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ABSTRACT 

Target-specific scoring methods are more commonly used to identify small-molecule inhibitors 

among compounds docked to a target of interest.  Top candidates that emerge from these 

methods have rarely been tested for activity and specificity across a family of proteins.  Here, we 

dock a chemical library to CaMKII, a member of the Ca2+/calmodulin (CaM)-dependent protein 

kinase (CaMK) family, and rescore the resulting protein-compound structures using SVMSP, a 

target-specific method that we previously developed. Among the 35 selected candidates, three 

hits were identified, such as quinazoline compound 1 (KIN-1), which inhibited CaMKII kinase 

activity with single-digit micromolar IC50. Activity across the kinome was assessed by profiling 

analogs of 1, namely 6 (KIN-236), and an analog of hit compound 2 (KIN-15), namely 14 (KIN-

332), against 337 kinases. Interestingly, for 6 (KIN-236), CaMKII and homolog CaMKIIγ were 

among the top 10 targets. Among the top 25 targets of 6 (KIN-236), IC50 values ranged from 5 to 

22 M. Compound 14 (KIN-332) was not specific towards CaMKII kinases, but the compound 

inhibited two kinases with sub-micromolar IC50s among the top 25.  Derivatives of 1 were tested 

against several kinases including several members of the CaMK family. The data afforded a 

limited structure-activity relationship study. Molecular dynamics simulations with explicit-solvent 

followed by end-point MM-GBSA free energy calculations revealed strong engagement of specific 

residues within the ATP-binding pocket, and also changes in the dynamics as a result of binding. 

This work suggests that target-specific scoring approaches like SVMSP may hold promise for the 

identification of small-molecule kinase inhibitors that exhibit some level of specificity towards the 

target of interest across a large number of proteins. 
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INTRODUCTION 

Despite the large number of kinase inhibitors that have been discovered to date, a large 

portion of the human kinome remains unexplored.1 One example is the Ca2+/calmodulin (CaM)-

dependent protein kinase (CaMK) superfamily of kinases.2, 3  Despite its nomenclature, the 

majority of kinases in the CaMK family do not possess the characteristic Ca2+/CaM-binding 

regulatory domain.  Over the years, several members of the CaMK family have been studied in 

cancer, including members of the AMP-activated protein kinase (AMPK)-related kinase family 

such as maternal embryonic leucine zipper kinase (MELK) or Novel (nua) kinase family 1 

(NUAK1).4-8  MELK has been found to be overexpressed in basal-like breast cancer and several 

studies have implicated the enzyme with tumor growth and metastasis.9, 10 NUAK1 a member of 

the AMPK-like family whose function has yet to be elucidated despite strong data associating it 

with promoting tumor growth and metastasis.11-13  CaMKII is another CaMK family member that 

has been studied in cancer.14-17 CaMKII was recently discovered to be the target of the potent 

anti-leukemia drug berbamine.18 The compound has been previously shown to be a potent 

inhibitor of MDA-MB-231 cancer cell proliferation.19 Additional examples of non-calmodulin 

dependent members of the CaMK are the PIM group of kinases, which have been explored for 

their role in cancer.20 

 Structure-based computational methods such as virtual screening have been extensively 

used to identify small-molecule inhibitors of kinases and other targets. These methods consist of 

docking a chemical library to the target of interest followed by re-scoring protein-compound 

complexes and rank-ordering compounds for experimental validation. Several docking methods 

have been implemented in various computer programs such as AutoDock,21, 22 Glide,23, 24 and 

Gold.25 Methods to predict the binding mode of small molecules have matured significantly, but 

there is a need for better scoring methods to rank-order protein-compound structures.26 Scoring 

methods for the rank-ordering of protein-compound complexes range from methods that attempt 

to predict the Gibbs free energy of binding to those that make use of physico-chemical or structural 

information. The methods that use free energy include molecular dynamics-based approaches, 

such as free energy perturbation, thermodynamic integration, and end-point methods (e.g. MM-

PBSA and LIE). These methods use molecular dynamics simulations that require substantial 

computational resources. Scoring methods are less demanding, but they are generally used for 

library enrichment in virtual screening. Several scoring approaches have been developed ranging 

from empirical,24, 27, 28 force field,25, 29 to knowledge-based.30-32 Increasingly, scoring methods use 

machine learning techniques to improve database enrichment and rank-ordering.33-37 
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 The enrichment power of scoring methods is generally dependent on the target. As a 

potential solution to this problem, we introduced a target-specific scoring approach (SVMSP, 

Support Vector Machine SPecific) that uses Support Vector Machine (SVM) trained on pair 

potentials from statistical energy functions.33, 38 SVMSP is trained using a positive and negative 

set. The positive set consists of crystal structures of the target in complex with small molecules. 

The negative set is composed of decoy molecules docked to the target protein. Since SVMSP is 

developed using the structure of the target of interest, we stipulated that the re-scoring method 

may favor small molecules that inhibit and potentially show specificity towards the target. Our 

previous work showed that SVMSP generally performed as well as or better than existing 

methods, and that the unique strength of the method is its ability to show uniform performance 

across a set of targets.19 SVMSP was compared to several other scoring methods including Glide.  

In particular, we found that SVMSP performed well in the enrichment of chemical libraries docked 

to kinases. The method was applied on several occasions to identify small-molecule inhibitors of 

kinases and more recently aldehyde dehydrogenases.33, 39  

 Here, we use virtual screening with SVMSP re-scoring to identify small-molecule inhibitors 

of CaMKII, a representative member of the CaMKII sub-group of the CaMK family implicated in 

both cancer progression40 and cardiovascular disease.41 To that end, we docked 149,479 

compounds to its ATP-binding pocket. SVMSP was used to rank-order these compounds and 

select top candidates for validation. We acquired the top 35 candidates and screened them for 

activity in-house using a FRET-based assay. A quinazoline compound 1 (KIN-1) inhibitor was 

identified and, along with an analog 6 (KIN-236), further evaluated for activity and activity across 

the kinome using a radiometric assay at Reaction Biology Corp (http://www.reactionbiology.com, 

Malvern, PA). We explored the activity profile of the derivative compound using the KinomeScan 

service and tested it for activity against 337 kinases. The top 25 targets from the kinome profiling 

were selected for a concentration-dependent study. To further explore the activity of 1, we 

acquired an additional 8 derivatives and tested them for activity against 11 kinases that includes 

three members of the CaMK family. Explicit-solvent molecular dynamics simulations followed by 

end-point free energy calculations were used to gain further insight into the activity and binding 

profile of the compound.  

RESULTS 

 Virtual Screening Identifies Active Compounds. In an effort to identify small molecules 

that inhibit members of the CaMK family, we resorted to virtual screening using SVMSP, a target-

specific re-scoring method. The workflow is summarized in Fig. 1a. A library of 149,979 small 
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molecules was docked to the ATP-binding pocket of CaMKII using AutoDock Vina.22 The 

resulting protein-compound complexes were re-scored and rank-ordered using SVMSP, which 

uses machine learning trained on a large number of kinase three-dimensional structures from the 

PDB.33, 34, 38, 39 The Support Vector Machine (SVM) algorithm requires a positive and negative 

training set. In our case, the positive set consisted of 389 co-crystal structures of kinase-

compound complexes obtained from the PDB (Table S1), and the negative set consisted of 

randomly selected decoy compounds from ZINC42 docked to the target (in this case CaMKII) 

(Table S2). 

 We compare the performance of the SVMSP model to the Glide scoring function using 

Vina-docked and Glide-docked poses. We identified a set of 33 active and 58 inactive compounds 

against CaMKII from ChEMBL (Table S3).43 We assessed the ability of the four different docking 

and scoring combinations in their ability to enrich for active compounds against inactive ones (Fig. 

S1a). Performance was assessed using the area under the ROC curve (ROC-AUC). A ROC-AUC 

of 1 corresponds to a perfect scoring function that ranks all active compounds before inactive 

compounds, while a ROC-AUC of 0.5 represents one that ranks compounds randomly. We find 

that the Vina-docked and Glide-docked poses rescored with SVMSP perform the best (ROC-AUC 

of 0.72 and 0.64, respective). Glide-docked poses scored with GlideScore and Vina-docked poses 

rescored with GlideScore had ROC-AUCs of 0.61 and 0.56, respectively. In virtual screening, only 

the top candidates are selected for validation. At low false discovery rates (FDR ≤ 5%), we see 

that Glide/SVMSP shows better performance than Vina/SVMSP. At a FDR of 5%, the true positive 

rate of Glide/SVMSP is 18% versus 9% in Vina/SVMSP. We then compared the performance of 

docked poses with and without energy minimization. Docked poses from Vina and Glide were 

refined using a local optimization algorithm. Minimization was limited to residues within 5 Å of the 

docked compound. We again assessed performance using ROC-AUC. We find that the ROC-

AUCs of minimized and unminimized poses are generally similar (Fig. S1b). Again, Glide-docked 

and Vina-docked poses scored with SVMSP resulted in the best performance, with both having 

ROC-AUCs of 0.68. Similarly, Glide-docked and Vina-docked poses scored with GlideScore have 

ROC-AUCs of 0.56 and 0.57, respectively. At low FDRs, we again see the Glide/SVMSP 

outperforming Vina/SVMSP. We next examined how the difference in the Vina-docked and Glide-

docked poses affected the subsequent SVMSP and Glide scores (Fig. S1c). We find that an 

increase in the absolute difference between the GlideScore of Vina-docked and Glide-docked 

poses does not correlate with a change in the absolute difference on the SVMSP score. 
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Additionally, there is only a weak correlation between the RMSD of the Vina-docked and Glide-

docked poses and the absolute difference in GlideScore (Fig. S1d) and SVMSP (Fig. S1e). 

 SVMSP was used to rank-order the 149,979 compounds. The top 500 candidates were 

selected and clustered into 50 sets. We selected a representative structure from each of the 

clusters. Among them, 35 compounds were available for purchase. The SVMSP scores for these 

compounds are provided in Fig. 1b. 

