This article was downloaded by: [New York University] On: 22 May 2015, At: 03:04 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

Bismuth(iii) Chloride Mediated Michaelis-Arbuzov Reaction: A Facile Synthesis of Substituted Arylphosphonates / Phosphinates and Bioactivity Evaluation

Ch. Subramanyam^a, G. Madhava^a, S. K. Thaslim Basha^a, S. Rasheed^a, A. Uday Sankar^b & C. Naga Raju^a

^a Department of Chemistry, Sri Venkateswara University, Tirupati - 517 502, India
 ^b Department of Biotechnology, Vikrama Simhapuri University, India
 Accepted author version posted online: 13 May 2015.

To cite this article: Ch. Subramanyam, G. Madhava, S. K. Thaslim Basha, S. Rasheed, A. Uday Sankar & C. Naga Raju (2015): Bismuth(iii) Chloride Mediated Michaelis-Arbuzov Reaction: A Facile Synthesis of Substituted Arylphosphonates / Phosphinates and Bioactivity Evaluation, Phosphorus, Sulfur, and Silicon and the Related Elements, DOI: <u>10.1080/10426507.2015.1043048</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426507.2015.1043048</u>

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

BISMUTH(III) CHLORIDE MEDIATED MICHAELIS-ARBUZOV REACTION: A FACILE SYNTHESIS OF SUBSTITUTED ARYLPHOSPHONATES / PHOSPHINATES AND BIOACTIVITY EVALUATION

Ch. Subramanyam¹, G. Madhava¹, S. K. Thaslim Basha¹, S. Rasheed¹, A. Uday Sankar² and C. Naga Raju^{1*}

¹Department of Chemistry, Sri Venkateswara University, Tirupati - 517 502, India ²Department of Biotechnology, Vikrama Simhapuri University, India

Running head: BiCl₃ Catalyzed Synthesis of Substituted Arylphosphonates/Phosphinates

ABSTRACT BiCl₃ is economically affordable, less toxic and ecofriendly catalyst. A facile synthesis of substituted arylphosphonates/phosphinates in good yields was achieved using BiCl₃ catalyzed *via* Michaelis-Arbuzov reaction. 5-Iodovanillin / 3,5-difluorobenzylbromide was reacted with various phosphites and dimethyl phenylphosphonite in the presence of Lewis acid catalyst BiCl₃, under N₂ atmosphere at 40 °C to produce the corresponding arylphosphonates/phosphinates. They were characterized by ³¹P, ¹H and ¹³C NMR spectroscopy, IR, mass spectrometry and elemental analysis. All title compounds were screened for their *in vitro* antibacterial and antifungal activity. The compounds **5d**, **3b**, **5e**, **5b** exhibited good antibacterial activity and the compounds **3a**, **3b**, **5a** and **5d** exhibited significant antifungal activity compared to the standard bactericide Norfloxacin and fungicide Griseofulvin.

ACCEPTED MANUSCRIPT

Keywords Michaelis-Arbuzov reaction, BiCl₃, 5-Iodovanillin, 3,5-difluorobenzylbromide, arylphosphonates / phosphinates, antibacterial activity, antifungal activity

Corresponding author Tel: +91-9703193375, E-mail address: rajuchamarthi10@gmail.com

² ACCEPTED MANUSCRIPT

INTRODUCTION

Phosphonates signify a class of stable organophosphorus compounds containing a single carbon-phosphorus (CóP) bond, which makes them resistant to chemical and enzymatic hydrolysis, thermal decomposition¹ and photolysis.² They have broad applications in flame retardancy,^{3.4} organic synthesis⁵ and biological applications.⁶⁻⁷ Synthetic phosphonates are now widely used as herbicides,^{8a} stimulants for the latex production of *Hevea brasiliensis*,^{8b} pesticides,⁹ detergents,¹⁰ reagents for Wittig-Horner reactions,¹¹ anti-bacterial,¹² antiviral¹³ and antitumor agents.¹⁴ A phosphonate motif is present in biomolecules which can act as inhibitors of certain biosynthetic pathways and can be degraded only by some prokaryotic microorganisms.¹⁵ The high chemical stability of phosphonates, together with their resistance to biodegradation, makes this class of compounds of particular interest for the drug design. Phosphinates are also proved to be superior transition state analogues for the preparation of catalytic antibodies¹⁶⁻¹⁷ and several arylphosphinates have been explored as potential therapeutics.¹⁸

