ORGANOMETALLICS

Controlling Secondary Alkyl Radicals: Ligand Effects in Chromium-Catalyzed C–P Bond Formation

Wen Zhou,[†] K. Cory MacLeod,[†] Brian O. Patrick,[‡] and Kevin M. Smith^{*,†}

[†]Department of Chemistry, University of British Columbia Okanagan, 3333 University Way, Kelowna, British Columbia, Canada V1V 1V7

[‡]Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

S Supporting Information

ABSTRACT: Chromium cyclopentadienyl β -diketiminate catalysts have been used to form Ph_2PCy from Ph_2PY (Y = Cl, PPh_2 , H) and CyX (X = Br, Cl) substrates. Manganese powder activated by PbX2 or Me3SiCl was used as the stoichiometric reductant. The Cr(III) cyclohexyl intermediate has been synthesized and structurally characterized. The observed variations in catalytic activity have been correlated with the previously observed reactivity differences imparted by modifying the N-aryl substituents on the β diketiminate ancillary ligand.

F irst-row transition metals have found increasing use in the catalytic cross-coupling reactions of secondary alkyl halides.¹ For typical palladium catalysts, secondary R-X substrates are challenging due to slow rates of oxidative addition and competing β -elimination processes.² Many of the first-row metal-catalyzed cross-coupling reactions of secondary alkyl halides have been demonstrated to involve carbon-based radicals,³ consistent with the long-known propensity of 3d organometallic species to engage in single-electron-transfer reactivity.⁴ The introduction of reversible metal-alkyl bond homolysis provides exciting new options for catalysis, such as combining cross-coupling with radical intramolecular cyclization⁵ and converting racemic secondary alkyl halide substrates to enantiomerically pure products.^{2,6} Due to their ability to trap carbon-based radicals⁷ and their stability with respect to β -H elimination,⁸ it is often possible to isolate and characterize catalytically relevant first-row metal alkyl complexes despite their relatively weak M-R bonds.9 This affords excellent opportunities to explore metal-mediated radical reactivity using well-defined complexes with readily modified ancillary ligands.¹⁰

Transition-metal-catalyzed carbon-phosphorus bond-forming reactions have largely focused on $C(sp^2)$ -P processes.¹¹ Recent work by the groups of Oshima and Studer has demonstrated the utility of radical C-P formation using tin and silyl reagents.^{12,13} The titanium-mediated radical synthesis of Ph₂PCy from P₂Ph₄ and cyclohexyl bromide was recently developed by Cossairt and Cummins using stoichiometric $Ti[N(3,5-Me_2C_6H_3)tBu]_3$.¹⁴ Although the three-coordinate Ti(III) reagent is a powerful single-electron reductant,¹⁵ the Ti(IV) bromo product of halogen atom abstraction from CyBr is only slowly reduced back to the active Ti(III) species even using Na/Hg amalgam, effectively precluding a catalytic reaction.14

The ability of Cr(II) to trap carbon-based radicals is wellestablished¹⁶ and forms the basis for several chromiummediated reactions for organic synthesis.¹⁷ Fürstner pioneered the use of manganese powder as a stoichiometric singleelectron reductant for Cr(III) that is also compatible with organic halides.¹⁸ We have recently been exploring the synthesis of well-defined paramagnetic CpCr[(ArNCMe)₂CH]-(R) complexes,¹⁹ the role of sterics in inducing Cr(III)-Rhomolysis, and their utility in controlling radical bond-forming reactions.²⁰ The Cr(III) CpCr[(XylNCMe)₂CH](X) complexes (X = Br (1a), Cl (1b)) are effective catalysts for the radical cyclization of C(sp³)-Br and C(sp³)-Cl substrates.² To date, we have been unsuccessful in synthesizing secondary Cr(III) alkyls suitable for single-crystal X-ray diffraction with the symmetric xylyl-substituted ligand. The mixed N-aryl derivatives CpCr[DppNC(Me)CHC(Me)NTol](X) (X = Br (2a), Cl (2b)) are more suitable precursors for secondary alkyl complexes, due to the reduced steric demands of the β diketiminate ligand.²²