 

Figure 1.  (a) Virtual screening workflow used to identify compounds that inhibited CaMKII. Approximately 150,000 
compounds were docked in AutoDock Vina and rescored using SVMSP. The top 500 compounds were identified and 
clustered to 50. Of the 50 compounds, 35 were experimentally validated. (b) SVMSP scores of the 35 experimentally 

validated compounds identified from virtual screening against CaMKII. Three hits, 1 (orange), 2 (red), and 3 (red) were 
discovered from the initial virtual screening. 2 and 3 were later abandoned for possessing moieties commonly found in 
frequent hitters of pan-assay interference compounds. 

 The top 35 compounds selected from virtual screening were acquired and tested for 

inhibition of CaMKII kinase activity using a FRET assay in-house. The physiochemical properties 

of these 35 compounds are provided in Table S4. We found three compounds inhibited CaMKII 
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enzyme activity by 50% or more at 50 µM, namely 1, 2 (KIN-7), and 3 (KIN-15) (Scheme 1). It is 

worth mentioning the fact that 2 contains an acylhydrazone moiety, which is known to be unstable 

at low pH, so this compound would not be suitable in future hit-to-lead and lead optimization 

efforts unless the acylhydrazone moiety is replaced with a more stable group.  We profiled an 

analog of 2 to compare the inhibition profile across the kinome of the active compounds that 

emerged from this work.  We did not test 3 since it was flagged as a pan-assay interference 

(PAINS) compound.44 

 We compared the structure of compound 1 to the approximately 2,300 compounds tested 

against CaMKII in the literature using ChEMBL.43 The most chemically similar compound is an 

inhibitor of CaMKII that was discovered using pharmacophore search, which features a similar 

quinazoline core as compound 1 (ECFP4 fingerprints, Tanimoto coefficient of 0.154).45 In their 

compound, the alkene linker of the benzene substituent is shortened with a secondary amine, 

and the alkylamine tail of 1 is replaced with a methylpiperidine group. Additionally, we compared 

the structure of 1 against approximately 55,000 compounds in ChEMBL’s Kinase SARfari 

database. The most similar compound, chloroquine, has a Tanimoto coefficient of 0.256 to 1. 

Chloroquine is used to treat malaria, and features a similar core and alkylamine tail as 1. The 

quinazoline core is replaced by a quinoline ring while the bezene substituent and alkene linker of 

1 are omitted in the compound. 

 A concentration-dependent study for prepared 1 (Scheme 2) and one of its analogs, 6 

(Scheme 3), using a radiometric assay done at Reaction Biology Corp showed that the 

compounds inhibited enzyme activity with an IC50 of 7.8 ± 0.4 µM (Fig. 2). The ADMET of 1 and 

6 were computationally predicted using QikProp46 and included in Table S5. 
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Scheme 1.  Chemical structure of active compounds that emerged from virtual screening. Problematic moieties are 
colored in red. 

 

Scheme 2.  Reagents and conditions: (a) (CH3CO)2O, 110 °C, 5 h; (b) 28.0 - 30 % NH3 (aq), 50-60 °C, 10 h, 70% (two 
steps); (c) PheCHO, NaOAc, HOAc, 110 °C, 30 h; (d) POCl3, N,N-dimethylaniline, toluene, 110 °C, 8 h; (e) 2-amino-
5-diethylaminopentane, DMAP, Et3N, toluene, 110 °C, 15 h. 
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Scheme 3.  Chemical structure of derivatives of 1. 
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Figure 2.  Concentration-dependent study for 1 and one of its analogs, 6, using a radiometric assay at Reaction Biology 
Corp showed that the compounds inhibited enzyme activity by an IC50 of about 5 µM. 

Kinome-Wide Profiling. To explore the activity of 1 across the human kinome, we 

resorted to kinome profiling using the KinomeScan facility at Reaction Biology Corp, which 

included 337 unique kinases. We selected 6 for the profiling study. Considering the similarity in 

structure between 1 and 6 and their nearly identical activity for inhibition of CaMKII (Fig. 2), it 

was expected that both compounds will share similar targets and inhibition profile. 6 was profiled 

against 337 kinases at 20 µM (Fig. 3a). The data show that the compound inhibited 16 kinases 

by 50% or more at 20 µM. To confirm these results, the top 25 targets of 6 were selected for a 

concentration-dependent study (Fig. 3b). There were 10 kinases that were inhibited by 6 with an 

IC50 of 10 µM or less, further highlighting the selective nature of the compound series. 

Interestingly, there were only 4 serine/threonine kinases among the top 25, and all belong to the 

CaMK superfamily, namely CaMKII, MELK, CaMKII and CaMK1. Two (CaMKII and CaMKII) 

belong to the CaMKII sub-group, one belongs to the CaMK1 sub-group (CaMK1), and another 

belongs to the CaMKL sub-group (MELK). The remaining targets among the top 25 were all 

tyrosine kinases. 

The inhibition profile of 6 was compared to that of a derivative of 2 (compound 14) (Fig. 

S2a).  We profiled compound 14 against the same 337 kinases using the KinomeScan facility at 

Reaction Biology Corp.  14 was profiled against the 337 kinases at 20 µM (Fig. S2b).   The data 

show that the compound inhibited 46 kinases by 50% or more at 20 µM.  This is in contrast to 16 
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kinases that were inhibited by 50% or more by 6.  The greater number of targets inhibited 14 was 

reflected in follow-up concentration-dependent studies for the top 25 kinases (Fig. S2c).  At 20 

µM, the compound inhibited CaMKII by 42%, suggesting an IC50 that is lower than that of 1 and 

6.  CaMKII was at position 46 among the 337 kinases when rank-ordered by percent inhibition, 

in contrast to 6 where CaMKII was among the top 10. 

 

Figure 3.  (a) Kinome-wide profiling of 6 against 337 kinases at 20 µM. 6 inhibited 16 kinases by 50% or more at 20 
µM. (b) Concentration-dependent study of 6 against the top 25 targets. 

 Binding Mode. An important question is whether the binding mode of 1 that emerged 

from virtual screening (Fig. 4a) could be adopted by its derivatives in multiple members of the 

CaMK subfamily. To explore this question, we first re-docked the compound with another program 

(Glide) to determine if the binding mode could be reproduced by the re-docking. We re-docked 1 

and its derivatives against CaMKII, CaMKII, and MELK. We stipulated that a binding mode that 

is found in all three kinases will provide additional confidence for the predicted pose. Interestingly, 

in all three cases, we identified a binding mode for the Glide binding pose that adopted a similar 

arrangement in three-dimensional space to the Vina binding mode (Fig. 4b). However, the binding 
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mode in Fig. 4a shows a shift in the position of the compound to better occupy the two 

hydrophobic pockets of the ATP binding domain. The RMSD between the binding pose from 

virtual screening and this new binding pose is 4 Å. It is well-known that among co-crystallized 

inhibitors bound to the ATP binding site, the majority use one or both of these hydrophobic 

pockets.47 The predicted binding mode of 1 was superimposed with the binding mode of ATP 

(Fig. 4c). The quinazoline core of 1 occupies the same hydrophobic pocket of the adenine of ATP, 

while the N-akylamine tail of 1 overlaps with the ribose and triphosphate tail of ATP. 

 

Figure 4.  Characterization of the binding mode of 1 to CaMKII. (a) Stereoview of the binding mode of 1 from the 

original virtual screening against CaMKII in the R configuration. (b) Stereoview of the predicted binding mode of 1 

after analysis of the compound series against CaMKII, CaMKII, and MELK. (c) Stereoview of ATP (PDB ID: 1ATP, 
2.20 Å) is superimposed on the predicted binding mode of 1 (yellow). (d) Stereoview of an experimentally crystallized 
inhibitor featuring a quinazoline ring structure in a similar conformation (PDB ID: 3QKM, 2.20 Å, magenta) as the 

predicted binding mode of 1 (yellow). In (a-d), a crystal structure of CaMKII (PDB ID: 2WEL, 1.90 Å) is shown as 
cartoon (gray) with the hinge loop (red), DFG-motif (green), and αC helix (orange) highlighted. The protein is shown 
with the glycine-rich loop removed (Residues Glu-19 to Arg-29) to expose the ATP binding pocket. Key residues 
between 1 and the protein kinase are shown in stick format. Two-dimensional representation of the (e) virtual screening 

and (f) Glide-predicted binding modes of 1 against CaMKII, showing the key interactions between the atoms of the 
ligand and the ATP binding pocket of the receptor. Generated by PoseView (http://poseview.zbh.uni-
hamburg.de/poseview). (g) A multiple sequence alignment of the top candidates of 6 was generated in Cluster Omega 

and the residues of CaMKII within 4 Å of the original virtual screening binding mode of 1 were identified (in color). 
These residues were annotated based on the hydrophobicity of the residue, ranging from red (most hydrophobic) to 
blue (most hydrophilic). Residues in the hinge loop and activation loop are highlighted red and green, respectively, on 
the residue numbers. 

 

 To further confirm the binding pose, we searched the PDB for small-molecule kinase 

inhibitors that share substituents with 1. Since there is no crystal structure of 1 or any of its analogs 

bound to a kinase in the PDB, we resorted to crystal structures of compounds that possessed 
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similar moieties. The quinazoline moiety of 1 is commonly found on kinase small-molecule 

inhibitors. We compared the orientation of the quinazoline scaffold of 1 to existing co-crystal 

structures of kinase inhibitors that also featured quinazoline rings in their scaffold. Generally, the 

quinazoline ring that forms the core scaffold of these compounds are positioned into one of three 

general orientations (Fig. S3). The first orientation features compounds that mimic the nucleobase 

of ATP with a benzene-substituent at the imidazole position (PDBID: 4OBO, 2.10 Å; 4OBQ, 2.19 

Å) (Fig. S3a).  The second group features a quinazoline orientation that mirrors the one found in 

our compound, whereby the benzene and pyrimidine rings of the quinazoline core occupies the 

other’s position (PDBID: 1M17, 2.60 Å; 3PRZ, 2.60 Å; 4AA5, 2.38 Å) (Fig. S3b). The third group 

includes four compounds (PDB ID: 3QKM, 2.20 Å; 4BB4, 1.65 Å; 4PP7, 3.40 Å; 4F7S, 2.20 Å) 

possessing a quinazoline moiety in a similar orientation to the one found in our predicted binding 

mode of 1 (Fig. S3c). One example is a spriocyclic sulfonamide inhibitor of AKT1 (Fig. 4d), whose 

quinazoline superimposes nearly perfectly with the predicted binding pose (Fig. 4b). This 

suggests that the position and orientation of the quinazoline of 1 is likely in the correct position in 

the predicted binding modes. 