The Michaelis-Arbuzov rearrangement is one of the most extensively investigated reactions in organophosphorus chemistry and is widely used to prepare phosphonates, phosphinates and phosphine oxides.¹⁹ The mechanism of the Arbuzov reaction has been shown to involve two nucleophilic attacks, i.e., the formation of a quasi-phosphonium salt by the reaction of trialkyl phosphite with an alkyl halide and the dealkylation of this salt, accompanied by rearrangement to a phosphonate.²⁰ However, due to the resistance of aryl groups to nucleophilic attack, the classic Arbuzov reaction was essentially limited to the preparation of alkyl phosphonates. The synthesis of aryl phosphonates represents one early challenge. In this

³ ACCEPTED MANUSCRIPT

regard, the transition-metal catalyzed Arbuzov reaction has gained remarkable success.²¹⁶²⁵ Tavs extended the classic Arbuzov reaction to the synthesis of dialkyl arylphosphonates by phosphonylation of aryl halides with trialkyl phosphites catalyzed by nickel.²¹ Keglevich *et al.* also synthesized arylphosphonates by the microwave-assisted Arbuzov reaction of triethyl phosphite and aryl bromides in the presence of NiCl₂ as the catalyst under solvent-free conditions.²⁶ Rajeshwaran et al reported Lewis acid mediated Michaelis-Arbuzov reaction to synthesize arylmethyl and heteroarylmethyl phosphonate esters at room temperature.²⁷ In recent years, economically affordable ecofriendly catalysts such as Cu(II) salts,²⁸ Fe (II)/Fe(III) salts,²⁹ Ni salts and Bi(III) salts^{30,31} received some interest in various organic reactions. Recently, bismuth trichloride (BiCl₃) has received attention in organic synthesis because of its low toxicity, low cost and relative insensitivity to air and to small amounts of moisture when compared with transition-metal complexes.³² Hua Li et al. developed a Bismuth(III) chloride-catalyzed one-pot Mannich reaction for the synthesis of β -aminocarbonyl compounds.³³ Zhan *et al.* reported the BiCl₃ catalyzed substitution reaction of propargylic alcohols with carbon and heteroatomcentered nucleophiles such as allyl trimethylsilane, alcohols, aromatic compounds, thiols and amides, leading to the construction of CóC, CóO, CóS and CóN bonds.³⁴

The possibility of broad applications of phosphonates as well as phosphinates and the significance of BiCl₃ as an ecofriendly catalyst prompted us to synthesize a series of novel substituted aryl phosphonates/phosphinates catalyzed by Bismuth(III) chloride at 40 °C.

RESULTS AND DISCUSSION

⁴ ACCEPTED MANUSCRIPT

As part of the research programme in the development of new methodologies for the synthesis of bioactive phosphonates and phosphinates, in this letter, we report the synthesis of various substituted 5-formyl-2-hydroxy-3-methoxyphenylphosphonate/phosphinate (3a-e) and substituted 3,5-difluorobenzylphosphonate/phosphinate (5a-e) in the presence of the efficient catalyst Bismuth(III) chloride. To optimize the reaction conditions, 5-iodovanillin (1) and trimethyl phosphite (TMP) (2a) were selected as substrates (Scheme 1).

Initially, the reaction was performed using 5-iodovanillin (1) (1.2 mmol, 0.33 g) and trimethyl phosphite (TMP) (2a) (1.8 mmol, 0.21 mL) in ethanol as solvent. Without catalyst under refluxed conditions, it resulted in only trace amounts of the product 3a. Further, the effect of the reaction was scrutinized with different catalysts (10 mol %) in EtOH to afford dimethyl 5-formyl-2-hydroxy-3-methoxyphenylphosphonate (3a) as shown in Table 1, entry 1-5. Remarkably, the good yield of compound 3a was observed with Bismuth(III) chloride. This result attracted us to explore further the finest reaction conditions. Hence, the same reaction was conducted in different solvents like THF, toluene and DCM (Table 1, entry 6-8). The best result was obtained in THF (Table 1, entry 8). To our interest, the effect of the amount of the catalyst on the reaction conditions was scrutinized by altering the amount of the catalyst (Table 1, entry 12).

After optimization of the reaction conditions, to explore the scope and generality of this method, various trialkyl phosphites (**2b-d**) and dimethyl phenylphosphonite (**2e**) (1.8 mmol) were selected to undergo reaction with 5-iodovanillin (**1**) (1.2 mmol, 0.33 g) under the assigned

⁵ ACCEPTED MANUSCRIPT

conditions to obtain the corresponding substituted 5-formyl-2-hydroxy-3methoxyphenylphosphonates (**3b-d**) and methyl 5-formyl-2-hydroxy-3methoxyphenyl(phenyl)phosphinate (**3e**) (**Scheme 2**).

Inspired by the above results, we further extended this process on 3,5-difluorobenzyl bromide (4) (1.2 mmol, 0.17 mL) with various alkyl phosphites (2b-d) and dimethyl phenylphosphonite (2e) (1.8 mmol) to afford the desired substituted 3,5-difluorobenzylphosphonates (5a-d) and methyl 3,5-difluorobenzyl(phenyl)phosphinate (5e) (Scheme 3). The physical data of the synthesized compounds are presented in Table S2.

