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ABSTRACT: We report the enantioselective [2+2]
cycloaddition of simple cinnamate esters, the
products of which are useful synthons for the
controlled assembly of cyclobutane natural
products. This method utilizes a co-catalytic system
in which a chiral Lewis acid accelerates the transfer
of triplet energy from an excited-state Ir(Ill)
photocatalyst to the cinnamate ester.
Computational evidence indicates that the principal
role of the Lewis acid co-catalyst is to lower the
absolute energies of the substrate frontier
molecular orbitals, leading to greater electronic
coupling between the sensitizer and substrate and
increasing the rate of the energy transfer event.
These results suggest Lewis acids can have multiple
beneficial effects on triplet sensitization reactions,
impacting both the thermodynamic driving force
and kinetics of Dexter energy transfer.

Control  over  the  stereochemistry  of
photochemical reactions remains a significant
challenge in organic synthesis.! While the rational
development of highly enantioselective thermal
reactions benefits from well-understood design
principles for the deployment of chiral Lewis acid
catalysts,2 a similarly comprehensive understanding
of Lewis acid catalysis in  asymmetric
photoreactions has yet to be established. Bach has
reported the most well-developed chiral Lewis acid

strategy in asymmetric photoreactions to date, in
which  binding of «o,B-unsaturated carbonyl
compounds to chiral oxazaborolidine catalysts
alters their ability to absorb light3 Meggers has
recently described an analogous approach using a
chiral-at-metal Rh Lewis acid catalyst binding to
unsaturated  C-acylimidazolest One central
challenge in asymmetric photochemistry has been
the difficulty of suppressing uncatalyzed
background processes:> any direct photoexcitation
of uncoordinated substrates can result in the
competitive formation of racemic products.
Moreover, all known highly enantioselective
excited-state photocycloaddition reactions have
involved either cyclic enones or acyclic substrates
bearing chelating auxiliary groups. Asymmetric
photocycloadditions of simple acyclic compounds
such as o,B-unsaturated esters have yet to be
achieved with useful selectivities.

Figure 1. Strategies for Lewis acid catalyzed triplet
activation
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Our group recently described a novel dual-
catalyst approach towards highly enantioselective
Lewis acid catalyzed [2+2] photocycloadditions
(Figure 1).67 These studies showed that the triplet
energy of 2'-hydroxychalcone (1, £r = 54 kcal/mol)
becomes dramatically lowered upon coordination
to a chiral Sc(Ill) Lewis acid (32 kcal/mol). Racemic
background cycloaddition can be avoided by
utilizing a Ru(ll) sensitizer whose triplet energy (45
kcal/mol) is sufficient to activate the Lewis acid
complex but not the free chalcone. This enabled us
to develop highly enantioselective Lewis acid
catalyzed [2+2] photocycloadditions of 2'-
hydroxychalcones with a variety of alkene reaction
partners8 We highlighted the synthetic utility of
this process by completing an enantioselective
synthesis of a representative norlignan cyclobutane
natural product (3).

The use of chelating 2'-hydroxychalcones as
substrates is a significant synthetic limitation, as the
resulting 2'-phenoxyketones are not common
functional groups in cyclobutane-containing
natural products and are difficult to manipulate.
The asymmetric synthesis of 3, for example,
required only five steps, but three were required to
cleave the aryl ketone to the requisite methyl
ester® We wondered, therefore, if the concept of
Lewis acid catalyzed triplet sensitization might be
generalizable to other classes of enone substrates.
Simple cinnamate esters would be particularly
attractive substrates because their asymmetric
intermolecular photocycloadditions would afford a

direct route towards the class of chiral cyclobutane
natural products that includes 3.

It was not obvious, however, that Lewis acids
would have the same effect on the triplet energies
of cinnamate esters as they do on the more
extended =n system of 2'-hydroxychalcones.
Moreover, cinnamate esters cannot participate in
the bidentate chelating interactions that are critical
for well-organized, highly enantiodifferentiating
transition state assemblies with many common
classes of chiral Lewis acids, including the transition
metal bis(oxazoline) complexes® that have been
optimal in many of our laboratory’s most successful
asymmetric photoreactions.”> Thus, as a strategic
consideration in our initial screening process, we
focused upon chiral Lewis acids that are known to
provide effective enantiocontrol with monodentate
carbonyl substrates.

