 5) at 22°C.

FIGURE 2. Circular dichroism spectra of 3.4×10^{-5} M solutions of (1R,2R)-8 in methanol (spectrum 1) and (1R,2R)-4 in chloroform (spectrum 2), methanol (spectrum 3), 0.1 M sodium hydroxide in methanol (spectrum 4), and dimethyl sulfoxide containing 0.1 M sodium hydroxide in methanol 50:1 v/v (spectrum 5) at 22°C.

Diester		CD			UV			
Diamide	Solvent	$\Delta \epsilon^{\max}(\lambda_1)$	λ_2 at $\Delta \epsilon = 0$	$\Delta \epsilon^{\max}(\lambda_3)$	emax	λ (nm)	ϵ^{\max}	λ (nm)
1	CHCl ₃	+51.7 (319)	303	-32.9 (284)	41000	310	39900	301
3		-51.8 (320)	303	+32.4 (284)	41000	310	39700	301 ^{sh}
_						och		
2		+64.5 (317)	300	-50.6 (280)	40100	308 ^{sii}	44300	292
4		-03.0 (317)	299	+48.7 (281)	38600	308	43400	292
1	CH ₃ OH	+54.5 (323)	307	-34.0 (287)	44900	311	40500	301 ^{sh}
3		-55.1 (323)	307	+33.4 (287)	45000	311	40900	300 ^{sn}
2		$\pm 75.0.(318)$	301	-55.0 (281)	44400	307	46600	292
4		-75.7(318)	301	+54.3(281)	43900	308	45900	293
	(acath
1	(CH ₃) ₂ SO	+52.7 (328)	312	-33.1 (292)	44700	315	38000	30280
2		+64.6 (319)	301	-50.4 (280)	42000	309 ^{sh}	49000	293
1	0.1 M NaOH	+63.9 (373)	353	-48.2 (336)	56500	359	16700	311
3	in CH ₃ OH	-64.2 (374)	353	+48.0 (336)	56600	360	16700	311
		1 92 6 (2(2)	242	(4.9./227)	57700	245	27700	21.3sh
2		+83.0(302)	343	-64.8(327) $\pm 63.5(326)$	57300	345	27700	312 ^m
		-84.1 (302)		+03.3 (320)	57500	540	20000	515
1	(CH ₃) ₂ SO con-	+99.0 (414)	394	-74.0 (377)	70600	403	11500	323
3	taining 2% by vol 0.1 M NaOH	-99.1 (412)	393	+73.8 (375)	69200	403	11100	323
2	in CH ₃ OH	+90.0 (391)	371	-69.0 (354)	62700	376	22400	326
4		-89.7 (390)	371	+68.9 (353)	63900	375	22700	325
5	CHCl3	+43.6 (296)	280	-36.6 (266)	40500	283	_	—
7	_	-46.2 (295)	280	+37.0 (267)	40600	283	-	-
		1.50.0 (202)	270	61 1 (264)	47200	275		
0		+39.0(293) -59.7(294)	279	-01.1(204) $\pm 58.4(264)$	47200	275		
0		-39.7 (294)		+ 38.4 (204)	4/000	215		
5	СН₃ОН	+45.2 (295)	280	-38.5 (265)	42900	281	-	-
7		-48.8 (295)	280	+40.6 (265)	43000	281	-	-
6		+66.4(293)	277	-69 4 (262)	50900	273	_	_
8		-67.9 (293)	277	+68.9 (263)	51500	273		-
		I			ł			1

TABLE 1. Solvent Dependence of Circular Dichroism and UV Spectral Data from 1.5×10^{-5} M Solutions of Diesters 1 and 3 and Diamides 2 and 4 at 22°C.

More interesting are the spectral shifts in 1 (Fig. 1, spectra 4 and 5) and 4 (Fig. 2, spectra 4 and 5) that occur when the *p*-OH group is deprotonated. As might be expected, the CD spectra in pure methanol (Figs. 1 and 2, spectra 3) are strongly shifted (by ~50 nm) to longer wavelengths in methanol containing NaOH, *cf* spectra 3 and 4 of Figures 1 and 2. More unusual, however, are the spectral shifts in basified dimethyl sulfoxide (spectra 5), where a nearly 90 nm bathochromic shift is observed relative to CDs of the diester or diamide in pure dimethylsulfoxide (Table 1), which are essentially identical to the CDs in pure methanol. This unusual solvatochromic effect^{9,10} on the phenoxide, which may not have been observed previously in exciton systems leads not only to a strong bathochromic spectral shift in dimethylsulfoxide *vs* methanol but also to a considerable enhancement of $\Delta \varepsilon^{max}$.