Spectroscopy

The chemical structure of the title compounds **3a-e** and **5a-e** are supported by spectral data (³¹P, ¹H and ¹³C NMR, IR and LC-MS), elemental analysis. The results are presented in the Experimental section. Characteristic ³¹P NMR signals were observed in the region 39.2-17.5 ppm for all the compounds (**3a-e**, **5a-e**). In ¹H NMR spectra, the signals due to ArH protons were observed in the region 7.92-7.63 ppm. The proton signals at 10.20-9.85 and 9.82-9.37 ppm are assigned to CHO and OH functionalities of **3a-e**. The signal due to P-CH₂ proton signals appeared at 3.63-3.47 ppm for **5a-e**. ¹³C NMR chemical shifts were observed in the regions 1242-1230, 1029-1022 cm⁻¹ respectively. The absorptions due to OH, P-C_{aromatic} were observed in the regions due to the term of the term of the absorption of **3a-e**. The characteristic absorption due to the regions 3417-3411, 1463-1457 cm⁻¹ respectively for **3a-e**. The characteristic absorption due to

⁶ ACCEPTED MANUSCRIPT

P-C_{aliphatic} stretching was observed in the region 736-724 cm⁻¹ for **5a-e**. In their mass spectra, M⁺ ions were observed for the expected m/z values.

Based on an overview and a literature survey, we propose a possible mechanism for the $BiCl_3$ mediated Michaelis-Arbuzov reaction (Figure S 1 Supplemental Materials). The alkyl halide and Lewis acid catalyst form a complex which enhances the electrophilic nature of the alkyl halide and make it feasible to the S_N2 attack of the lone pair electrons of the phosphorus of trialkyl phosphite and determine the reaction pathway.

Biological activity

Antibacterial activity

The antibacterial activity of the title compounds was assayed against two Gram positive and two Gram negative bacteria by the agar well diffusion method.^{35a,35b,35c} All newly synthesized compounds exhibited moderate to good activity against both Gram positive and Gram negative bacteria. Especially **5d**, **3b**, **5e** and **5b** exhibited good antibacterial activity against both Gram positive and Gram negative bacteria when compared to that of standard drugs. The data are presented in Table S 1 (Supplemental Materials).

Antifungal activity

The antifungal activity of the newly synthesized compounds was screened against two fungi, *Aspergillus niger* and *Fusarium oxysporum* by the poison plate technique.³⁶ All compounds exhibited moderate to good antifungal activity against the two fungi. Especially **3a**,

⁷ ACCEPTED MANUSCRIPT

3b, **5a** and **5d** exhibited better activities than the remaining compounds. The data are presented in **Table S 2**.

EXPERIMENTAL

Materials and methods

All chemicals used were purchased from Sigma-Aldrich and Merck. Solvents were distilled from the appropriate drying agents and stored under N2. The reactions were monitored by thin layer chromatography (TLC) on Merck precoated silica G_{F254} plates. Melting points were determined in open capillaries on a Guna melting point apparatus and are uncorrected. IR Spectra were recorded as KBr discs on a Nicolet 380 FT-IR spectrophotometer. ¹H, ¹³C and ³¹P NMR spectra were recorded in DMSO- d_6 on a Bruker AMX 400 MHz spectrometer operating at 400 MHz for ¹H, 100 MHz for ¹³C and 161.9 for ³¹P NMR. TMS was used as the internal standard for ¹H and ¹³C NMR spectra and H₃PO₄ as the external standard for ³¹P NMR spectra. Chemical shifts were expressed in ppm. LC-MS spectra were recorded on a SHIMADZU 2010A mass spectrometer. Elemental analysis was performed on Thermo Finnigan Flash 1112 instrument at the University of Hyderabad, Hyderabad. Silica gel (100-200 mesh) was used in column chromatography (CC) for purification of the synthesized compounds. Multiplicities are shown as the abbreviations: s (singlet), d (doublet), t (triplet), m (multiplet) and J in Hz. The structures of the products, and sample spectroscopic characterizations for 3d and 5d are shown in Table S 3 and Figures S 2 ó S 5 (Supplemental Materials)

General synthesis of compounds 3a-d

⁸ ACCEPTED MANUSCRIPT

5-Iodovanillin (1) (1.2 mmol, 0.33 g) and trimethyl phosphite (**2a**) (1.8 mmol, 0.21 mL) in dry THF (20 mL) were taken in a flat bottomed flask. To this mixture, BiCl₃ (20 mol%) was added and the reaction mixture was stirred vigorously at 40 °C under a N₂ atmosphere for 4 h. The progress of the reaction was monitored by TLC (EtOAc: hexane, 2:1). After completion of the reaction, the reaction mixture was filtered to separate the catalyst. The solvent from the filtrate and the byproducts were removed under reduced pressure to get the crude product. The resulting crude product was purified by CC (EtOAc-hexane 1:1 as eluent) to afford pure dimethyl 5-formyl-2-hydroxy-3-methoxyphenylphosphonate (**3a**). The remaining title compounds (**3b-d**) were prepared by adopting the above described procedure.