 A comparison of the two-dimensional representations of the virtual screening and Glide-

predicted binding modes reveal similarities in the binding interactions between them. From the 

two-dimensional representation of the virtual screening (Fig. 4e) and Glide-predicted (Fig. 4f) 

binding modes, the quinazoline ring occupies the hydrophobic pocket normally occupied by the 

adenine of ATP, while the benzene substituent of 1 occupies the hydrophobic pocket formed by 

residues in the hinge loop. In both binding modes, the alkylamine substituent of the compound 

forms a salt-bridge interaction with the aspartic acid on the DFG motif of the activation loop. In 

the original pose, the quinazoline ring of the compound forms a π-π interaction with Phe-90 of 

the hinge loop that is not seen in the predicted pose. 

 A multiple sequence alignment using Clustal Omega48 of the kinase domains of the top 

candidates was carried out. We identified residues in the ATP binding pocket of CaMKII that 

formed interactions with the compound and color-coded them based on hydrophobicity,49 ranging 

from the most hydrophobic residues in red to the most hydrophilic in blue (Fig. 4g). Across the 

majority of these residues, either the residue was conserved across all the kinases (e.g. Lys-43 

and Asn-141) or the alternate residue at the position did not result in a large difference in the 

hydrophobicity (e.g. Leu-20 to Ile and Val-74 to Ile). Leu-92 and Val-93 are replaced by less 

hydrophobic residues in the majority of the top ranked tyrosine kinases of 6. At residue 92, leucine 

is replaced by tyrosine or histidine in 7 of the 9 tyrosine kinases, and at residue 93, valine is 
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replaced by methionine or alanine in 8 of 9 tyrosine kinases. These residues, along with Leu-20, 

border the benzene ring substituent site that is attached to the core quinazoline of 1. 

 The quinazoline core in compound 1 does not form hydrogen bonds to the hinge region in 

either the Vina or Glide pose. This hydrogen bonding pattern to the hinge region is frequently 

seen in existing kinase ATP inhibitors.50 The residues on the hinge loop that commonly form 

hydrogen bonds with inhibitors corresponds to the residues from position 90 to 94 in CaMKII 

(amino acids FDLVT) in Fig. 4g. The quinazoline core of 1 forms hydrophobic contacts with Phe-

90, Leu-92, and Val-93 of the hinge loop on CaMKII. The sidechains of these residues do not 

have moieties that are amenable for hydrogen bonding. The most common sites for hydrogen 

bonding are at residues that correspond with positions 91 and 93 on CaMKII, which are referred 

to as the hinge acceptor and hinge donor, respectively. On CaMKII, these two residues are Asp-

91 and Val-93. However, they also do not form any hydrogen bonding interaction with our 

compounds. While Asp-91 has a moiety amendable for hydrogen bonding, the sidechain in the 

crystal structure points away from the binding pocket, and is unlikely to form hydrogen bonds to 

the core of the compound in the crystal structure.  

 Structure-Activity Relationships. Compound 1 and 8 of its derivatives were tested for 

activity against 11 kinases selected from the list of the top targets of 6 (Fig. 5). These studies 

were done at 20 µM concentration of compound. Measurements at single concentrations can be 

prone to error, so these data are used qualitatively.  First, an overall inspection of the data shown 

in Fig. 5 shows a striking preference for CaMK by the compounds as evidenced by the color-

coding used to represent percent activity of the enzyme.  Overall, 1 and several derivatives [4 

(KIN-234), 5 (KIN-235), 6 (KIN-236), 7 (KIN-281), and 8 (KIN-284)] showed strong preference for 

the three CaMK members considered in the list. 9 (KIN-286), 10 (KIN-288), and 11 (KIN-289), 

however, showed much weaker activity towards the CaMKs. This is explained by the fact that 9, 

10, and 11 lack the N-alkylamine moiety in the quinazoline ring. Instead, these compounds 

possess piperidine, azepane, and methyl-substituted piperidine moieties, respectively. 9 and 10 

did not inhibit any of the other kinases with a few exceptions: 10 inhibited FGFR1, BTK, TIE2/TEK, 

and BLK by 60, 35, 25 and 50% respectively. 
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Figure 5.  Profiling of 1 and 8 derivatives for activity against a panel of 11 kinases at 20 µM concentration of compound. 
Numbers represent percent activity ± standard deviation. Values are omitted when the kinase profiling for the compound 
exceeds 110%, as it is unlikely that these compounds are activating the respective kinase. 

 Molecular Dynamics Simulations and Free Energy Calculations. To further gain 

insight into the interaction between 1 and its derivatives with CaMKII, we ran explicit-solvent 

molecular dynamics simulations followed by free energy calculations. Using the Glide-predicted 

binding mode of 1, we generated binding modes for each of the derivatives of 1. We then 

subjected these protein-compound structures to 100-nanosecond (ns) explicit-solvent molecular 

dynamics simulations. Although the original docked compound of 1 is in its R configuration, the 

subsequent synthesis produces a racemic mixture of the compound that was not further 

separated. Given the presence of a chiral center in the compounds with the N-alkylamine moiety 

(1, 5, 6, 7, and 8), we considered both the R and S configurations for these 5 compounds. The 

components of the MM-GBSA free energy are listed in Table 1 and the RMSD measurements of 

each simulation is listed in Table S6. It is important to note that MM-GBSA calculations are not 

meant to reproduce the absolute value of the free energy of binding.  Instead, these calculations 

are meant to rank-order compounds by their binding affinity.  In addition, the multiple components 

of the MM-GBSA free energy provide deeper understanding of the contributions of the 

components of the free energy such as the non-polar, electrostatics and entropy.  Pearson 

correlation coefficients between the experimental percent activity and the individual MM-GBSA 

components are similar for both R and S configurations (Table 2). Considering the bi-modal 

nature of the data, Spearman and Kendall coefficients may be more appropriate. Spearman’s ρ 

is 0.68 and 0.85 for the correlation between the MM-GBSA free energy and the percent activity 

of the compounds for the R and S enantiomers, respectively. The higher correlation for the S 

enantiomer suggests that this configuration is likely the one that binds to the kinase. 
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Table 1.  Calculated Free Energies (± Standard Error) of Compounds Against CaMKII (kcal·mol-1) 

 

 Analysis of the MM-GBSA components in Table 1 shows that compounds with the N-

alkylamine moiety exhibit substantially more favorable electrostatic potential energies (ΔEELE) 

than compounds that lack the moiety. This suggests that the critical component of the N-

alkylamine moiety is the charged tertiary amine that likely forms favorable electrostatic 

interactions with amino acid residues on the kinases. These interactions likely occur with the 

charged sidechains of Asp-157 (Fig. 4d). Overall the non-polar interaction van der Waals energy 

(ΔEVDW) is also more favorable among compounds with the N-alkylamine group (Table 1) 

consistent with the larger number of atoms for compounds with the N-alkylamine moiety. The 

electrostatic component of the solvation energy (ΔEGB), however, was dramatically more 

favorable for the compounds lacking the N-alkylamine, consistent with the fact that desolvation of 

a charged group results in significant penalty in the free energy. Finally, the flexible nature of the 
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N-alkylamine moiety is likely to result in an entropy penalty for binding. We further explored the 

MM-GBSA data to determine whether the components of the MM-GBSA free energy correlate 

with compound activity data from Fig. 5. Using Spearman’s ρ, activity is highly correlated to the 

van der Waals energy (ΔEVDW), electrostatic energy (ΔEELE), non-polar solvation energy (ΔESURF), 

and combined internal and solvation terms (ΔEGBTOT). Correlations ranging from 0.64 to 0.69 in 

the R configuration and 0.54 to 0.89 in the S configuration. The polar solvation term (ΔEGB) is anti-

correlated with compound activity (ρ = -0.73 and -0.56 for R and S, respectively).  

To gain insight into the intermolecular interactions between compound and residues within 

the ATP-binding site of CaMKII, we calculated MM-GBSA decomposition energies of each 

compound (Fig. 6a). Decomposition energies correspond to intermolecular energies between the 

bound compound and individual residues within the target protein. The decomposition energies 

are calculated in the same manner as the MM-GBSA energy except that they do not include the 

entropy term. Generally, both enantiomers share similar decomposition energies at individual 

residues. Highly favorable interaction energies were identified between compound and three 

hydrophobic residues, namely Leu-20, Val-28, and Leu-143 (Fig. 6b). Leu-20 forms hydrophobic 

interactions with the benzene ring substituent that is attached to the core quinazoline, while Val-

28 and Leu-143 form hydrophobic interactions with the quinazoline core of the compound. There 

is a weak interaction near Asn-141 and Ala-156, which interacts with the N-alkylamine moiety of 

1. These interactions disappear in 9, 10, and 11, which lack the N-alkylamine moiety. It is worth 

noting that for 9, 10 and 11, there is greater interaction with Leu-92, Val-93, and Thr-94 of the 

hinge loop. 
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Figure 6. (a) Decomposition energies of key residues of binding for 1 and derivatives against CaMKII. For compounds 
with a chiral center in the N-akylamine moiety, only the S configuration shown. Each row is a compound while each 

column is an individual residue. (b) A snapshot from the simulation of (S)-1 bound to CaMKII, showing the sidechains 

of key residues from the interaction in line format. The crystal structure of CaMKII (PDB ID: 2WEL, 1.90 Å) is shown 
as cartoon (gray) with the hinge loop (red), DFG-motif (green), and αC helix (orange) highlighted. The protein is shown 
with part of the glycine-rich loop removed (Residues Gly-21 to Ser-26) to expose the ATP binding pocket. (c) Plot of 
the RMSD of the compound (blue) and the distance from the positively charged amine hydrogen on the N-akylamine 
moiety of the compound from the negatively charged epsilon and delta oxygen atoms of Glu-97 (orange) and Asp-157 
(gray), respectively, across 1000 snapshots for the R and S configurations of 1 and 7. (d) A snapshot from the simulation 

of (S)-7 (KIN-281) bound to CaMKII, showing the additional hydrogen bond created by the amine group on the 

quinazoline core of the compound. The crystal structure of CaMKII (PDB ID: 2WEL, 1.90 Å) is shown as cartoon (gray) 
with the hinge loop (red), DFG-motif (green), and αC helix (orange) highlighted. The protein is shown with the glycine-
rich loop removed (residues Glu-19 to Arg-29) to expose the ATP binding pocket. Asp-157 and Glu-97 are also shown 
as element-colored stick models, with carbons colored as green and cyan, respectively. (e) Dynamic cross-correlation 

matrix (DCCM) cross section of 1 and 8 derivatives against the protein kinase domain of CaMKII. 