The solvatochromic effect may also be seen on the non-exciton system 10, which exhibits the expected UV spectral shift (\sim 40 nm) upon deprotonation of the *p*-OH group in methanol and an additional 30 nm shift

when deprotonated in dimethylsulfoxide (Table 2). Yet, again the UV spectra of the protonated forms are very similar in pure methanol and in dimethylsulfoxide.

			он 10				
Solvent	ε ^{max}	λ (nm)	ε ^{max}	λ (nm)	ε ^{max}	λ (nm)	
CHCl ₃	24300	278	19900	307 ^{sh}	22300	291	
СН3ОН	27500	277	22900	307	23600	292	
(CH ₃) ₂ SO	24600	276	20300	308 ^{sh}	23300	293	
0.1 M NaOH/CH3OH	_		29700	347	14200	313 ^{sh}	
(CH ₃) ₂ SO/NaOH ^a			31900	378	10800	327	

TABLE 2. UV Spectral Data for Monoamides 9 and 10.

^a (CH₃)₂SO containing 2% (vol) of a solution of 0.1 M NaOH in CH₃OH

CONCLUDING COMMENTS

The *p*-hydroxycinnamate chromophore has been shown to exhibit the expected excellent *pH*-sensitive spectral shifts in its exciton coupling CD and UV spectra of the diesters of (1R,2R) and (1S,2S)-trans-cyclohexanediol and the diamides of (1R,2R) and (1S,2S)-trans-diaminocyclohexane. An unusual solvato-chromic effect on the phenoxide form in dimethylsulfoxide solvent leads to ~90 nm bathochromic shifts and 20-40% enhancements of $\Delta \varepsilon^{\text{max}}$. These findings indicate *p*-hydroxycinnamic acid may be useful for exciton chirality studies where red-shifted chromophores are important.²

EXPERIMENTAL

General. All circular dichroism spectra were recorded on a JASCO J-600 instrument, and all UV-vis spectra were recorded on a Cary 219 spectrophotometer. NMR spectra were obtained on a GE GN-300 spectrometer operating at 300 MHz. CDCl₃ solvent (unless otherwise noted) was used and chemical shifts were reported in δ ppm referenced to residual CHCl₃ ¹H signal at 7.26 ppm and ¹³C signal at 77.00 ppm. J-modulated spinecho experiment (*A*ttached *P*roton *T*est) was used to obtain ¹³C-NMR spectra. Optical rotations were measured on a Perkin-Elmer 141 polarimeter. Radial chromatography was carried out on Merck Silica gel PF₂₅₄ with CaSO₄ preparative layer grade, using a Chromatotron (Harrison Research, Inc., Palo Alto, CA). Melting points were determined on a Mel-Temp capillary apparatus and are uncorrected. Combustion analyses were carried out by Desert Analytics, Tucson, AZ.

Spectral data were obtained in spectral grade solvents (Aldrich or Fischer). Enantiomerically pure (1R,2R) and (1S,2S)-trans-1,2-cyclohexanediol and 1,2-diaminocyclohexane were from Fluka; trans-p-hydroxycinnamic acid was from Acros.

p-Acetoxycinnamic acid.⁶ To a cooled with ice bath solution of 16.42 g (0.1 mol) *p*-hydroxycinnamic acid in 100 mL of dry pyridine was added 28.3 mL (0.3 mol) of acetic anhydride, and the mixture was stirred at room temperature for 12 h. The mixture was poured into 150 mL of ice water and slowly acidified with conc. HCl. The precipitate was filtered, washed with H₂O (4 x 20 mL) and recrystallized from ethanol to afford 18.32 g (89%) of *p*-acetoxycinnamic acid. It had mp 210-212°C. ¹H-NMR ((CD₃)₂SO): δ 2.26 (s, 3H), 6.50 (d, 1H, J=16.0 Hz), 7.16 (d, 2H, J=8.4 Hz), 7.58 (d, 1H, J=16.0 Hz), 7.73 (d, 2H, J=8.4 Hz), 12.44 (br.s, 1H) ppm; ¹³C-NMR ((CD₃)₂SO): δ 20.92, 119.34, 122.43, 129.50, 131.98, 143.05, 151.88, 167.64, 169.11 ppm.