Methyl 5-formyl-2-hydroxy-3-methoxyphenyl(phenyl)-phosphinate (3e). 5-Iodovanillin (1) (1.2 mmol, 0.33 g) was treated with dimethyl phenylphosphonite (2e) (1.8 mmol) in dry THF in the presence of BiCl₃ as catalyst at 40 °C under N₂ for 4 h. The crude product was purified by CC to obtain pure 3e.

General Synthesis of 5a-d

3,5-Difluorobenzyl bromide (4) (1.2 mmol, 0.17 mL) and trimethyl phosphite (2a) (1.8 mmol, 0.21 mL) in dry THF (20 mL) were taken in a flat bottomed flask. To this mixture, BiCl₃ (20 mol%) was added and the reaction mixture was stirred vigorously at 40 °C under N₂ for 4 h. The progress of the reaction was monitored by TLC (EtOAc/hexane, 2:1). After completion of the reaction, the reaction mixture was filtered to separate the catalyst. The solvent from the filtrate and the byproducts were removed under reduced pressure. The resulting crude product was purified by CC (EtOAc/hexane 1:1 as eluent to afford pure dimethyl 3,5-

ACCEPTED MANUSCRIPT

difluorobenzylphosphonate (**5a**). The remaining title compounds (**5b-d**) were prepared by adopting the above described procedure.

Methyl 3,5-difluorobenzyl(phenyl)phosphinate (5e). 3,5-Difluorobenzyl bromide (4) (1.2 mmol, 0.17 mL) was reacted with dimethyl phenylphosphonite (2e) (1.8 mmol) in dry THF in the presence of BiCl₃ as catalyst at 40 °C under N₂ for 4 h. The crude product was purified by CC to obtain pure 5e.

The synthetic protocol for the compounds (**3a-e**) and (**5a-e**) is shown in **Scheme 2 Scheme**

Physical, analytical and spectral data of 3a-e and 5a-e

Dimethyl 5-formyl-2-hydroxy-3-methoxyphenylphosphonate (3a). Semi solid, Yield 75%. ³¹P NMR: δ 21.5; ¹H NMR: δ 10.20 (s, 1H, CHO), 9.85 (s, 1H, OH), 7.76 (s, 1H, ArH), 7.35 (s, 1H, ArH), 3.79 (s, 3H, OCH₃), 3.40 (s, 6H, OCH₃); ¹³C NMR: δ 192.1 (C-7), 154.7 (C-3), 147.8 (C-2), 133.0 (C-5), 126.9 (C-6), 125.1 (C-1), 117.8 (C-4), 56.4 (C-8), 54.1 (C-9, C-9); IR: 3417 (OH), 1463 (P-C_{ar}), 1240 (P=O), 1028 (P-O-C_{alip}); LCMS *m/z*, (%): 261 (100) [M+H]⁺. Calcd. for C₁₀H₁₃O₆P (260); C, 46.16; H, 5.04%; found: C, 46.10; H, 5.09%.

Diethyl 5-formyl-2-hydroxy-3-methoxyphenylphosphonate (3b). Semi solid, Yield 80%. ³¹P NMR: δ 22.3; ¹H NMR: δ 10.12 (s, 1H, CHO), 9.82 (s, 1H, OH), 7.82 (s, 1H, ArH), 7.42 (s, 1H, ArH), 4.01 (m, 4H, O<u>CH₂CH₃</u>), 3.75 (s, 3H, OCH₃), 1.15 (t, 6H, OCH₂<u>CH₃</u>); ¹³C NMR: δ 190.2 (C-7), 153.5 (C-3), 152.1 (C-2), 131.3 (C-5), 127.4 (C-6), 117.3 (C-1), 116.2 (C-4), 61.6 (C-9, C-9), 56.3 (C-8), 16.2 (C-10, C-10); IR: 3415 (OH), 1460 (P-C_{ar}), 1238 (P=O),

3.

1027 (P-O-C_{alip}); LCMS *m*/*z* (%): 289 (100) [M+H]⁺. Calcd. for C₁₂H₁₇O₆P (288): C, 50.00; H, 5.94%), found: C, 50.05; H, 5.89%.