Table 1. Optimization of chiral Lewis acid structure.?

o
o oxazaborolidine (50 mol%)
M [Ir(ppy)2(dtbbpy)](PFg) (1 mol%) MeO
MeO o e CH,Cly, blue LED .
,Clo, blue
—25°C,21h Ph Ph
4 (5 equiv) 5
H A entry catalyst Ar Ar? yield dr. ee
T AR
1 6a Ph 2-MeCgH, 82% 211 89%
H\N\ e 2 6b  35-(CFs)CeHs 2-MeCgH, 3% 11 ND
Ta 3 6c 35-Me,CeHs  2-MeCgHy  27% 31 90%
ThN- 4 6d 3,5-Me,CgHy  2-FCgH, 75% 41  95%
- 5 6e 35-Me,CeHy  2,4-F.CeHg  84% 41 97%
OELLBEET? 6 6f  35Me,CoHy 246FsCeHp 92% 61 98%

catalyst (6)

2 Yields and diastereomer ratios determined by 'H
NMR spectroscopy. Enantiomeric excess of the major
diastereomer determined by chiral HPLC.

Oxazaborolidine catalysts (6) are among the most
successful chiral Lewis acids in this class, 1 and
Bach® and Brown> have both reported highly
enantioselective cyclobutane syntheses that feature
this class of privileged chiral Lewis acids. Indeed,
oxazaborolidine  6a  immediately  provided
promising results; upon irradiation of cinnamate 4
with styrene in the presence of 1 mol%
[Ir(ppy)2(dtbbpy)](PFe) and 50 mol% of chiral Lewis
acid 6a, cycloadduct 5 was produced in 89% ee,
and 2:1 d.r. (Table 1, entry 1). Modification of the
3,3-aryl substituents had a negative impact on the
yield of the cycloaddition, although the 3,5-
dimethylphenyl-substituted catalyst appeared to
provide a modest improvement in selectivity
(entries 2 and 3). Modification of the 1-substituent,
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on the other hand, had a dramatically positive
influence. Replacing the o-tolyl group with more
electron-deficient o-fluorophenyl or 24-
difluorophenyl substituents led to an increase in
both the rate and selectivity of the cycloaddition
(entries 4 and 5). The optimal 2,4,6-trifluorophenyl
catalyst 6f affords cycloadduct 5 in 6:1 d.r, and
98% ee under these conditions (entry 6).

Table 2. Optimization of photocatalyst identity.

o oxazaborolidine 6f (25 mol%)
photocatalyst (1 mol%) MeO
MEOMW Zen CH,Cl,, blue LED )H:k
E252“'(:, 21h PR Ph
4 (5 equiv) 5
entry photocatalyst Er (kcal/mol)®  yield® d.rb ee
1 [Ru(bpy)s](PFg), (7a) 46 0 = =
2 [Ir(dtbppy)o(dMeObpy)](PFg) (7b) 48.6 4 - -
8 [Ir(dtbppy)(dtobpy)](PFg) (7¢) 49.4 7 - -
4 [Ir(ppy)2(dMeObpy)](PFe) (7d) 50.6 21 5:1 89%
5 [Ir(ppy)2(dtbbpy)I(PFg) (7€) 51.0 28 4:1 92%
6 [Ir(Fppy)o(dtbbpy)](PFe) (7f) 53.3 82 6:1 96%
7 [Ir(dFppy)2(dtbbpy)](PFe) (79) 57.1 93 6:1 90%
8 [Ir(dF(CF3)ppy)2(dtbbpy)](PFe) (7h) 61.0 18 3:1 65%
9 none = 0 = —

2 Values determined from the emission maxima of the
photocatalysts (10 uM in CH,Cl,) with 410 nm excitation.
b Yields and diastereomer ratios determined by 'H NMR
spectroscopy. Enantiomeric excess of the major
diastereomer determined by chiral HPLC.

A relatively high loading of oxazaborolidine (50
mol%) was required for this  optimal
enantioselectivity, however; lowering the catalyst
loading to 25 mol% resulted in a diminution of
selectivity to 4:1 d.r. and 92% ee (Table 2, entry 5).
This dependence of product ee upon catalyst
loading suggested a competitive racemic
background process. We hypothesized that tuning
the photocatalyst to minimize direct, Lewis-acid-
free sensitization might restore high ee at lower
catalyst loading. Indeed, the rate and selectivity of
the cycloaddition depend upon the triplet energy
of the photocatalyst. Ru(bpy)s?* (Er = 46 kcal mol?)
is an ineffective photocatalyst (entry 1). Using
photocatalysts of increasing triplet energy, both
yield and enantioselectivity increase, reaching
optimal enantioselectivity with
[Ir(Fppy)2(dtbbpy)](PFe) (Er = 53.3 kcal mol?) (entry
6). Beyond this point, the yield of cycloadduct
continues to increase, but the ee diminishes,
suggesting that the rate of formation of racemic
cycloadduct by direct sensitization of unbound

cinnamate becomes competitive (entry 7). The
highest triplet energy photocatalyst investigated,
however, afforded lower yield and ee (entry 8). At
this point the triplet energy of this photocatalyst
surpasses that of styrene (Et = 60 kcal mol?),
enabling  competitive  quenching of the
photocatalyst and a loss in overall efficiency.