From the decomposition energies, there are unfavorable interactions between the 

compound and residues Glu-97 and Asp-157. Although the initial models feature a salt bridge 

between the positively charged protonated amine on the N-alkylamine substituent and the 

negatively charged aspartic acid of the DFG motif. We observe that this interaction is not stable 

in our simulations. Visualization of the individual simulations reveal that the nearby Glu-97 

sidechain attracts the flexible N-akylamine and causes it to adopt multiple conformations over the 

course of the simulation (Fig. 6c). In (R)-1, the salt bridge with Asp-157 is broken in all but one of 

the individual trajectories as the N-alkylamine interacts with Glu-97. The dissociation of the salt 

bridge and subsequent flexibility is also observed in (S)-1, although in only approximately half of 

the trajectories. In 7, which features an amine substituent on the quinazoline ring instead of a 

chlorine, we see stabilization of both the salt bridge and compound as the additional amine 
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strengthens the interaction with Asp-157 (Fig. 6d). This is consistent with the higher inhibitory 

activity of 7 compared with the parent compound (Fig. 5). 

The relative flexibility of the different binding poses of compound 1 is explored in Fig. S4. 

Three binding poses of compound 1 emerged from this study: the Vina-docked pose from the 

original virtual screen of 1 in its R configuration, and the Glide-docked poses of 1 in both its R and 

S configurations. We compared the atomic fluctuations on a per-residue basis for each of these 

three binding poses against the apo protein. This is measured as a ratio between the B-factors of 

a set of atoms on a residue in the bound and unbound states. A normalized flexibility of 1 

corresponds to similar levels of dynamics between the bound and unbound protein. A measure 

above 1 represents greater fluctuation in the bound state than the unbound state, while a measure 

below 1 represents a more stable bound state compared to the unbound state. This measure was 

compared for all atoms of a residue (Fig. S4a), only the backbone C, Cα, and N atoms (Fig. S4b), 

and only the sidechain atoms (Fig. S4c). We find that generally, the relative flexibility of the three 

binding modes are similar. Compound binding generally stabilizes residues that line the ATP 

binding pocket. However, there are exceptions where residues become more flexibility upon 

ligand binding. In the Vina-docked pose, Phe-90 of the hinge loop and His-126 show the largest 

difference in flexibility compared to the Glide-docked pose. While His-126 is not near the ATP 

binding pocket, Phe-90 forms a π-π interaction with the compound in the Vina-docked pose. The 

majority of the difference in flexibility at these two residues is attributed to dynamics in the 

backbone of these residues. Ala-175 is among the most flexible residue in the protein, but this 

change in flexibility is only prevalent in the R configuration of the Vina-docked and Glide-docked 

poses. 

We next explored the dynamics of the compounds bound to CaMKII using dynamic cross-

correlation matrices (DCCM). The correlation of the motion between each of the compounds and 

CaMKII is shown in Fig. 6e. Visual inspection reveals similar motions for 1 and its derivatives. 

Generally, there are positive correlations between the residues of the compounds and the 

residues of the binding pocket. This is reflected most prominently in the residues near the three 

substituents of 1. The alkylamine moiety that forms a salt-bridge with the DFG motif in 1 near Asp-

157 features a largely positively correlated region in each of the compounds. However, this region 

is noticeably smaller in the residues following Asp-157 in 4, 9, and 11, which feature shorter 

moieties at this position. The benzene ring substituent site that is attached to the core quinazoline 

of 1 occupies a region following Val-93 of the hinge loop and a region near Leu-20. The core 

quinazoline not only occupies the region near Ala-41 and Lys-43, but also Phe-90 of the hinge 
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loop. In most cases, both regions are positively correlated, except in (S)-8, which follows an 

opposite trend in the Leu-20 region. Overall, the dynamics of the compounds reveal similar 

patterns of correlation in CaMKII. 

Molecular Dynamics Simulations to Explore Inhibition Profile Among Kinases. To 

gain deeper insight into the basis for the inhibition of compounds, we again resorted to explicit-

solvent molecular dynamics simulations. We carried out simulations of (S)-6 bound to 6 of the 

kinases identified from the kinome profiling of the top 25 targets of 6 in Fig. 3b. We picked the S 

enantiomer as it featured both higher correlation coefficients in the SAR and increased stability 

with the aspartic acid of the DFG motif. We selected kinases with the highest (CaMKII, CaMKII, 

BTK, and CSK) and lowest (FGFR4 and EPHB1) affinities to 6. The differences in the IC50 values 

between highest and lowest affinity kinases is 5-fold (5 µM in CamKII versus 22 µM in EPHB1). 

We docked (S)-6 against each of the 6 kinase structures and selected the pose that best 

resembled the predicted binding pose against CaMKIIusing Glide. We ran 100-ns explicit-

solvent molecular dynamics simulations and free energy calculations for these complexes (Table 

S7). These extensive simulations will allow the compound to adopt its most favorable binding 

pose within the ATP-binding pocket.  We next explored the interaction of (S)-6 with individual 

residues on the protein kinases by using decomposition energy calculations. We focused on the 

interaction energies of these key residues in the binding pocket (Fig. 7a). Like the SAR, three 

residues were strongly engaged by the compound across the 6 protein kinases, namely Leu-20, 

Val-28, and Leu-143. When comparing the enzymes that are strongly inhibited by (S)-6 (i.e. 

CaMKII, CaMKII, BTK, and CSK), with those that are more weakly inhibited by the compound 

(i.e. EPHB1 and FGFR4), we see little differences in the decomposition energies at specific 

residues.  
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Figure 7.  (a) Total decomposition energy (ΔEGBTOT) of key residues of binding for (S)-6 against 6 kinase targets. Each 
row is a kinase target while each column is an aligned residue. (b) Summation of the van der Waals (ΔEVDW) and 
electrostatic (ΔEELE) terms from the total decomposition energy of key residues of binding for (S)-6 against the same 6 
kinase targets. (c) Dynamic cross-correlation matrix (DCCM) cross section of (S)-6 against the protein kinase domain 
of 6 kinase targets. Gaps in the multiple sequence alignment are shown in gray. Cross sections were converted into 
vectors and hierarchically clustered using Euclidean distance and average linkage. (d) The correlation of motion of 6S 

bound to CaMKII and EPHB1 were mapped onto the structures of the protein kinase domains. Correlation coefficients 
were colored according to the scheme in panel c. (e) Per-residue DCCM of the protein kinase domain for 6S bound to 

CaMKII and EPHB1.  

In CaMKII and CaMKII, the interaction energies of the compound with two negatively 

charged glutamic acid residues at positions 97 and 140 are favorable. However, the polar and 

non-polar solvation terms are unfavorable. At position 97, this residue is replaced by an aliphatic 

alanine and an uncharged polar asparagine in EPHB1 and FGFR4, respectively. Similarly, the 

negatively charged glutamic acid is replaced by positively charged arginine residues in the 4 

tyrosine kinases at position 140. Two residues appear to interact with (S)-6 among these two 

groups: Glu-97 and Asp-157. These two negatively charged residues interact with the positively 

charged amine group of the N-alkylamine moiety to form hydrogen bonds with the compound 

depending on the orientation of the flexible N-alkylamine moiety. In the CaMKs, the interaction 

energy appears to be highly unfavorable with Glu-97 and slightly unfavorable with Asp-157. This 

can be attributed to the penalty of desolvation of the N-alkylamine. In fact, when the solvation 

energies are not considered, the interaction energy is highly favorable between the compound 

and these two amino acids (Fig. 7b).  
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In addition to interaction energies, we explored the effect of (S)-6 on the dynamics of the 

6 kinases considered in the calculations. This was accomplished by measuring the degree of 

correlation in the motion of (S)-6 with the motion of individual residues on the kinases to which 

the compound is bound (Fig. 7c). Positive correlations suggest that the compound and residue 

tend to move in the same direction over the course of the trajectory. Overall inspection of the map 

in Fig. 7c reveals similar patterns of interaction between the enzymes that are strongly inhibited 

by 6 (i.e. CaMKII, CaMKII, BTK, and CSK) and those that are less strongly inhibited (i.e. EPHB1 

and FGFR4). The map reveals strongly correlated motions between compound (S)-6 and residues 

in the protein kinases; these regions of strong correlated motions occur between (i) residues 14 

and 30; (ii) 40 and 80; and (iii) 110 and 170. Strong anti-correlated motion with (S)-6 occurs in the 

other regions, such as those from residues (i) 9 to 14; (ii) 30 to 40; (iii) 95 to 110; and (iv) 170 to 

275. 

Since the patterns of motion are similar by visual inspection, we wondered if we could 

differentiate the two groups of kinases by clustering the protein-compound complexes in a 

quantitative manner. We stipulated that kinases with similar dynamics as a result of (S)-6 were 

more likely to also have similar inhibition profiles. For each kinase, we defined a fingerprint by 

taking a cross-section of the DCCM map and mapping the correlations to the multiple sequence 

alignment. This fingerprint consists of correlation coefficients that correspond to the correlation of 

motion between compound and each residue on the protein. To compare these fingerprints, we 

calculated the Euclidean distance between each pair of kinases and hierarchically cluster these 

fingerprints using average linkage (Fig. 7c). Interestingly, CaMKIIexhibited dynamics that was 

most dissimilar to the other kinases. Among the other CaMK, CaMKII is clustered with BTK. The 

two kinases with the highest IC50, EPHB1 and FGFR4, are clustered together. We visualized the 

dynamics of (S)-6 on CaMKII and EPHB1 by applying the correlation coefficients from the DCCM 

cross-sections on structures of their kinase domains (Fig. 7d). Generally, the patterns of motion 

are similar between the two kinase targets, with the strongest correlations occurring adjacent to 

the binding pocket and strongest anti-correlated motion occurring distal to the binding pocket. In 

EPHB1, there is less correlation inside the binding pocket than in CaMKII. The DCCMs of the 

CaMKII and EPHB1 protein in Fig. 7e reveal similar trends when bound to (S)-6. The largest and 

most correlated of these regions occurs in the center of the DCCMs. In the orientation of the 

protein kinase domains in Fig. 7d, this region occurs near the ATP binding pocket. 