The desired Cr(III) complexes were prepared from the highspin Cr(II) compound CpCr[DppNC(Me)CHC(Me)NTol] (3)²³ as shown in Scheme 1. The Cr(III) bromide 2a was synthesized by single-electron oxidation of 3 with PbBr₂.²⁴ Oxidation of 3 with silver p-toluenesulfonate afforded the Cr(III) tosylate 4, which was structurally characterized by X-ray diffraction.²⁵ As previously observed for the synthesis of related sterically demanding Cr(III) alkyl complexes, 19,20a the most effective route to the Cr(III) cyclohexyl complex 5 utilized R₂Mg reagents with the Cr(III) tosylate precursor.²⁵ The X-ray crystal structure of 5 is shown in Figure 1. Although the Cr-C(cyclohexyl) bond length of 2.106(3) Å is longer than the $Cr-CH_3$ bond (2.01608(17) Å) of the corresponding Cr(III)

Received: August 31, 2012 Published: October 18, 2012

CpCr[DppNC(Me)CHC(Me)Tol](X) Complexes (X = Br (2a), OTs (4), Cy (5))

Figure 1. Molecular structure (50% thermal ellipsoids) of compound 5. Hydrogen atoms have been removed for the sake of clarity. Selected bond lengths (Å) and bond angles (deg): Cr01-C020, 2.106(3); Cr01-N001, 2.057(2); Cr01-N002, 2.024(2); N001-Cr01-N002, 87.65(9); N001-Cr01-C020, 92.82(10); N002-Cr01-C020, 95.19(10).

methyl complex,²³ it is in the range of 2.10–2.13 Å previously observed for primary alkyl ligands in CpCr^{III} complexes bearing symmetric 2,6-disubstituted β -diketiminate ligands.¹⁹ The steric strain imposed by the secondary alkyl ligand in 5 is evident in the distortions of the N-aryl substituents away from the cyclohexyl group and the relatively long Cr–N(Dpp) and Cr– N(Tol) bonds of 2.057(2) and 2.024(2) Å, respectively. The UV–vis spectrum of 5 in hexanes displays the strong absorbance band at 553 nm characteristic of CpCr-[(ArNCMe)₂CH](R) complexes.¹⁹

The reactivity of Cr(III) cyclohexyl **5** in stoichiometric reactions with Ph₂PY sources at room temperature in benzene was evaluated by ³¹P NMR, with PPh₃ added as an internal standard (Scheme 2). Reaction of CpCr[DppNC(Me)CHC-(Me)NTol](Cy) with Ph₂PCl resulted in the formation of Ph₂PCy in 94% yield (³¹P NMR). Similarly, treatment of **5** with P₂Ph₄ and CyBr resulted in generation of Ph₂PCy in 96% yield (³¹P NMR).²⁵ The corresponding reaction of **5** with CyBr and Ph₂PH resulted in a lower yield (30%) of Ph₂PCy. However, treatment of Ph₂PH with 2.2 equiv of CyBr and 2.7 equiv of the Cr(II) complex **3** produced 69% Ph₂PCy by ³¹P NMR.²⁵

Our working hypothesis for the reaction mechanism of these various $C(sp^3)-P$ bond-forming processes is outlined in Scheme 3. In the absence of oxidants, small amounts of Cr(II)

Scheme 2. Stoichiometric Reactions of Cr(III) Cyclohexyl Complex 5 with Ph₂PY Reagents (Y = Cl, PPh₂, H)