General procedure for acylation with *p*-acetoxycinnamic acid. *p*-Acetoxycinnamic acid (618 mg, 3 mmol) was refluxed for 3h with 6 mL of thionyl chloride. Excess SOCl₂ was removed under water aspirator vacuum and co-evaporated twice with 10 mL portions of dry benzene. Thus obtained acid chloride was dissolved in 5 mL of dry CH₂Cl₂ and added to a cooled with ice bath solution of 1 mmol 1,2-*trans*-cyclohexanediol or 1,2-*trans*-diaminocyclohexane, 1.1 mL (8 mmol) of Et₃N, 4 mL of dry CH₂Cl₂ and 3 mg of 4-dimethylaminopyridine. The mixture was stirred for 12h at room temperature. It was diluted with 70 mL of CHCl₃, washed with 2% HCl (30 mL), 5% NaHCO₃ (2 x 50 mL), water (2 x 50 mL), dried (Na₂SO₄), filtered, and the solvent was removed under vacuum. Purification was achieved by radial chromatography eluting the bis-*p*-acetoxycinnamates with 0.75-1% CH₃OH in CH₂Cl₂ and bis-*p*-acetoxycinnamatides with 2-3% CH₃OH in CH₂Cl₂.

Racemic 1,2-trans-cyclohexanediol-bis-p-acetoxycinnamate was synthesized in 83% yield as an amorphous mass. ¹H-NMR: δ 1.50 (m, 4H), 1.80 (m, 2H), 2.15 (m, 2H), 2.26 (s, 6H), 5.03 (m, 2H), 6.33 (d, 2H, J=15.9 Hz), 7.08 (d, 4H, J=8.7 Hz), 7.49 (d, 4H, J=8.7 Hz), 7.61 (d, 2H, J=15.9 Hz) ppm; ¹³C-NMR: δ 21.12, 23.53, 30.31, 73.98, 118.21, 122.04, 129.22, 132.04, 143.82, 152.00, 166.26, 169.10 ppm. *Anal.* Calcd. for C₂₈H₂₈O₈ (492.5): C, 68.28; H, 5.73

Found: C, 68.12; H, 5.72

Racemic 1,2-*trans*-diaminocyclohexane-bis-*p*-acetoxycinnamamide was obtained in 73%. It had mp 288-289°C (CH₃OH/CH₂Cl₂). ¹H-NMR: δ 1.31 (m, 4H), 1.74 (m, 2H), 2.14 (m, 2H), 2.29 (s, 6H), 3.83 (m, 2H), 6.36 (d, 2H, J=15.6 Hz), 6.74 (shifted to 7.11 in concentrated solution) (d, 2H, J=7.0 Hz), 7.02 (d, 4H, J=8.6 Hz), 7.44 (d, 4H, J=8.6 Hz), 7.52 (d, 2H, J=15.6 Hz) ppm; ¹³C-NMR: δ 21.10, 24.59, 31.98, 54.39, 120.94, 121.93, 128.88, 132.37, 139.88, 151.51, 166.82, 169.16 ppm.

Anal. Calcd. for $C_{28}H_{30}N_2O_6$ (490.5):C, 68.55; H, 6.16; N, 5.71Found:C, 68.27; H, 6.31; N, 5.57

(+)-(1*S*,2*S*)-Cyclohexanediol-bis-*p*-acetoxycinnamate (5) was obtained in 91% yield as an amorphous mass. It had $[\alpha]_D^{20}$ +236.0 (c 1.2, CH₃OH) and ¹H- and ¹³C-NMR were identical to those of racemic compound.

(+)-(1*S*,2*S*)-Diaminocyclohexane-bis-*p*-acetoxycinnamamide (6) was synthesized in 83% yield. It had mp 297-299°C (CH₃OH/CH₂Cl₂), $[\alpha]_D^{20}$ = +213.6 (*c* 0.1, CH₃OH). Its ¹H- and ¹³C-NMR spectra were the same as reported above for the racemic compound.

(-)-(1*R*,2*R*)-Cyclohexanediol-bis-*p*-acetoxycinnamate (7) was obtained in 90% yield as an amorphous mass. It had $[\alpha]_D^{20} = -236.9$ (c 1.9, CH₃OH). Its ¹H- and ¹³C-NMR spectra were identical to those of racemic compound.