DISCUSSION 
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Here, in an effort to identify small-molecules inhibitors of members of the CaMK family, 

we resorted to virtual screening using a target-specific re-scoring approach that we had previously 

developed. The method, known as SVMSP, uses Support Vector Machine (SVM) to train an 

algorithm using statistical pair potentials as features obtained from three-dimensional protein-

compound structures. The positive set consists of protein-compound co-crystal structures 

obtained from the PDB, while the negative set consists of a randomly selected set of decoy 

molecules docked to the target of interest. The SVMSP scoring approach will favor docked 

compounds that adopt a binding mode that is similar to those found in the positive set while 

rejecting compounds that are similar to those found in the decoy set.  The scoring approach does 

not take binding affinity in consideration, so its ability to identify active compounds is based solely 

on binding mode.  The use of a target of interest (in this case CaMKII) to create the negative set 

trains the algorithm to reject compounds that are decoy-like.  We believe that the use of CaMKII 

enables the algorithm to learn more about the features of the CaMKII binding site, making it 

possible for the scoring approach to favor compounds that are more specific to CaMKII. The 

performance of SVMSP was previously evaluated using the Directory of Useful Decoys (DUD),51 

which provides a list of targets along with a library containing a set of known ligands and decoy 

molecules for validation of scoring methods.  The performance of SVMSP was compared to 

several other scoring methods, which includes Glide,23, 24 GoldScore,25 ChemScore,25 X-Score,26, 

52 and PMF.53  We found that overall, SVMSP performed better than these scoring functions. More 

importantly, SVMSP showed consistently good performance across several protein families that 

included kinases, proteases, metalloenzymes and nuclear receptors.  

We applied SVMSP re-scoring towards the search for small molecules that inhibit 

members of the CaMK family. Our long-term objective is to identify selective and potent inhibitors 

of individual members of the CaMK family that play an important part in cancer initiation, 

progression and metastasis.  Here, a member of the CaMKII sub-group of the large CaMK family 

(CaMKII) was used. First, 149,979 compounds were docked to the ATP-binding pocket of 

CaMKIIfollowed by re-scoring of the resulting protein-compound structures with SVMSP. We 

identified the top 500 candidates and further clustered them into a set of 50 compounds. We 

tested 35 of these compounds that were commercially-available. Three active compounds were 

found, 1, 2, and 3. Compound 3’s activity is unlikely to be due to specific inhibition of CaMKII 

since it is considered a pan-assay interference compound (PAINS).44 The fact that this compound 

emerged among the top candidates confirms that virtual screening is not immune to these 

compounds. Compound 2, while not considered a PAINS compound, contains an acylhydrazone 
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moiety. This moiety, while robust at higher pH, is considered unstable at lower pH. A recent study 

revealed that these compounds can be successfully modified to obtain more stable derivatives.54  

A question of interest is whether the binding mode of 1 that emerged from virtual screening 

is close to the real binding mode of the compound. Re-docking of the compounds using a different 

and robust docking program (Glide) led to a similar binding mode. The position of the quinazoline 

ring on this Glide-predicted binding pose was nearly exactly the position of quinazoline moieties 

found in the crystal structure of other small molecules bound to kinases. This suggests that the 

Glide binding mode is likely closer to the real binding mode of the compound. The fact that SVMSP 

identified 1 as an active compound despite the fact that it adopts the correct arrangement but 

does not likely adopt the binding mode of the compound within 1-2 Å may actually be a positive 

aspect of these scoring methods. Virtual screening does not always lead to binding poses that 

are in perfect agreement with what is found in the co-crystallized complex.22, 55 Since SVMSP is 

not as sensitive to the binding mode of a compound, this suggests that the re-scoring method can 

identify active compounds that would otherwise be ignored by other scoring functions. 

 To explore the inhibition profile of 1 across the human kinome, we pursued 1 and profiled 

an analog 6 for activity against 337 kinases initially at a single concentration of 20 M. 

Remarkably, CaMKIIthe kinase that was used in the virtual screening, was among the top 10 

most potently inhibited by 6 among 337 kinases. In addition, the kinase that was most potently 

inhibited by 6 was CaMKIIa close homolog of CaMKII. In fact, all four of the serine/threonine 

kinases among the top 25 kinases were members of the CaMK family. One belongs to the CaMK1 

sub-group (CaMK1), and another belongs to the CaMKL sub-group (maternal leucine embryonic 

zipper kinase or MELK). The remaining targets among the top 25 were all tyrosine kinases.  

Analysis of the ATP binding site among the top targets of 6 revealed that the majority of residues 

were conserved across all the kinases (e.g. Lys-43 and Asn-141) or the alternate residue at the 

position did not result in a large difference in the hydrophobicity (e.g. Leu-20 to Ile and Val-74 to 

Ile). In some cases, hydrophobic residues in the CaMKIIs are replaced by less hydrophobic 

residues in the tyrosine kinases (e.g. Leu-92 and Val-93).  The fact that 6 exhibited some 

specificity towards CaMKII may be attributed to the target-specific nature of the SVMSP scoring 

method.  The use of CaMKII in the negative training set may have led to an algorithm that 

enriches for compounds that bind to CaMKII 

Comparatively, two CaMKII inhibitors found in the literature were among 178 kinase 

inhibitors recently profiled at Reaction Biology Corporation.56 Both KN-6257 (Ki = 0.9 µM) and KN-
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9358-60 (Ki = 0.37 µM, IC50 ~ 1-4 µM) were systematically tested against 300 kinases at lower 

concentrations for the compounds (20 µM versus 0.5 µM) than our kinome-wide screening of 6 

and 14.  Both CaMKII inhibitors showed 90% kinase activity to the α, β, γ, and δ subtypes of 

CaMKII.  A more recent screening effort from EMD Millipore profiled these two compounds at both 

1 and 10 µM against 234 kinases, including the β, γ, and δ subtypes of CaMKII.61  Neither 

compound showed activity at 1 µM against the 3 tested subtypes.  At 10 µM, KN-62 inhibits the 

β, γ, and δ subtypes by 22, 13, and 9 percent, respectively, while KN-93 inhibits the same 

subtypes by 80, 33, and 53 percent, respectively.  Both of these inhibitors are non-competitive 

ATP inhibitors and bind allosterically to CaMKII.62  Two additional inhibitors have been co-

crystallized with CaMKIIδ at the ATP binding site: SU665663 and K00606.64  SU6656 (PDB ID: 

2WEL, 1.90 Å) inhibits kinase activity to the α, β, and δ subtypes of CaMKII by ~30% but not 

CaMKIIγ at 0.5 µM in the RBC study. In addition, SU6656 also shows more than 60 and 80 percent 

inhibition to 38 and 19 different kinases at 0.5 µM, respectively.  The other co-crystallized inhibitor 

K00606 (PDB ID: 2VN9, 2.30 Å) was not profiled in either of the aforementioned studies. 

In addition to 1, we also tested a derivative of compound 2, another hit that emerged from 

the virtual screen.  Although 2 may not be suitable for studies in cell culture considering the 

presence of an acylhydrazone moiety in its structure, the compound is suitable for binding and 

inhibition studies at the near neutral pH values used to conduct the enzyme activity studies for 

this work.  We selected an analog of 2, namely 14, and tested it for activity against 337 kinases.  

The compound inhibited 46 kinases by 50% or more at 20 M.  Concentration-dependent studies 

of the top 25 kinases most potently inhibited by 14 show that all 25 kinases were inhibited with 

IC50s of 10 M of less.  Interestingly, when the 337 kinases are ranked by percent inhibition at 

20 M, CaMKII is rank 46 on the list.  It is interesting to note that 14 inhibited two kinases with 

sub-micromolar IC50s, BLK (IC50 = 0.51 M) and BMX/ETK (IC50 = 0.98 M).    

To further gain insight into the basis for the preference of 6 towards CaMKIIs, we resorted 

to explicit-solvent molecular dynamics simulations followed by end-point free energy calculations 

of 1 bound to 6 kinases selected from among the top 25 targets of its close analog 6. We find that 

among the most highly favorable interactions of the compound are Val-93 and Glu-97. A valine 

residue at position 93 is only present in the three CaMKs. In the other tyrosine kinases, this 

position is replaced with less hydrophobic residues and the interaction energy is less favorable. 

Position 97 also appears to be unique among CaMKs. A glutamic acid occupies this position in 

contrast to the overwhelming majority of the other kinases that possess other neutral residues at 

that position (IR is the exception). Glu-97 interacts with the flexible N-alkylamine moiety of 1. 
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To explore the moieties on the compound that may be responsible for activity, we 

investigated the activity of 1 and its derivatives against 11 of the top kinases that were inhibited 

by 6. The data overall showed striking specificity of compounds towards members of the CaMK 

family, consistent with the kinome profiling above. Compounds lacking the alkylamine moiety of 

6 and its parent structure 1 had significantly less activity against members of the CaMK family. 

This suggests that this moiety, which forms a salt-bridge with the conserved DFG motif in our 

modeled binding pose, is essential for activity. Molecular dynamics simulations followed by end-

point free energy calculations confirmed these results. The excellent correlation coefficient 

between the experimental IC50 and predicted binding affinities provides additional support for the 

accuracy of the predicted binding mode. The calculations show that the electrostatic component 

of the free energy of binding becomes dramatically more favorable when the salt-bridge of the 

alkylamine moiety is present. Generally, there is a large penalty associated with desolvation of 

charged groups from solution. However, the fact that the salt bridge is nearly completely solvent 

exposed means that the binding of 1 will result in minimal loss of solvation energy and a significant 

gain in free energy as a result of the favorable intermolecular interaction of the salt bridge. 