Scheme 3

step 1	[Cr]Cy - [Cr] + Cy·
step 2	$[Cr] + Ph_2PCI \longrightarrow [Cr]CI + Ph_2P \cdot$
step 3	$Ph_2P + Ph_2P \rightarrow P_2Ph_4$
step 4	$P_2Ph_4 + Cy \rightarrow Ph_2PCy + Ph_2P$.
step 5	[Cr] + CyBr → [Cr]Br + Cy·
step 6	$Ph_2PH + Cy \longrightarrow CyH + Ph_2P$.
[Cr] = CpCr[ArNC(Me)CHC(Me)NAr']

complex 3 can trap the radicals generated by the Cr-C bond homolysis of 5, preventing the bimolecular reaction between two cyclohexyl radicals (step 1). However, Ph₂PCl reacts rapidly with 3 to form Cr(III) chloride 2b and P₂Ph₄ (steps 2 and 3).²⁵ The consumption of the Cr(II) radical trap favors the production of cyclohexyl radicals, which then react with P2Ph4 (step 4).^{12,13} Similarly, bromine atom abstraction from CyBr by Cr(II) generates Cr(III) bromide 2a (step 5), also resulting in the rapid reaction of Cy^{\bullet} with available P_2Ph_4 (step 4). The Cr(II) complex 3 does not react with P₂Ph₄, and attempts to prepare a Cr(III)–PPh₂ complex via salt metathesis reactions of $KPPh_2$ with 2a or 4 were unsuccessful. The reaction of Cr(II)complex 3 with substoichiometric Ph₂PCl also produced only the Cr(III) chloride 2b, P_2Ph_4 , and unreacted 3, indicating that if any Cr(III)-PPh₂ species is generated, it is unstable with respect to 3 and P₂Ph₄.

The key step in the overall reaction of **5** or **3** with CyBr and Ph₂PH is the rapid intermolecular hydrogen atom abstraction process shown in step 6^{26} which generates Ph₂P[•] radical and cyclohexane. While the steps proposed in Scheme 3 remain speculative in the absence of mechanistic studies, the range of Ph₂PY substrates that can be employed to produce Ph₂PCy from Cr(III) cyclohexyl complex **5** attests to the flexibility of metal-mediated radical routes to $C(sp^3)$ -P bond formation.

The stoichiometric reactions in Scheme 2 can be rendered catalytic by the use of PbBr₂-activated Mn powder²⁷ at ambient temperature and 1 mol % of the mixed N-aryl Cr(II) complex 3, resulting in a 79% yield of Ph₂PCy from Ph₂PCl after 28 h (Table 1, entry 1). Comparable yields were obtained with catalyst 3 when the reaction was protected from ambient light²⁵ or when P₂Ph₄ and Ph₂PH were used as precursors (entries 2 and 3). In all cases, bipyridine was added at the completion of the reaction in order to displace Ph_2PCy from the paramagnetic $MnBr_2$ byproduct.^{28–30} The catalytic activity of the symmetric CpCr[(XylNCMe)₂CH] Cr(II) complex 6 was assessed under the same reaction conditions. Although we have been unable to characterize the corresponding Cr(III) cyclohexyl complex by X-ray crystallography, due to its instability, the catalytic use of the bulkier 2,6-Me₂C₆H₃ disubstituted ligand led to an unexpected increase in the yields of Ph2PCy from each phosphorus substrate (entries 4-6). A much lower yield of

Table 1. Chromium-Catalyzed Synthesis of Ph₂PCy^a

Ph ₂ P-Y	+ X-(1.2 equiv)	+ Mn (4- + additive to 1	6 equiv) Cr ((1 mol% (1 or 0 mol%)	catalyst 10 mol%) THF	h ₂ P-
entry	Cr cat. ^b	СуХ	Ph ₂ PY	additive ^c	yield, ^d %
1	3	CyBr	Ph ₂ PCl	PbBr ₂	79
2	3	CyBr	P_2Ph_4	PbBr ₂	70
3	3	CyBr ^e	Ph ₂ PH	PbBr ₂	70
4	6	CyBr	Ph ₂ PCl	PbBr ₂	92
5	6	CyBr	P_2Ph_4	PbBr ₂	96
6	6	CyBr ^e	Ph_2PH	PbBr ₂	83
7	1a	CyBr	Ph ₂ PCl	Me ₃ SiCl	82
8	2a	CyBr	Ph ₂ PCl	Me ₃ SiCl	76
9	3	CyCl	P_2Ph_4	PbCl ₂	80
10	6	CyCl	P_2Ph_4	PbCl ₂	29
11	6	CyCl	P_2Ph_4	PbCl ₂	81