Figure 2. Scope studies for enantioselective [2+2]
photocycloadditions of cinnamate esters.?

o o o o
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a All reactions conducted using 1 equiv of
cinnamate ester, 5 equiv of styrene, 25 mol%
oxazaborolidine 6f, 1 mol% photocatalyst 7f, and
irradiating for 24 h unless otherwise noted. Yield
values represent the isolated yield of both
diastereomers. Diastereomer ratios determined by
'H NMR. Enantiomeric excess of the major
diastereomer determined by chiral HPLC. b Reaction
irradiated for 76 h.

We next evaluated the scope of the reaction
using these optimized reaction conditions (Figure
2). The yield and ee of the cycloaddition are
insensitive to the identity of the ester moiety. (8-
10), and cinnamate esters with electronically varied
B-aryl substituents are competent substrates (11-
13). Methyl (E)-3-(thiophen-2-yl)acrylate was
readily transformed to cyclobutane 14, indicating
that heterocycles are tolerated. Methyl crotonate,
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however, failed to produce any cycloadduct (15),
consistent with its higher triplet energy.’* Various
electronic substitution patterns on the styrene
afforded cycloadducts with similar results (16-21).
As we had observed in the asymmetric [2+2]
cycloaddition of 2'-hydroxychalcones, electron-rich
p-alkoxy-substituted  styrenes undergo acid-
promoted polymerization faster than the desired
cycloaddition. Electron-donating groups at other
positions a7 and electron-withdrawing
substituents at all positions (18-21), on the other
hand, were readily tolerated. The presence of a
boronate ester slows the rate of cycloaddition (22),
but the resulting enantioenriched cycloadduct
bears a versatile synthetic handle.!

The absolute configuration of the cycloadducts
was confirmed through a concise, two-step
synthesis of norlignan 3 (Scheme 1). Because 4-
alkoxy-substituted styrenes polymerize under the
reaction conditions, the cycloaddition was
conducted using 4-brominated styrene 23.
Interestingly, the ee of this cycloaddition under
standard conditions gave good yields of 25 but
disappointingly low stereocontrol (70% ee). We
speculated that this might again be a consequence
of direct, Lewis-acid-free sensitization; indeed,
when the Lewis acid is omitted from this reaction,
the racemic cycloadduct is formed in 82% yield.
This background process can be minimized by
further tuning the photocatalyst. [Ir(ppy).(4,4'-
dCFsbpy)IPFs (Er = 39.2 kcal/mol) restores high
enantioselectivity, affording cycloadduct 25 in 97%
ee. Subsequent Buchwald aryl etherification®
affords natural product 3 in two steps overall and
confirms the absolute stereochemistry of the
cycloaddition, which is consistent with standard
models for stereoinduction using this class of
oxazaborolidine Lewis acids.

Scheme 1. Streamlined synthesis of norlignan 3.

OMe MeO

1 mol % photocatalyst
CH,Cl, — 25 °C
blue LED

25, X=Br

88% yield, 70% ee, 5:1 d.r.
w/ [Ir(Fppy)(dtbbpy)IPFe (7f)

80% yield, 97% ee, 5:1 d.r.

W/ [Ir(ppy)a(4,4*-dCF3bpy)]PFs (7i)
10 mol% RockPhos Gg
Cs,C0O3, MeOH, toluene

°C

3, X=0Me
92% yield, 97% ee

Several lines of evidence support the formation
of triplet-state cinnamate esters through energy
transfer from the Ir photocatalyst. Wu and Reiser
have independently reported the ability of Ir
photocatalysts to sensitize [2+2] cycloadditions of
cinnamates via energy transfer, and Wu showed
that crossed cycloadditions between triplet-state
cinnamates and styrenes are feasible.’® In contrast,
photoinduced electron transfer would generate
enone radical anions that are reactive only towards
electron-deficient alkenes and produce no product
in reactions with simple styrenes.” The triplet
nature of this reaction is also consistent with the
dependence on photocatalyst structure (Table 2).
While the yield of the reaction shows a clear
relationship to the triplet energy of the
photocatalyst used, there is no similar correlation
to reduction potential. For instance, photocatalysts
7c and 7d have similar excited state reduction
potentials but give very different yields, and 7f
provides faster rates than both despite its
significantly more positive reduction potential.
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Figure 3. (a) DFT-optimized structures of Lewis acid(6f) bound methyl cinnamate 4-LA. (Bond lengths in A) (b)
Triplet energies, (c) frontier orbital energies for 4, Lewis acid bound adducts and photocatalyst 7f. (B3LYP-