Decomposition energies, which measure the internal and solvation components between 

the compound and individual residues, reveal the importance of three hydrophobic residues: Leu-

20, Val-28, and Leu-143. Leu-20 interacts with the benzene ring substituent that is attached to 

the core quinazoline, while Val-28 and Leu-143 form hydrophobic interactions with the quinazoline 

core. Examination of the dynamics of the compounds on CaMKII reveal relatively similar 

dynamics across 1 and its derivatives. Positive correlations between the motion of the protein and 

the compound are observed at residues surrounding the binding pocket. At the DFG motif of the 

activation loop where the salt-bridge is formed, a region of positive correlation becomes smaller 

when the N-alkylamine moiety is removed. 

In addition to free energy calculations, we also explored the effect of 6 on the dynamics of 

the 6 kinases. This was done by determining the correlation of the motion of 6 with each residue 

of the target. Correlation coefficients provide a measure of global dynamical changes. Every 

protein exhibits unique collection of global dynamics that are driven by the cross-correlation of all 

residues within the protein. Even proteins that possess different sequences but adopt the same 

fold are expected to exhibit different global dynamics. Interestingly, it appeared that CaMKII 

showed the most distinct pattern of correlation. Hence, it is likely that the specificity observed for 

6 towards CaMKII across the kinases tested may be partly due to the differences in the global 

dynamical changes of the target proteins. 
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MATERIALS AND METHODS 

Virtual Screening. The virtual screening workflow is described in Fig. 1a. The Protein 

Preparation Wizard workflow from Schrödinger (Schrödinger LLC, New York, NY) was employed 

to prepare protein structures. The crystal structure of CaMKII (PDB ID: 2WEL, 1.90 Å) was 

imported into the workspace from the Protein Data Bank (PDB).65 The auto-inhibitory and 

calmodulin-binding domains of CaMKII (residues 276-334), calmodulin (chain D), solvent 

molecules, and inhibitors were removed. The structure was protonated, neutralized, and 

minimized using Impref. Both the protein and ligand structures were loaded into AutoDockTools,21 

where the structures were converted to united-atom models and saved in PDBQT format. The 

docking box was centered on the co-crystallized ligand in the ATP binding site with dimensions 

of 21 Å × 17.25 Å × 18.75 Å. All other parameters of the docking program were set to default 

values. The docked conformations from AutoDock Vina (version 1.1.2)22 were converted with in-

house Python scripts into mol2 format for additional analysis. Approximately 150,000 compounds 

from the ChemDiv commercial library42 were docked to the ATP-binding site of CaMKII using 

Vina and the above parameters. This library was generated by Chemdiv by clustering the entire 

ChemDiv library using the SUBSET66 algorithm at 90% Tanimoto similarity.  The library can be 

accessed by clicking on the “Distribution & Clustering” tab at the following URL: 

http://zinc.docking.org/catalogs/cdiv.   

Docked receptor-ligand complexes were rescored using the previously-described 76-

feature SVMSP scoring approach.33, 34, 38 Briefly, this machine learning approach uses predictive 

models to rank-order compounds by using knowledge-based pairwise potentials from various 

atom types.33, 39 Using these pairwise potentials as descriptors, SVMSP classification model was 

trained to discriminate active compounds from inactive compounds based on its 3D complex 

structure. The outcome of the SVMSP scoring function is the distance from the hyperplane in the 

SVM model, which is used to rank-order compounds. This model has demonstrated promising 

performance on the DUD validation set34 and was validated by in vitro assays.33 389 co-

crystallized kinase complexes from the PDB (Table S1) and 4,992 randomly selected ligands 

docked to the CaMKII binding pocket (Table S2) were used for the positive and negative training 

sets of the SVM model, respectively. The atom triplet fingerprints of the top 500 compounds from 

the SVM predictions were hierarchically clustered in Canvas67 to 50 clusters. The compound 

corresponding to each cluster center was selected as the representative compound for that 

cluster. 
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Validation of Scoring Functions Against CaMKII. A set of approximately 2300 compounds 

were identified to contain biological data against CaMKII in ChEMBL.43 Compounds were filtered 

by the type of activity data and limited to those with direct binding studies (Assay Type = ‘B’) that 

reported results as IC50 or Kd values. Compounds with activities ≤ 1 µM were classified as active 

and compounds with activities ≥ 10 µM were classified as inactive. Compounds containing pan-

assay interference (PAINS)44 moieties were discarded. In total, we identified a set of 33 active 

and 58 inactive compounds against CaMKII as SMILES strings (Table S3). Compounds were 

prepared using LigPrep in Schrödinger at a pH of 7.0. All stereoisomers were generated for each 

SMILES string, regardless of existing stereochemistry already present in the string. Compounds 

were docked to the prepared CaMKII structure using AutoDock Vina22 and Glide in Standard 

Precision (SP) mode.68 Docked poses were rescored using Glide and the previously generated 

SVMSP model. Performance was assessed using receiver operator characteristic (ROC) curves 

and the area under the curve (ROC-AUC) as implemented in the Python scikit-learn package.69 

Performance was assessed for docked poses with and without energy minimization. Energy 

minimization of docked poses was carried out using the “Refine Protein-Ligand Complex” 

workflow in the Prime module in Schrödinger.70 The VSGB solvation model71 and OPLS3 force 

field72 were used for energy minimization. Only residues within 5 Å of the docked compound were 

included. The local optimization algorithm was used to sample the docked structure.73, 74 

Screening Top Candidates for Activity. Initial high-throughput screens for inhibitors 

against CaMKII was carried out using the LANCE Ultra ULight® kinase assays from Perkin Elmer 

(Perkin Elmer Inc., Waltham, MA) according to the manufacturer’s recommendation. This is a 

time-resolved fluorescence energy transfer (TR-FRET) assay with a Europium labeled antibody 

that recognizes a phosphorylated Ulight-labeled peptide (ULight is a red-shifted dye); TR-FRET 

is measured by excitation at 320 nm of Europium and emission at 665 nm from the ULight 

acceptor dye using an Envision plate reader. Purified kinases were obtained from Carna 

Biosciences (CaMKII) and were used at a final concentration of 20 nM. Testing for compound 

activity against all other kinases was done at Reaction Biology Corp 

(http://www.reactionbiology.com, Malvern, PA).  In order to determine which peptide to use for the 

different kinases, the LANCE discovery kit (Perkin Elmer) was employed, which includes five 

different peptide substrates and covers about 80% of all Ser/Thr kinases. Based on the initial 

screen using the LANCE discovery kit of all five substrates against all four kinases, we settled 

with the ULight-CREBtide peptide for all kinases. Kinase assay buffer consisted of 50 mM Tris-

HCl, pH 7.5, 10 mM MgCl2, 1 mM EGTA, 2 mM DTT and 0.01% Tween-20.  The screen with 
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inhibitors was done using 384-well plates for all kinases against compounds at a final 

concentration of 20 M, using 400 M ATP and 100 nM peptide concentration. Kinase reactions 

were incubated for 60 min at 23 C and stopped by the addition of 10 mM EDTA.  The Eu-anti-

phospho-MBP antibody diluted in detection buffer was then added to a final concentration of 2 

nM.  The addition of all components for the high-throughput screen was done using a Freedom 

Evo robot from Tecan.  All curves were fitted with the program SigmaPlot 11 (Systat Software, 

Inc, San Jose, CA, 2008), which provides an estimate of the IC50 values. 

Identification of Compound Analogs. The ZINC42 (http://zinc.docking.org) website was 

used to identify analogs of active compounds. The ZINC website uses Extended Connectivity 

Fingerprints (ECFP4) and Tanimoto coefficient to identify analogs. A similarity search was 

conducted using compound SMILES strings and an 80% similarity threshold.  Several analogs 

were selected and purchased. 

Binding Mode Prediction. The program AutoDock Vina was used as the docking 

program for all the virtual screening carried out in this work.  To further validate the binding modes 

that emerged from AutoDock Vina during the virtual screening, we used the Glide docking 

program.  Glide is a robust docking program that has been extensively validated in previous 

studies.  The structures of 1 (Scheme 1) and its 8 derivatives (Scheme 3) were prepared using 

LigPrep in Schrödinger. Compounds were protonated at pH 7. Additionally, the structures of 

CaMKII (PDB ID: 2V7O, 2.25 Å), and MELK (PDB ID: 4CQG, 2.57 Å) were prepared following 

the protocol used to prepare CaMKII for virtual screening. Grid boxes were generated for the 

three proteins for docking in Glide,68 with a box size of 21 Å and an inner box of 14 Å. All other 

parameters were set to default values. A series of binding poses were generated by docking 1 

and its derivatives against the ATP binding site of each of the three proteins using Glide in 

standard precision (SP) mode. All other parameters were left to default values. A consensus 

binding mode was identified by visual inspection. 43 co-crystallized quinazoline-containing 

compounds that bound to the ATP site of kinases were identified using a substructure search 

against the PDB.  Structures were retrieved and aligned against the CaMKII structure using the 

built-in align function in PyMOL (The PyMOL Molecular Graphics System, Version 1.5 

Schrödinger, LLC.). The orientation of the quinazoline ring of each co-crystallized complex was 

visually inspected and compared against the Glide-predicted binding mode of 1. 

Analysis of Binding Mode Across Multiple Kinases. Structural representatives of the 

protein kinase domain of each kinase was identified from the PDB. Each structure was aligned to 
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a common protein kinase domain structure (PDB ID: 1ATP, 2.20 Å) and prepared using the 

Protein Preparation Wizard workflow in Schrödinger. Any additional chains in the PDB entry were 

removed and missing sidechains and loops were added using Prime.70 Solvent molecules and 

existing ligands were removed. Structures were protonated at pH 7 using PROPKA.75 A grid box 

centered at the ATP binding site was generated using Glide. We generated 50 binding poses for 

6 in its S configuration for each of the kinase structures by using Glide. For each kinase structure, 

we visually identified a binding pose that shared the orientation and position of the predicted 

binding pose in CaMKII and used it as the initial model for subsequent molecular dynamics 

simulations. 

Molecular Dynamics Simulations. Docked binding poses were used to run molecular 

dynamics simulations using the AMBER14 software package.76 Each compound was assigned 

AM1-BCC77 charges and gaff78 atom types using antechamber.79 Complexes were immersed in 

a box of TIP3P80 water molecules. No atom on the complex was within 14 Å from any side of the 

box. The solvated box was further neutralized with Na+ or Cl- counterions using the tleap program. 