^{*a*}The reaction temperature/time was 25 °C/28 h for entries 1–8, 55 °C/72 h for entries 9 and 10, and 55 °C/312 h for entry 11. ^{*b*}1 mol % Cr catalyst was used for entries 1–8, and 10 mol % Cr catalyst was used for entries 9–11. ^{*c*}Catalytic PbX₂ (1–3 mol %) or Me₃SiCl (10 mol %) was added to activate Mn. ^{*d*}The yields were determined by ³¹P NMR. ^{*e*}2.4 equiv of CyBr was used with the Ph₂PH substrate.

47% was obtained when 1 mol % Cp₂Cr was used as the catalyst, and no Ph₂PCy was observed by ³¹P NMR when the reaction was conducted without chromium catalyst or when 10 mol % SmI₂ or CrCl₃ was used.²⁵ Interestingly, 32 mol % Ph₂PCy was obtained without Cr when 10 mol % of both NaCp and Li[DppNC(Me)CHC(Me)NTol] were added, suggesting that with the proper ancillary ligands a Mn-based catalyst may also be viable for this reaction.²⁵ Although related Ph₂PR complexes prepared by radical addition to P₂Ph₄ have been amenable to oxidation with H₂O₂ and purification by column chromatography,^{13a} our initial attempts to isolate our product via this procedure were not successful.

While the Cr(II) complex **6** is highly air sensitive, it has been previously demonstrated that the Cr(III) μ -oxo oxidation product can be reduced back to the active Cr(II) form with Mn powder and substoichiometric Me₃SiCl.³¹ As shown in entries 7 and 8, this strategy also allowed the air-stable Cr(III) bromide complexes **1a** and **2a** to be used as catalyst precursors in reactions that are set up in air and purged with N₂ prior to addition of the CyBr, Me₃SiCl, and Ph₂PCl.²⁵

Less reactive secondary alkyl chlorides continue to pose a challenge as substrates for transition-metal-catalyzed reactions.^{1,32} Although the reaction requires higher catalyst loading (10 mol % 3), higher temperatures (55 °C), and longer reaction times (72 h), Ph₂PCy can be produced in 80% ³¹P NMR yield from P₂Ph₄ and CyCl (entry 9). Interestingly, under these reaction conditions, the symmetric Cr(II) complex 6 gives only 29% yield along with 59% unreacted P₂Ph₄ after 3 days (entry 10), with 81% yield only being achieved after 13 days at 55 °C (entry 11).

As summarized in Chart 1, the observed variations in catalytic activity between 3 and 6 can be attributed to the reactivity differences imparted by modifying the β -diketiminate ligand. With the more reactive cyclohexyl bromide substrate, the higher yields obtained with catalyst 6 are presumably due to the weaker Cr–Cy bond in the more hindered Cr(III) secondary alkyl complex, favoring the formation of Ph₂PCy as shown in Scheme 3, step 4. However, as was previously observed in the catalytic radical cyclization of chloroacetals,²¹

Cr(II) complex **6** only reluctantly reacts with unactivated $C(sp^3)$ -Cl bonds. Due to its decreased steric requirements, **3** is much more reactive than **6** for the single-electron oxidative addition of alkyl halides.²² This increased propensity for oxidative addition accounts for the relatively high activity of **3** with the more challenging cyclohexyl chloride substrate. The effect of altering the ancillary ligands on the catalytic reaction with other alkyl halide substrates is an intriguing subject for subsequent investigations.

In comparison to more traditional 4d metal catalysts, the use of earth-abundant first-row transition metals can provide not only a substantial decrease in catalyst cost but also complementary reactivity. In the case of secondary alkyl halide substrates,^{3,33} this distinctive reactivity is often attributable to the generation of carbon-based radicals as an integral feature of the catalytic cycle. Despite its long history in organometallic chemistry,^{4,7,8} metal-mediated radical reactivity is not central to the way organometallic chemists currently approach catalysis.³⁴ It is therefore encouraging that the study of well-defined organometallic complexes with readily modified ancillary ligands can be used to match catalyst and substrates in these reactions, as demonstrated in Chart 1.