Diisopropyl 5-formyl-2-hydroxy-3-methoxyphenylphosphonate (3c). Semi solid, Yield 77%. ³¹P NMR: δ 20.3; ¹H NMR: δ 10.03 (s, 1H, CHO), 9.78 (s, 1H, OH), 7.83 (s, 1H, ArH), 7.41 (s, 1H, ArH), 4.52 (m, 2H, O<u>CH</u>(CH₃)₂), 3.80 (s, 3H, OCH₃), 1.21 (t, 12H, OCH(<u>CH₃)₂</u>); ¹³C NMR: δ 191.5 (C-7), 159.9 (C-3), 135.4 (C-2), 127.7 (C-5), 126.5 (C-6), 120.6 (C-1), 117.6 (C-4), 71.6 (C-9, C-9), 56.5 (C-8), 23.9 (C-10, C-10, C-10, C-10); IR: 3415 (OH), 1458 (P-C_{ar}), 1235 (P=O), 1026 (P-O-C_{alip}); LCMS *m/z* (%): 317 (100) [M+H]⁺. Calcd. for C₁₄H₂₁O₆P (316): C, 53.16; H, 6.69%; found: C, 53.10; H, 6.62%.

Dibutyl 5-formyl-2-hydroxy-3-methoxyphenylphosphonate (3d). Semi solid, Yield 78%. ³¹P NMR: 17.5; ¹H NMR: δ 9.94 (s, 1H, CHO), 9.75 (s, 1H, OH), 7.88 (s, 1H, ArH), 7.41 (s, 1H, ArH), 3.95 (m, 4H, O<u>CH</u>₂CH₂CH₂CH₂CH₃), 3.89 (s, 3H, OCH₃), 1.62 (m, 4H, OCH₂<u>CH</u>₂CH₂CH₂CH₃), 1.34 (m, 4H, OCH₂CH₂<u>CH</u>₂CH₃), 1.05 (t, 6H, OCH₂CH₂CH₂CH₃); ¹³C NMR: δ 190.1 (C-7), 152.1 (C-3), 147.3 (C-2), 134.7 (C-5), 130.0 (C-6), 115.5 (C-1), 112.8 (C-4), 79.3 (C-9 & C-9), 54.6 (C-8), 32.4 (C-10, C-10), 19.5 (C-11, C-11), 14.4 (C-12, C-12); IR: 3413 (OH), 1457 (P-C_{ar}), 1232 (P=O), 1024 (P-O-C_{alip}); LCMS *m/z*, (%): 345 (100) [M+H]⁺; Calcd. For C₁₆H₂₅O₆P (344): C, 55.81; H, 7.32; found: C, 55.73; H, 7.26%.

Methyl 5-formyl-2-hydroxy-3-methoxyphenyl(phenyl)phosphinate (3e). Semi solid, Yield 71%. ³¹P NMR: δ 31.2; ¹H NMR: δ 9.85 (s, 1H, CHO), 9.37 (s, 1H, OH), 7.92-7.41 (m, 7H, Ar-H), 3.80 (s, 3H, OCH₃), 3.47 (s, 3H, POCH₃); ¹³C NMR: δ 191.8 (C-7), 157.8 (C-3), 151.6 (C-2), 135.8 (C-10), 132.2 (C-5), 131.2 (C-12, C-12), 128.4 (C-6), 124.5 (C-1), 121.5 (C-13), 118.4 (C-11, C-11), 112.6 (C-4), 56.0 (C-8), 52.9 (C-9); IR: 3411 (OH), 1458 (P-C_{ar}), 1230

ACCEPTED MANUSCRIPT

(P=O), 1025 (P-O-C_{alip}); LCMS *m*/*z* (%): 307 (100) [M+H]⁺. Calcd. for C₁₅H₁₅O₅P (306): C, 58.83; H, 4.94%; found: C, 58.88; H, 4.89%.

Dimethyl 3,5-difluorobenzylphosphonate (5a). Semi solid, Yield 76%. ³¹P NMR: δ 28.2; ¹H NMR: δ 6.71-6.65 (m, 3H, ArH), 3.61 (d, J = 6.5 Hz, 2H, PCH₂), 3.49 (s, 6H, OCH₃); ¹³C NMR: 165.6 (C-3, C-5), 133.8 (C-1), 112.4 (C-2, C-6), 103.4 (C-4), 53.9 (C-7), 29.7 (C-8, C-8); IR: 1242 (P=O), 1029 (P-O-C_{alip}), 735 (P-C_{alip}); LCMS *m/z* (%): 237 (100) [M+H]⁺. Calcd. for C₉H₁₁F₂O₃P (236): C, 45.77; H, 4.69%; found: C, 45.85; H, 4.62%.