Simulations were carried out using the GPU accelerated version of the pmemd program with 

ff14SB81 and gaff78 force fields in periodic boundary conditions. All bonds involving hydrogen 

atoms were constrained by using the SHAKE algorithm,82 and a 2 femtoseconds (fs) time step 

was used in the simulation. The particle mesh Ewald83 (PME) method was used to treat long-

range electrostatics. Simulations were run at 298 K under 1 atm in NPT ensemble employing 

Langevin thermostat and Berendsen barostat. Water molecules were first energy-minimized and 

equilibrated by running a short simulation with the complex fixed using Cartesian restraints. This 

was followed by a series of energy minimizations in which the Cartesian restraints were gradually 

relaxed from 500 kcal∙Å-2 to 0 kcal∙Å-2, and the system was subsequently gradually heated to 298 

K via a 48 ps molecular dynamics run. By assigning different initial velocities, 10 independent 

simulations that are 10 ns in length each were carried out for the protein-compound structures. 

Free Energy Calculations. In each of the 10 trajectories (10 ns in length), the first 2 ns 

were discarded for equilibration. Molecular dynamics snapshots were saved every 1 ps yielding 

8000 structures per trajectory. A total of 80000 snapshots were generated per 100 ns of 

simulation. 1000 snapshots were selected at regular intervals from the 80000 snapshots for free 

energy calculations using the cpptraj program.84 The Molecular Mechanics-Generalized Born 

Surface Area (MM-GBSA)85 method was used to calculate the free energy using the MMPBSA.py 

script.86 The calculation using the GB method was performed with the Onufriev’s GB model.87, 88 

SASA calculation was switched to ICOSA method, surface area was computed by recursively 
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approximating a sphere around an atom, starting from an icosahedra. The entropy was estimated 

by normal mode calculations89 with the nmode module from 100 of the 1000 snapshots used in 

the free energy calculations. The maximum number of cycles of minimization was set to 10000. 

The convergence criterion for the energy gradient to stop minimization was 0.5. 

Dynamic Cross-Correlation Matrix. Matrices were calculated from the set of 1000 

snapshots from the free energy calculations using the matrix correl function in cpptraj. Correlation 

matrices were calculated by grouping together atoms of the same residues with no averaging by 

atom mass. In this n×n matrix, each row and column corresponds to a single residue in the protein-

compound complex. We retrieve the 1×n vector of the compound, where each item in the vector 

corresponds to the Pearson correlation between the dynamics of the compound with the dynamics 

of a residue on the protein receptor. A multiple sequence alignment of the protein kinase domains 

was generated using Clustal Omega48 to align individual residues across the kinase targets. We 

then map the vector to the multiple sequence alignment. Gaps introduced in the alignment were 

assigned a correlation of 0. This resulted in a vector of correlation coefficients of equal length 

corresponding to the dynamics of the ligand on the protein kinase. A distance matrix between the 

vectors was calculated using Euclidean distance and used to hierarchically cluster the kinases 

using average linkage in R.90 

Per-Residue Flexibility. Per-residue flexibility was calculated from the set of 1000 

snapshots for the apo CaMKII protein and three docked poses of compound 1: the (R)-1 pose 

from the initial AutoDock Vina-docked virtual screen and the (S) and (R) configuration poses of 1 

from the follow up binding mode analysis using Glide. Per-residue flexibility is adapted using the 

scheme from Fuchs et. al.91 Per-residue B-factor is calculated using the atomicfluc function in 

cpptraj. The per-residue B-factors of the apo structure are used to normalize the B-factors of the 

bound complexes. The quotient of the bound and apo structures is thus a ratio of the relative 

flexibility at a residue. A flexibility of 1 corresponds to a residue’s flexibility equal to that of the apo 

protein. Values greater than 1 corresponds to residues that show greater mobility/flexibility, while 

values less than 1 correspond to increased stability upon ligand binding. 

Statistical Analysis. Values are expressed as mean ± standard error, unless otherwise 

specified. Correlation analysis was performed using the SciPy92 package in Python, respectively. 

Kinome Profiling and Concentration-Dependent Studies. Kinome profiling of 6 was 

carried out at Reaction Biology Corp using their Kinase HotSpot assay platform. We selected 6 

over 1 due to availability. Considering the high level of structural similarity between 1 and 6, as 
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well as the nearly identical IC50s for inhibition of CaMKII, we felt that 6 will likely share the same 

targets as 1.  Follow-up concentration-dependent studies for 6 against the top 25 targets that 

emerged from the kinome profiling was also carried out at Reaction Biology Corp. Follow-up 

studies for analogs of 1 were done at Reaction Biology Corp. The assay is a radiometric assay 

based on conventional filter-binding, which directly measures kinase catalytic activity toward a 

specific substrate.93 

General Methods for Synthesis. Compound 1 was synthesized (Scheme 2) and all other 

compounds were purchased from ChemDiv Inc. The compounds were re-ordered to confirm 

activity. All chemicals were purchased from either Sigma-Aldrich or Acros. Column 

chromatography was carried out with silica gel GF254 (25-63 μm). Mass Spectra were measured 

on an Agilent 6520 Mass Q-TOF instrument. 1H NMR and 13C NMR spectra were recorded on a 

BRUKER 500 MHz spectrometer, using TMS as an internal standard and CDCl3 or DMSO-d6 as 

solvents. Chemical shifts (δ values) and coupling constants (J values) are reported in ppm and 

hertz, respectively. Anhydrous solvent and reagents were all analytically pure and dried through 

routine protocols. All compounds that were evaluated in biological essays had greater than 95% 

purity using HPLC. 

7-chloro-2-methylquinazolin-4(3H)-one (12). 2-Amino-4-chlorobenzoic acid (3.43 g, 20 mmol) 

was dissolved in acetic anhydride (30 mL) and the mixture was heated to 110 ˚C for 5 h. The 

reaction was cooled to 0 ˚C in an ice-bath to yield yellow precipitate. The resulting yellow solid 

was filtered, washed with saturated NaHCO3 (aq) and dried under high vacuum. Then the solid 

was dissolved in ammonium hydroxide solution (40 mL) and the mixture was stirred at 50-60 ˚C 

for 10 h. The reaction was cooled to ambient temperature and the precipitate was filtered and 

washed with water (3 x 15 mL). The solid was dried under high vacuum to afford 1 as an off-white 

solid (2.72g, 70%). 1H NMR (500 MHz, DMSO-d6)  12.29 (brs, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.57 

(s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 2.33 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 161.11, 156.03, 

150.04, 138.83, 127.74, 126.09, 125.67, 119.44, 21.48; HRMS calcd for C9H8ClN2O [M+H]+ 

195.0320, found 195.0322. 

7-chloro-2-styrylquinazolin-4(3H)-one (13). Compound 12 (388 mg, 2 mmol) and sodium acetate 

(246.1 mg, 3 mmol) were dissolved in glacial acetic acid (4 mL). The mixture was stirred at 

ambient temperature and aldehyde (4 mmol) was added slowly. After stirring at 110 ˚C for 30h, 

the resulting mixture was cooled to 0 ˚C and yellow precipitate was filtered and washed with 

copious amounts of water. The solid was dried under high vacuum to give 13 as yellow solids. 

Yield 92%, pale yellow solid. 1H NMR (500 MHz, DMSO-d6)  8.09 (d, J = 8.5 Hz, 1H), 7.96 (d, J 
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= 16.0 Hz, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.66 (d, J = 7.0 Hz, 2H), 7.50 (d, J = 2.0 Hz, 1H), 7.48 (t, 

J = 7.5 Hz, 2H), 7.43 (d, J = 7.5 Hz, 1H), 7.00 (d, J = 16 Hz, 1H); 13C NMR (125 MHz, DMSO-d6) 

δ 161.22, 152.90, 150.12, 139.11, 139.06, 134.82, 129.96, 129.09, 127.93, 127.73, 126.35, 

126.10, 120.77, 119.91; HRMS calcd for C16H12ClN2O [M+H]+ 283.0633, found 283.0624. 

(E)-N4-(7-chloro-2-styrylquinazolin-4-yl)-N1,N1-diethylpentane-1,4-diamine (1): Compound 13 

(282.1 mg, 1 mmol) was dissolved in anhydrous toluene (5 mL) and the mixture was cooled to 0 

˚C. POCl3 (0.28 mL, 3 mmol) and N, N-dimethylaniline (0.38 mL, 3 mmol) was added slowly to 

the solution, respectively. The resulting mixture was stirred at 115-120 ˚C for 8 h until the solution 

became dark red-purple color. The reaction was cooled to room temperature and solvent was 

removed in vacuo. The crude mixture was purified by flash column chromatography gradient 

eluting with 5% to 20% Et2O/hexanes to give the chlorinated intermediate (Rf = 0.3, 10% 

Et2O/hexanes) as light yellow solid (138 mg, 46%). The resulting product was identified by LC/MS: 

ESI-MS (m/z): 301.0 [M+1]+. This intermediate was continuously dissolved in anhydrous toluene 

(5 mL) at ambient temperature. Triethylamine (0.20 mL, 1.38 mmol) and DMAP (5.6 mg, 10% eq) 

were added and the mixture was stirred at room temperature for 10 minutes. 2-Amino-5-

diethylaminopentane (0.18 mL, 0.92 mmol) was then added and the resulting mixture was stirred 

at 110 ˚C for 15 h. Solvent was removed in vacuo and the crude residue was purified by flash 

column chromatography (30: 1, CHCl3/CH3OH) to afford the desired product 1 as light grey solid 

(117 mg, 60%). 1H NMR (500 MHz, CDCl3)  7.98 (d, J = 16.0 Hz, 1H), 7.77 (d, J = 2.0 Hz, 1H), 

7.64 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 8 Hz, 2H), 7.36 (d, J = 2.0 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 

7.32 (s, 1H), 7.18 (d, J = 16.0 Hz, 1H), 4.66-4.67 (m, 1H), 2.68-2.76 (m, 6H), 2.02-2.06 (m, 1H), 

1.78-1.79 (m, 4H), 1.41 (d, J = 6.5 Hz, 3H), 1.15 (m, 6H); 13C NMR (125 MHz, CDCl3)  161.96, 

158.93, 158.34, 151.62, 138.54, 137.62, 136.69, 129.29, 128.88, 127.81, 127.74, 127.38, 125.96, 

112.66, 77.74, 57.13, 52.80, 47.24, 46.79, 34.13, 21.03; HRMS calcd for C25H32ClN4 [M+H]+  

423.2310, found 423.2337. 
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Supporting Information Available: 

Table S1. Crystal Structures in the Positive Set of the SVMSP Model. 