ASSOCIATED CONTENT

Supporting Information

CIF files, tables, text, and figures giving crystallographic data for 4 and 5, complete experimental details, and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: kevin.m.smith@ubc.ca.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation, and the University of British Columbia for financial support. K.M.S. thanks Prof. Jason Masuda for helpful discussions.

REFERENCES

(1) (a) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435–1462.
(b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417–1492.

(2) Glasspoole, B. W.; Crudden, C. M. Nat. Chem. 2011, 3, 912–913.
(3) (a) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656–2670. (b) Hu, X. Chem. Sci. 2011, 2, 1867–1886.

(4) (a) Halpern, J. Acc. Chem. Res. **1970**, *3*, 386–392. (b) Kochi, J. K. Acc. Chem. Res. **1974**, *7*, 351–360.

Organometallics

(5) Phapale, V. B.; Buñel, E.; García-Iglesias, M.; Cárdenas, D. J. Angew. Chem., Int. Ed. 2007, 46, 8790-8795.

(6) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 5794–5797.

(7) (a) Poli, R. Eur. J. Inorg. Chem. 2011, 1513–1530. (b) Jahn, U. Top. Curr. Chem. 2012, 320, 121–190.

(8) Poli, R. Chem. Rev. 1996, 96, 2135-2204.

(9) (a) Halpern, J. Polyhedron 1988, 7, 1483–1490. (b) Holland, P. L. Acc. Chem. Res. 2008, 41, 905–914.

(10) (a) Gansäuer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771–2788.
(b) Gong, H.; Andrews, R. S.; Zuccarello, J. L.; Lee, S. J.; Gagné, M. R. Org. Lett. 2009, 11, 879–882. (c) Sherwood, R. K.; Kent, C. L.; Patrick, B. O.; McNeil., W. S. Chem. Commun. 2010, 46, 2456–2458.
(d) Ren, P.; Vechorkin, O.; von Allmen, K.; Scopelliti, R.; Hu, X. J. Am. Chem. Soc. 2011, 133, 7084–7095. (e) Allan, L. E. N.; Cross, E. D.; Francis-Pranger, T. W.; Hanhan, M. E.; Jones, M. R.; Pearson, J. K.; Perry, M. R.; Storr, T.; Shaver, M. P. Macromolecules 2011, 44, 4072–4081. (f) Allan, L. E. N.; MacDonald, J. P.; Reckling, A. M.; Kozak, C. M.; Shaver, M. P. Macrol. Rapid Commun. 2012, 33, 414–418. (g) Gansäuer, A.; Behlendorf, M.; von Laufenberg, D.; Fleckhaus, A.; Kube, C.; Sadaivam, D. V.; Flowers, R. A., II Angew. Chem., Int. Ed. 2012, 51, 4739–4742.

(11) Tappe, F. M. J.; Trepohl, V. T.; Oestreich, M. Synthesis 2010, 3037–3062.

(12) Sato, A.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2006, 128, 4240-4241.

(13) (a) Vaillard, S. E.; Mück-Lichtenfeld, C.; Grimme, S.; Studer, A. Angew. Chem., Int. Ed. 2007, 46, 6533–6536. (b) Lamas, M.-C.; Studer, A. Org. Lett. 2011, 13, 2236–2239.

(14) Cossairt, B. M.; Cummins, C. C. New J. Chem. 2010, 34, 1533– 1536.

(15) (a) Peters, J. C.; Johnson, A. R.; Odom, A. L.; Wanandi, P. W.; Davis, W. M.; Cummins, C. C. *J. Am. Chem. Soc.* **1996**, *118*, 10175– 10188. (b) Agapie, T.; Diaconescu, P. L.; Mindiola, D. J.; Cummins, C. C. *Organometallics* **2002**, *21*, 1329–1340.

(16) (a) Kochi, J. K.; Powers, J. W. J. Am. Chem. Soc. 1970, 92, 137–146. (b) Espenson, J. H. Prog. Inorg. Chem. 1983, 30, 189–212. (c) van

Eldik, R.; Meyerstein, D. Acc. Chem. Res. 2000, 33, 207-214.