Diethyl 3,5-difluorobenzylphosphonate (5b). Semi solid, Yield 79%. ³¹P NMR: δ 25.0; ¹H NMR: δ 6.82-6.73 (m, 3H, ArH), 3.94 (m, 4H, O<u>CH₂CH₃</u>), 3.63 (d, *J* = 6.4 Hz, 2H, PCH₂), 1.28 (t, *J* = 5.6 Hz, 6H, OCH₂<u>CH₃</u>); ¹³C NMR: δ 166.1 (C-3, C-5), 140.6 (C-1), 114.2 (C-2, C-6), 104.7 (C-4), 66.6 (C-8, C-8), 38.9 (C-7), 16.3 (C-9, C-9); IR: 1238 (P=O), 1028 (P-O-C_{alip}), 728 (P-C_{alip}); LCMS *m*/*z* (%): 265 (100) [M+H]⁺. Calcd. for C₁₁H₁₅F₂O₃P (264): C, 50.01; H, 5.72%; found: C, 50.08; H, 5.67%.

Di-isopropyl-3,5-difluorobenzylphosphonate (5c): Semi solid, Yield 73%. ³¹P NMR: δ 25.3; ¹H NMR: δ 6.92-6.70 (m, 3H, ArH), 4.20 (m, 2H, O<u>CH</u>(CH₃)₂), 3.54 (d, *J*= 6.0 Hz, 2H, PCH₂), 1.10 (d, *J* = 5.8 Hz, 12H); ¹³C NMR: δ 164.3 (C-3, C-5), 136.9 (C-1), 113.3 (C-2, C-6), 102.7 (C-4), 70.6 (C-8, C-8), 33.4 (C-7), 24.5 (C-9, C-9, C-9, C-9); IR: 1233 (P=O), 1024 (P-O-C_{alip}), 727 (P-C_{alip}); LCMS *m/z* (%): 293 [M+H]⁺. Calcd. for C₁₃H₁₉F₂O₃P (292): C, 53.42; H, 6.55%; found: C, 53.50; H, 6.60%.

Dibutyl 3,5-difluorobenzylphosphonate (5d): Semi solid, Yield 75%. ³¹P NMR: δ 21.8; ¹H NMR: δ 6.89-6.73 (m, 3H, ArH), 3.99 (m, 4H, O<u>CH₂CH₂CH₂CH₃)</u>, 3.56 (d, *J* = 6.2 Hz, 2H,

¹² ACCEPTED MANUSCRIPT

PCH₂), 1.63 (m, 4H, OCH₂<u>CH₂</u>CH₂CH₃), 1.35 (m, 4H, OCH₂CH₂<u>CH₂</u>CH₃), 1.10 (t, 6H, OCH₂CH₂CH₂<u>CH₃</u>); ¹³C NMR: δ 164.3 (C-3, C-5), 136.1 (C-1), 112.5 (C-2, C-6), 102.4 (C-4), 79.1 (C-8, C-8), 34.5 (C-7), 32.6 (C-9, C-9), 19.7 (C-10, C-10), 14.6 (C-11, C-11); IR: 1230 (P=O), 1022 (P-O-C_{alip}), 724 (P-C_{alip}); LCMS *m*/*z* (%): 321 [M+H]⁺. Calcd. for C₁₅H₂₃F₂O₃P (320): C, 56.25; H, 7.24%; found: C, 56.31; H, 7.29%.

Methyl 3,5-difluorobenzyl(phenyl)phosphinate (5e): Semi solid, Yield 77%. ³¹P NMR: δ 39.2; ¹H NMR: δ 7.48-6.63 (m, 8H, ArH), 3.84 (d, J = 6.4 Hz, 2H, PCH₂), 3.47 (s, 3H, POCH₃); ¹³C NMR: δ 166.1 (C-3, C-5), 136.2 (C-9), 134.5 (C-1), 132.0 (C-11, C-11'), 129.1 (C-12), 128.5 (C-10, C-10'), 113.8 (C-2, C-6), 104.7 (C-4), 50.3 (C-8), 28.9 (C-7); IR: 1237 (P=O), 1029 (P-O-C_{alip}), 736 (P-C_{alip}); LCMS *m*/*z* (%): 283 (100) [M+H]⁺. Calcd. for C₁₄H₁₃F₂O₂P (282): C, 59.58; H, 4.64%; found: C, 59.52; H, 4.68%.).

Statistical analysis

Data of antimicrobial activity were expressed as means \pm S.D. of three replicates. On the basis of the calculated value by using ANOVA method, it has been observed that the difference below 0.05 level (*P*<0.05) were considered as statistically significant.