Table S2. Decoy Compounds in the Negative Set of the SVMSP Model. 

Table S3. Active and Inactive Compounds with Bioactivities Against CaMKII. 

Table S4. Physiochemical Properties of Hit Compounds from SVMSP. 

Table S5. QikProp ADMET Properties for Compounds 1 (KIN-1) and 6 (KIN-236). 

Table S6. RMSD Statistics for MD Simulations. 

Table S7. Calculated Free Energies (± Standard Error) of (S)-6 (KIN-236) Against Select 

Kinases (kcal mol-1). 

Figure S1. (a-b) Receiver operator characteristic (ROC) curves of four docking program and 

scoring function combinations on a set of 33 active and 58 inactive compounds 

against CaMKII. In (a), docked poses were used to calculate the ROC curves and 

ROC-AUC. In (b), the docked pose of the compound and surrounding residues on 

CaMKII were energy minimized. (c-e) uses the 33 actives and 58 inactive 

compounds from (a). (c) The absolute difference in GlideScore and SVMSP between 

Vina-docked and Glide-docked poses. (d) RMSD between the Vina-docked and 

Glide-docked poses versus the absolute difference in GlideScore between the two 

poses. (e) RMSD between the Vina-docked and Glide-docked poses versus the 

absolute difference in SVMSP between the two poses. 

Figure S2. (a) Chemical structure of 14 (KIN-332), a derivative of the parent compound 2 found 

via virtual screening against CaMKII. (b) Kinome-wide profiling of 14 against 337 

kinases at 20 µM. 14 inhibited 46 kinases by 50% or more at 20 µM. (c) 

Concentration-dependent study of 14 against the top 25 targets. 

Figure S3. Stereoview of different orientations of a quinazoline core in co-crystallized 

compounds at the ATP binding site of protein kinases. In (a-c), a crystal structure of 

CaMKII (PDB ID: 2WEL, 1.90 Å) is shown as cartoon (gray) with the hinge loop (red), 

DFG-motif (green), and αC helix (orange) highlighted. The protein is shown with the 

glycine-rich loop removed (Residues Glu-19 to Arg-29) to expose the ATP binding 
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pocket. ATP (PDB ID: 1ATP, 2.20 Å) is superimposed onto the binding pocket with 

carbons colored in pale green. (a) Example of a compound (PDB ID: 4OBQ, 2.19 Å, 

colored pink) with the quinazoline ring mimicking the quinazoline of ATP. (b) Example 

of a compound (PDB ID: 1M17, 2.60 Å, colored pink) with the quinazoline ring 

mirroring that of the predicted binding mode of 1. (c) Example of a compound (PDB 

ID: 4F7S, 2.20 Å, colored pink) with the quinazoline ring in the same orientation as 

that of the predicted binding mode of 1. 

Figure S4. Per-residue relative flexibility from the MD simulations of compound 1 against 

CaMKII. The normalized flexibility describes the relative flexibility of a set of atoms 

compared to the apo receptor. A flexibility of 1 corresponds to a residue’s flexibility 

equal to that of the apo protein. Values greater than 1 corresponds to residues that 

show greater mobility/flexibility, while values less than 1 correspond to increased 

stability upon ligand binding. Contact residues within 5 Å of the ligand binding site are 

shown at the bottom of each panel using green squares. Flexibility is calculated on 

(a) all atoms on the residue, (b) the backbone residues (N, Cα, and C), and (c) the 

atoms in the sidechain. 
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FIGURE LEGENDS 

Scheme 1. Chemical structure of active compounds that emerged from virtual screening. 

Problematic moieties are colored in red. 

Scheme 2. Reagents and conditions: (a) (CH3CO)2O, 110 °C, 5 h; (b) 28.0 - 30 % NH3 (aq), 

50-60 °C, 10 h, 70% (two steps); (c) PheCHO, NaOAc, HOAc, 110 °C, 30 h; (d) 

POCl3, N,N-dimethylaniline, toluene, 110 °C, 8 h; (e) 2-amino-5-

diethylaminopentane, DMAP, Et3N, toluene, 110 °C, 15 h. 

Scheme 3. Chemical structure of derivatives of 1. 

Figure 1. (a) Virtual screening workflow used to identify compounds that inhibited CaMKII. 

Approximately 150,000 compounds were docked in AutoDock Vina and rescored 

using SVMSP. The top 500 compounds were identified and clustered to 50. Of the 

50 compounds, 35 were experimentally validated. (b) SVMSP scores of the 35 

experimentally validated compounds identified from virtual screening against 

CaMKII. Three hits, 1 (orange), 2 (red), and 3 (red) were discovered from the 

initial virtual screening. 2 and 3 were later abandoned for possessing moieties 

commonly found in frequent hitters of pan-assay interference compounds. 

Figure 2. Concentration-dependent study for 1 and one of its analogs, 6, using a radiometric 

assay at Reaction Biology Corp showed that the compounds inhibited enzyme 

activity by an IC50 of about 5 µM. 

Figure 3. (a) Kinome-wide profiling of 6 against 337 kinases at 20 µM. 6 inhibited 16 kinases 

by 50% or more at 20 µM. (b) Concentration-dependent study of 6 against the top 

25 targets. 

Figure 4. Characterization of the binding mode of 1 to CaMKII. (a) Stereoview of the binding 

mode of 1 from the original virtual screening against CaMKII in the R 

configuration. (b) Stereoview of the predicted binding mode of 1 after analysis of 

the compound series against CaMKII, CaMKII, and MELK. (c) Stereoview of ATP 

(PDB ID: 1ATP, 2.20 Å) is superimposed on the predicted binding mode of 1 

(yellow). (d) Stereoview of an experimentally crystallized inhibitor featuring a 

quinazoline ring structure in a similar conformation (PDB ID: 3QKM, 2.20 Å, 

magenta) as the predicted binding mode of 1 (yellow). In (a-d), a crystal structure 
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of CaMKII (PDB ID: 2WEL, 1.90 Å) is shown as cartoon (gray) with the hinge loop 

(red), DFG-motif (green), and αC helix (orange) highlighted. The protein is shown 

with the glycine-rich loop removed (Residues Glu-19 to Arg-29) to expose the ATP 

binding pocket. Key residues between 1 and the protein kinase are shown in stick 

format. Two-dimensional representation of the (e) virtual screening and (f) Glide-

predicted binding modes of 1 against CaMKII, showing the key interactions 

between the atoms of the ligand and the ATP binding pocket of the receptor. 

Generated by PoseView (http://poseview.zbh.uni-hamburg.de/poseview). (g) A 

multiple sequence alignment of the top candidates of 6 was generated in Cluster 

Omega and the residues of CaMKII within 4 Å of the original virtual screening 

binding mode of 1 were identified (in color). These residues were annotated based 

on the hydrophobicity of the residue, ranging from red (most hydrophobic) to blue 

(most hydrophilic). Residues in the hinge loop and activation loop are highlighted 

red and green, respectively, on the residue numbers. 

Figure 5. Profiling of 1 and 8 derivatives for activity against a panel of 11 kinases at 20 µM 

concentration of compound. Numbers represent percent activity ± standard 

deviation. 

Figure 6. (a) Decomposition energies of key residues of binding for 1 and derivatives against 

CaMKII. For compounds with a chiral center in the N-akylamine moiety, only the 

S configuration shown. Each row is a compound while each column is an individual 

residue. (b) A snapshot from the simulation of (S)-1 bound to CaMKII, showing 

the sidechains of key residues from the interaction in line format. The crystal 

structure of CaMKII (PDB ID: 2WEL, 1.90 Å) is shown as cartoon (gray) with the 

hinge loop (red), DFG-motif (green), and αC helix (orange) highlighted. The protein 

is shown with part of the glycine-rich loop removed (Residues Gly-21 to Ser-26) to 

expose the ATP binding pocket. (c) Plot of the RMSD of the compound (blue) and 

the distance from the positively charged amine hydrogen on the N-akylamine 

moiety of the compound from the negatively charged epsilon and delta oxygen 

atoms of Glu-97 (orange) and Asp-157 (gray), respectively, across 1000 snapshots 

for the R and S configurations of 1 and 7. (d) A snapshot from the simulation of 

(S)-7 (KIN-281) bound to CaMKII, showing the additional hydrogen bond created 

by the amine group on the quinazoline core of the compound. The crystal structure 

of CaMKII (PDB ID: 2WEL, 1.90 Å) is shown as cartoon (gray) with the hinge loop 
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(red), DFG-motif (green), and αC helix (orange) highlighted. The protein is shown 

with the glycine-rich loop removed (residues Glu-19 to Arg-29) to expose the ATP 

binding pocket. Asp-157 and Glu-97 are also shown as element-colored stick 

models, with carbons colored as green and cyan, respectively. (e) Dynamic cross-

correlation matrix (DCCM) cross section of 1 and 8 derivatives against the protein 

kinase domain of CaMKII. 

Figure 7. (a) Total decomposition energy (ΔEGBTOT) of key residues of binding for (S)-6 

against 6 kinase targets. Each row is a kinase target while each column is an 

aligned residue. (b) Summation of the van der Waals (ΔEVDW) and electrostatic 

(ΔEELE) terms from the total decomposition energy of key residues of binding for 

(S)-6 against the same 6 kinase targets. (c) Dynamic cross-correlation matrix 

(DCCM) cross section of (S)-6 against the protein kinase domain of 6 kinase 

targets. Gaps in the multiple sequence alignment are shown in gray. Cross 

sections were converted into vectors and hierarchically clustered using Euclidean 

distance and average linkage. (d) The correlation of motion of 6S bound to 

CaMKII and EPHB1 were mapped onto the structures of the protein kinase 

domains. Correlation coefficients were colored according to the scale in panel c. 

(e) Per-residue DCCM of the protein kinase domain for (S)-6 bound to CaMKII 

and EPHB1. 
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