(17) Fürstner, A. Chem. Rev. 1999, 99, 991-1045.

(18) Fürstner, A.; Shi, N. Y. J. Am. Chem. Soc. 1996, 118, 12349–12357.

(19) MacLeod, K. C.; Conway, J. L.; Patrick, B. O.; Smith, K. M. J. Am. Chem. Soc. 2010, 132, 17325–17334.

(20) (a) Champouret, Y.; MacLeod, K. C.; Baisch, U.; Patrick, B. O.; Smith, K. M.; Poli, R. Organometallics **2010**, *29*, 167–176. (b) Smith, K. M.; McNeil, W. S.; Abd-El-Aziz, A. S. Macromol. Chem. Phys. **2010**, *211*, 10–16. (c) Champouret, Y.; MacLeod, K. C.; Smith, K. M.; Patrick, B. O.; Poli, R. Organometallics **2010**, *29*, 3125–3132.

(21) MacLeod, K. C.; Patrick, B. O.; Smith, K. M. Organometallics 2010, 29, 6639-6641.

(22) Zhou, W.; Tang, L.; Patrick, B. O.; Smith, K. M. Organometallics **2011**, *30*, 603–610.

(23) Champouret, Y.; Baisch, U.; Poli, R.; Tang, L.; Conway, J. C.; Smith, K. M. Angew. Chem., Int. Ed. 2008, 47, 6069–6072.

(24) (a) Luinstra, G. A.; Teuben, J. H. J. Chem. Soc., Chem. Commun. 1990, 1470–1471. (b) Doherty, J. C.; Ballem, K. H. D.; Patrick, B. O.; Smith, K. M. Organometallics 2004, 23, 1487–1489. (c) Smith, K. M. Organometallics 2005, 24, 778–784.

(25) See the Supporting Information for additional details.

(26) Newcomb, M.; Park, S. U. J. Am. Chem. Soc. 1986, 108, 4132–4134.

(27) (a) Takai, K.; Ueda, T.; Hayashi, T.; Moriwake, T. *Tetrahedron* Lett. **1996**, 37, 7049–7052. (b) Thomé, I.; Nijs, A.; Bolm, C. Chem. Soc. Rev. **2012**, 41, 979–987.

(28) Without addition of bipyridine at the conclusion of the reaction, no Ph₂PCy was observed by ³¹P NMR after workup, presumably due to binding to high-spin d⁵ MnBr₂. For the interactions of manganese(II) halides with phosphines, see: (a) McAuliffe, C. A. J.

Mol. Catal. 1988, 44, 35–63. (b) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G. J. Chem. Soc., Dalton Trans. 1993, 371–375.

(29) For the use of $MnCl_2$ to remove phenanthroline from molybdenum nitride and alkylidyne complexes, see: Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A. J. Am. Chem. Soc. **2010**, 132, 11045–11057.

(30) For the synthesis and X-ray structures of $MnX_2(bipy)_2$, see: (a) McCann, S.; McCann, M.; Casey, M. T.; Jackman, M.; Devereaux, M.; McKee, V. Inorg. Chim. Acta **1998**, 279, 24–29. (b) Hwang, I.-C.; Ha, K. Z. Kristallogr. **200**7, 222, 209–210.

(31) MacLeod, K. C.; Patrick, B. O.; Smith, K. M. Inorg. Chem. 2012, 51, 688-700.

(32) (a) Nakamura, A.; Yoshikai, N. J. Org. Chem. **2010**, 75, 6061–6067. (b) Lu, Z.; Fu, G. C. Angew. Chem., Int. Ed. **2010**, 49, 6676–6678.

(33) For studies indicating different mechanisms for nickel-catalyzed cross-coupling reactions of secondary and primary alkyl halides, see ref 6 and: Taylor, B. L. H.; Jarvo, E. R. J. Org. Chem. **2011**, 76, 7573–7576, respectively.

(34) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Sausalito, CA, 2010.

7327