D3/cc-pVTZ(-f)//B3LYP-D3/LACVP**(¢ = 9.08 for CH,Cly)

Density-functional theory (DFT) calculations were
carried out to provide a better understanding of
the role of the Lewis acid in photocycloaddition
(Figure 3). We first evaluated the oxazaborolidine-
coordinated methyl cinnamate complex 4-LA. The
optimized structures of its lowest-energy ground-
state and triplet complexes (Figure 3a and 3b) are
qualitatively similar; thus, facial selectivity in this
process can be rationalized using the same
empirical model that is generally applied to
ground-state reactions using this class of chiral
Lewis acids. !

We next examined the influence of Lewis on the
singlet-triplet gap for 4. The triplet energy for the
methyl cinnamate 4 was calculated to be 48.9
kcal/mol, and this value decreased by 6.9 kcal/mol
upon coordination to the oxazaborolidine. The
magnitude of this decrease, however, was
surprisingly small compared to the ~20 kcal/mol
change in the triplet energy of 2'-hydroxycalcone
upon activation by Sc(OTf);.6 Moreover, triplet
energy transfer to the activated cinnamate complex
4-LA (42.0 kcal/mol) should be thermodynamically
feasible from all of the photocatalysts tested, but

we observe only trace reaction using Ir catalyst 7f
(53.3 kcal/mol). Finally, coordination of neutral
Lewis acids such as EtAICl; has negligible impact on
the triplet energy of 4 but still catalyzes the racemic
photosensitized cycloaddition (see Supporting
Information). Thus, in this reaction, Lewis acid
catalysis is not attributable primarily to a lowering
of triplet energy.

An analysis of the absolute energies of the
relevant frontier molecular orbitals (FMOs) was
more suggestive (Figure 3C). Dexter energy transfer
formally involves the bidirectional exchange of
electrons between the FMOs of the triplet donor
and acceptor moieties, and thus the rate of energy
transfer depends upon the degree of orbital
overlap.®® The m and m* orbital energies of the
methyl cinnamate 4 were calculated to be —6.65
and -2.07 eV, respectively, whereas the singly
occupied molecular orbital (SOMO) energies of 37f
were —-5.66 and —8.92 eV. However, coordination of
methyl cinnamate to a range of Lewis acids results
in a significant lowering of its FMO energies, with
stronger Lewis acids resulting in a more significant
shift. Upon coordination of cationic
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oxazaborolidine 6f, the FMOs on methyl cinnamate
are nearly isoenergetic with the SOMOs of the
triplet photocatalyst. Perturbation theory predicts
that the interaction between these two species will
increase as the gap between their FMO energies
decrease;® thus, we expect an increase in the
electronic coupling between the donor and
acceptor and consequently more efficient triplet
energy transfer. Thus, while coordination of the
strongly Lewis acidic oxazaborolidine catalyst 6f
exerts a small effect on the stability of triplet
cinnamate, we propose that the major effect
responsible for the acceleration of the sensitized
photoreaction is a Lewis acid mediated increase in
electronic coupling between the triplet donor and
acceptor. The concept of Lewis-acid-promoted
FMO-lowering is well-appreciated in asymmetric
catalysis of ground-state reactions.1®® The insight
that it is also relevant in excited-state
photochemistry has potentially profound
implications to the design of other enantioselective
photoreactions.

To summarize, triplet-sensitized [2+2]
photocycloadditions of simple cinnamate esters can
be conducted in highly enantioselective fashion
using chiral oxazaborolidine Lewis acids.
Computational evidence suggests that the Lewis
acids can accelerate Dexter energy transfer through
two different functional roles. They can increase
the thermodynamic driving force for energy
transfer by stabilizing the triplet state of the
organic substrate, and they can also increase the
electronic coupling required for Dexter energy
transfer by modulating the absolute position of the
substrate frontier molecular orbitals. This analysis
suggests that the impact of Lewis acids in triplet
photoreactions might be quite general, and that
chiral Lewis acids might be useful in the design of
other photoreactions involving a wider array of
simple Lewis basic organic substrates.
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