CONCLUSION

In conclusion, we have synthesized a series of novel alkyl substituted aryl phosphonates/phosphinates by Michaelis-Arbuzov rearrangement at 40 °C with high yields by the reaction of an aryl halide with various trialkyl phosphites and dimethyl phenylphosphonite in the presence of inexpensive, economically affordable and ecofriendly catalyst, Bismuth(III)

¹³ ACCEPTED MANUSCRIPT

chloride which has proved to be a superior catalyst in this reaction. The majority of the newly synthesized compounds exhibited good antibacterial and antifungal activity when compared to the standard drug.

ACKNOWLEDGMENT

The authors G. Madhava and S. K. Thaslim Basha acknowledge the University Grants Commission for the award of Senior Research Fellow (SRF). Also, the authors express their thanks to Hyderabad Central University and Osmania University for providing instrumentation facilities for recording the spectra.

¹⁴ ACCEPTED MANUSCRIPT

REFERENCES

- 1. Freedman, L. D.; Doak, G. O. Chem. Rev. 1957, 57, 479-523.
- 2. Murai, T.; Tomizawa, C. J. Environ. Sci. Health, Part B, 1976, 11, 185-197.
- 3. Papazoglou, E. S. *Flame Retardants for Plastics*, in *Handbook of Building Materials for Fire Protection*; Harper, C. A., Ed.; McGraw-Hill: New York, **2004**, pp 4.164.88.
- Weil, E. D. Phosphorus Flame Retardants in Kirk-Othmer Encyclopedia of Chemical Technology; 4th ed.; John Wiley: New York, **1993**, 10, pp 9766998.
- 5. Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927.
- 6. Engel, R. Chem. Rev. 1977, 3, 349-367.
- Freeman, G. A.; Rideout, J. L.; Miller, W. H.; Reardon, J. E. J. Med. Chem. 1992, 35, 3192-3196.
- (a). Mori, I.; Fonne-Pfister, R.; Matsunaga, S.; Tada, S.; Kimura, Y.; Iwasaki, G.; Mano, J.; Hatano, M.; Nakano, T.; Koizumi, S.; Scheidegger, A.; Hayakawa, K.; Ohta, D. *Plant Physiol.* 1995, 107, 719-723; (b). Abeles, F. B.; Morgan, P. W.; Saltveit, M. E. in *Ethylene in Plant Biology*, Academy Press, Inc., California, 2nd edⁿ, 1992, ch. 9, pp. 270 (ISBN 0-12-041451-1).
- 9. Hasan, H. A. Microbiol. Res. 1999, 154, 95-102.
- 10. Deluchat, V.; Lacour, S.; Serpaud, B.; Bollinger, J. C. Water Res. 2002, 36, 4301-4306.
- Horner, L.; Hoffmann, H.; Klink, W.; Ertel, H.; Toscano, V. G. Chem. Ber. 1962, 95, 581-601.

¹⁵ ACCEPTED MANUSCRIPT

- Syam Prasad, G.; Manjunath, M.; Reddy, K. R. K.; Reddy, O. V. S.; Reddy, C. S. Arkivoc
 2006, (xvi), 128-135.
- De Clercq, E.; Hol´y, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P. C. *Nature* 1986, 323, 464-467.
- 14. (a) Valerianov´a, M.; Votruba, I.; Hol´y, A.; Mandy, V.; Otov´a, B. Anticancer Res. 2001, 21, 2057-2064. (b). Reiser, H.; Wang, J.; Chong, L.; Watkins, W. J.; Ray, A.; Shibata, R.; Birkus, G.; Cihlar, T.; Wu, S.; Li, B.; Liu, X.; Henne, I. N.; Wolfgang, G. H. I.; Desai, M.; Rhodes, G. R.; Fridland, A.; Lee, W. A.; Plunkett, W.; Vail, D.; Thamm, D. H.; Jeraj, R.; Tumas, D. B. Clin. Cancer Res. 2008, 14, 2824-2832.
- 15. Kononova, S. V.; Nesmeyanova, M. A. Biochemistry (Moscow) 2002, 67, 184.
- 16. Tanaka, F. Chem. Rev. 2002, 102, 488564906.
- 17. Schuman, M.; Lopez, X.; Karplus, M.; Gouverneur, V. Tetrahedron 2001, 57, 10299-10307.
- Alibert, S.; Santelli-Rouvier, C.; Castaing, M.; Berthelot, M.; Spengler, G.; Molnar, J.;
 Barbe, J. *Eur. J. Med. Chem.* 2003, 38, 2536263.
- (a) Michaelis, A.; Kaehne, R. Chem. Ber. 1898, 31, 1048-1055. (b) Arbuzov, A. E.; J. Russ. Phys. Chem. Soc. 1906, 38, 687-689.
- Kirby, A. J.; Warren, S. G. *The Organic Chemistry of Phosphorus*, in *Reaction Mechanisms in Organic Chemistry*; C. Eaborn, N. B. Chapman, Eds.; Elsevier Pub. Comp.: New York, 1967; pp 37644.
- 21. Tavs, P. Chem. Ber. 1970, 103, 2428-2423.
- 22. Axelrad, G.; Laosooksathit, S.; Engel, R. J. Org. Chem. 1981, 46, 5200-5204.