(-)-(1*R*,2*R*)-Diaminocyclohexane-bis-*p*-acetoxycinnamamide (8) was obtained in 89% yield. It had mp 297-299°C (CH₃OH/CH₂Cl₂), $[\alpha]_D^{20} = -211.1$ (c 0.1, CH₃OH). Its ¹H- and ¹³C-NMR spectra were the same as reported above for the racemic compound.

p-Acetoxycinnamic acid cyclohexylamide (9) was prepared in 93% yield. It had mp 194-195°C. ¹H-NMR: δ 1.18 (m, 4H), 1.39 (m, 2H), 1.72 (m, 2H), 1.98 (m, 2H), 2.31 (s, 3H), 3.91 (m, 1H), 5.51 (shifted to 6.95 in concentrated solution) (br.d, 1H, J=7.7 Hz), 6.30 (d, 1H, J=15.6 Hz), 7.08 (d, 2H, J=8.6 Hz), 7.49 (d, 2H, J=8.6 Hz), 7.58 (d, 1H, J=15.6 Hz) ppm; ¹³C-NMR: δ 21.11, 24.83, 25.49, 33.15, 48.34, 121.33, 121.91, 128.74, 132.68, 139.45, 151.37, 164.69, 169.26 ppm.

General procedure for selective cleavage of the acetyl protecting group. To a solution of 0.25 mmol diacetyl derivative (5-8) in 3 mL of $CHCl_3$ (and 0.5-1 mL of CH_3OH to dissolve completely 6 and 8) was added 0.75 mL (0.75 mmol) of 1 M CH_3ONa in CH_3OH (freshly prepared from Na) and stirred for 30 min.

The reaction mixtures containing bis-cinnamates (1 and 3) were diluted with 20 mL of $CHCl_3$ and stirred vigorously with 20 mL of 2% HCl. The organic layer was washed with water until neutral, dried (Na₂SO₄), filtered and the solvent was evaporated under vacuum. The bis-cinnamates were purified by radial chromatography eluting with 3-5% CH₃OH in CH₂Cl₂.

The reaction mixtures containing bis-cinnamamides (2 and 4) were partially evaporated under vacuum to remove CH_2Cl_2 . The residue was diluted with 2 mL of CH_3OH and acidified with 10% HCl. Water was added dropwise (~10 mL) to precipitate the product. The bis-cinnamamides were purified by recrystallization from CH_3OH/Et_2O .

Racemic 1,2-*trans*-cyclohexanediol-bis-*p*-hydroxycinnamate was prepared in 75% yield as amorphous flakes. ¹H-NMR: δ 1.39 (m, 4H), 1.52 (m, 2H), 2.12 (m, 2H), 5.05 (m, 2H), 6.16 (d, 2H, J=15.9 Hz), 6.78 (d, 4H, J=8.8 Hz), 7.24 (d, 4H, J=8.8 Hz), 7.53 (d, 2H, J=15.9 Hz) ppm; ¹³C-NMR: δ 23.58, 30.42, 74.44, 114.48, 115.93, 126.35, 130.18, 145.70, 158.57, 167.90 ppm.

Racemic 1,2-*trans*-diaminocyclohexane-bis-*p*-hydroxycinnamamide was obtained in 69% yield. It had mp 300-302°C (decomp.). ¹H-NMR ((CD₃)₂SO): δ 1.24 (br.m, 4H), 1.66 (br.m, 2H), 1.90 (br.m, 2H), 3.68 (br.m, 2H), 6.35 (d, 2H, J=15.9 Hz), 6.75 (d, 4H, J=8.4 Hz), 7.25 (d, 2H, J=15.9 Hz), 7.33 (d, 4H, J=8.4 Hz), 7.84 (br.d, 2H, J=6.1 Hz), 9.80 (s, 2H) ppm; ¹³C-NMR ((CD₃)₂SO): δ 24.44, 32.21, 52.04, 115.72, 118.99, 125.91, 129.19, 138.56, 158.77, 165.30 ppm.

(+)-(1*S*,2*S*)-Cyclohexancdiol-bis-*p*-hydroxycinnamate (1) was prepared in 65% yield as amorphous flakes. It had $[\alpha]_D^{20}$ = +397.3 (*c* 1.1, CH₃OH) and ¹H- and ¹³C-NMR spectra were identical to those of racemic compound.