¹⁶ ACCEPTED MANUSCRIPT

- 23. Balthazor, T. M.; Miles, J. A.; Stults, B. R. J. Org. Chem. 1978, 43, 4538-4540.
- 24. Balthazor, T. M. J. Org. Chem. 1980, 45, 2519-2522.
- 25. Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 5, 2315-2318.
- 26. Keglevich, G.; Grun, A.; Bolcskei, A.; Drahos, L.; Kraszni, M.; Balogh, G. T. Heteroatom Chemistry, 2012, 23(6), 574-582.
- 27. Rajeshwaran, G. G.; Nandakumar, M.; Suresh Babu, R.; Mohana Krishnan, A. K. Org. Lett.
 2011, 13 (6), 1270-1273.
- 28. Yadav, J. S.; Reddy, B. V. S.; Sridhar, P. Eur. J. Org. Chem. 2004, 3, 5526557.
- 29. Baltork, I. M.; Khosropour, A. R.; Aliyan, H. Synth. Commun. 2001, 31, 341163416.
- 30. Firouzabadi, H.; Baltork, I. M.; Kolagar, S. Synth. Commun. 2001, 31, 9056909.
- 31. Mashraqui, S. H.; Karnik, M. A. Synthesis 1998, 5, 7136714.
- 32. (a) Postel, M.; Dunach, E. Coord. Chem. Rev. 1996, 155, 1276144; (b) Leonard, N. M.;
 Wieland, L. C.; Mohan, R. S. Tetrahedron 2002, 58, 837368397.
- 33. Li, H.; Zeng, H.; Shao, H. Tetrahedron Lett. 2009, 50, 685866860.
- 34. Zhan, Z.; Yang, W.; Yang, R.; Yu, J.; Li, J.; Liu, H. Chem. Commun. 2006, 335263354.
- 35. (a) Carran, R.; Maran, A.; Montero, J. M.; Fernadozlago, L.; Dominguez, A. *Plants Med. Phyto.* 1987, 21, 195-204; (b) Kazmi, S. U.; Ali, S. N.; Jamal, S. A.; Attur-ur-Rehman, J. *Pharm. Sci.* 1991, 4, 113-123; (c)Atta-ur-Rehman; Choudhary, Thomson, W. J. *Bioassay Techniques for Drug Development*, Harwood Academic, Publishers, Amsterdam, 2001.
- 36. Song, S. Q.; Zhou, L. G.; Li, D.; Tang, D.; Li, J. Q.; Jiang, W. B. Nat. Prod. Res. Dev. 2004, 16,157-159.

¹⁷ ACCEPTED MANUSCRIPT

Entry	Catalyst (mol%)	Solvent	Time	Temperature	Yield (%) ^b
1	No Catalyst	EtOH	24h	reflux	Trace
2	Et ₃ N	EtOH	24h	reflux	30
3	BF ₃ Et ₂ O (10)	EtOH	6h	55	58
4	CeCl ₃ 7H ₂ O (10)	EtOH	5h	50	56
5	BiCl ₃ (10)	EtOH	5h	40	63
6	BiCl ₃ (10)	Toluene	5h	40	62
7	BiCl ₃ (10)	DCM	5h	40	63
8	BiCl ₃ (10)	THF	4h	40	68
9	BiCl ₃ (12.5)	THF	4h	40	69
10	BiCl ₃ (15)	THF	4h	40	70
11	BiCl ₃ (17.5)	THF	4h	40	72
12	BiCl ₃ (20)	THF	4h	40	75
13	BiCl ₃ (22.5)	THF	4h	40	75
14	BiCl ₃ (25)	THF	4h	40	75

Table 1. Optimization of reaction conditions for the synthesis of $3a^{a}$

^a The reaction was performed using 5-iodovanillin (1.2 mmol) and trimethyl phosphite (1.8 mmol); ^bIsolated yields.

¹⁸ ACCEPTED MANUSCRIPT

Scheme 1: Model reaction for the optimization of the reaction conditions

¹⁹ ACCEPTED MANUSCRIPT

Scheme 2: Synthesis of substituted 5-formyl-2-hydroxy-3-methoxyphenylphosphonates (3a-

d)/phosphinate (3e)

²⁰ ACCEPTED MANUSCRIPT

Scheme 3: Synthesis of substituted 3,5-difluorobenzylphosphonates (5a-d)/phosphinate (5e).

²¹ ACCEPTED MANUSCRIPT