Anal. Calcd. for $C_{24}H_{24}O_6 \cdot 1/2$ CH₃OH (424.5): C, 69.32; H, 6.17 Found: C, 69.49; H, 5.87 (+)-(1*S*,2*S*)-Diaminocyclohexane-bis-*p*-hydroxycinnamamide (2) was obtained in 88% yield. It had mp 304-306°C (decomp.), $[\alpha]_D^{20} = +337.4$ (*c* 0.8, CH₃OH). Its ¹H- and ¹³C-NMR spectra were the same as reported above for the racemic compound.

> Anal. Calcd. for $C_{24}H_{26}N_2O_4$ (406.5): C, 70.91; H, 6.45; N, 6.89 Found: C, 70.64; H, 6.47; N, 6.82

(-)-(1*R*,2*R*)-Cyclohexanediol-bis-*p*-hydroxycinnamate (3) was prepared in 77% yield as amorphous flakes. It had $[\alpha]_D^{20} = -399.3$ (*c* 1.0, CH₃OH). Its ¹H- and ¹³C-NMR spectra were identical to those of racemic compound.

(-)-(1*R*,2*R*)-Diaminocyclohexane-bis-*p*-hydroxycinnamamide (4) was obtained in 84% yield. It had mp 304-306°C (decomp.), $[\alpha]_D^{20} = -338.9$ (*c* 1.3, CH₃OH). Its ¹H- and ¹³C-NMR spectra were the same as reported above for the racemic compound.

p-Hydroxycinnamic acid cyclohexylamide (10) was prepared in 81% yield. It had mp 195-197°C (decomp.) ¹H-NMR ((CD₃)₂SO): δ 1.22 (m, 6H), 1.67 (m, 2H), 1.75 (m, 2H), 3.62 (m, 1H), 6.39 (d, 1H, J=15.7 Hz), 6.76 (d, 2H, J=8.3 Hz), 7.28 (d, 1H, J=15.7 Hz), 7.35 (d, 2H, J=8.3 Hz), 7.84 (d, 1H, J=7.9 Hz), 9.81 (s, 1H) ppm; ¹³C-NMR ((CD₃)₂SO): δ 24.64, 25.31, 32.64, 47.50, 115.76, 119.07, 126.05, 129.14, 138.51, 158.78, 164.42.

Acknowledgements: We thank the National Institutes of Health (HD 17779) for generous support of this work and the National Science Foundation (CHE-9214294) for assistance in purchasing the 500 MHz NMR spectrometer used in this work. S.E. Boiadjiev is on leave from the Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia.

REFERENCES

- 1. Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy Exciton Coupling in Organic Stereochemistry, University Science Books: Mill Valley, CA, 1983.
- For an excellent review, see Nakanishi, K.; Berova, N. "The Exciton Chirality Method" in Circular Dichroism. Principles and Applications (Nakanishi, K.; Berova, N.; Woody, R.W., eds.) VCH Publishers, Inc., Deerfield Beach, FL, 1994, Chapter 13, pp 361-398.
- 3. (a) Byun, Y.S.; Lightner, D.A. J. Org. Chem. 1991, 56, 6027-6033.
 (b) Byun, Y.S.; Lightner, D.A. Tetrahedron 1991, 47, 9759-9772.
- Matile, S.; Berova, N.; Nakanishi, K.; Novkova, S.; Philipova, I.; Blagoev, B. J. Am. Chem. Soc. 1995, 117, 7021-7022.
- 5. Zindel, J.; Lightner, D.A. J. Heterocyclic Chem. 1995, 32, 1219-1224.
- 6. Krigbaum, W.R.; Ishikawa, T.; Watanabe, J.; Toriumi, H.; Kubota, K.; Preston, J. J. Polym. Sci., Polym. Phys. Ed. 1983, 21, 1851-1872.
- 7. Hu, W.; Hesse, M. Helv. Chim. Acta 1996, 79, 548-559.
- 8. Vermes, B.; Mohan Chari, V.; Wagner, H., Helv. Chim. Acta 1981, 64, 1964-1967.
- 9. Effenberger, F.; Würthner, F. Angew. Chem. Int. Ed. Engl. 1993, 32, 719-721.
- 10. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, VCH Publishers, New York, 1988.

(Received in USA 4 June 1996; accepted 6 August 1996)