Accepted Manuscript

 $K_2S_2O_8$ -mediated decarboxylative oxysulfonylation of cinnamic acids: A transition-metal-free synthesis of β -keto sulfones

Ruchi Chawla, Ritu Kapoor, Lal Dhar S. Yadav

PII: DOI: Article Number: Reference:	S0040-4039(19)30715-4 https://doi.org/10.1016/j.tetlet.2019.150964 150964 TETL 150964
To appear in:	Tetrahedron Letters
Received Date:	7 June 2019
Revised Date:	17 July 2019
Accepted Date:	19 July 2019

Please cite this article as: Chawla, R., Kapoor, R., Yadav, L.D.S., $K_2S_2O_8$ -mediated decarboxylative oxysulfonylation of cinnamic acids: A transition-metal-free synthesis of β -keto sulfones, *Tetrahedron Letters* (2019), doi: https://doi.org/10.1016/j.tetlet.2019.150964

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Tetrahedron Letters journal homepage: www.elsevier.com

$K_2S_2O_8$ -mediated decarboxylative oxysulfonylation of cinnamic acids: A transitionmetal-free synthesis of β -keto sulfones

Ruchi Chawla, Ritu Kapoor, Lal Dhar S. Yadav*

Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India *Corresponding author. Tel.: +91 532 2500652; fax: +91 532 2460533; E-mail: ldsyadav@hotmail.com (L.D.S. Yadav).

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: Cinnamic acids Decarboxylative β-Keto sulfones Aerobic oxidation

Oxidative coupling, the coupling of two nucleophilic reagents with the help of oxidants, is a rapidly thriving field [1]. Particularly, the decarboxylative coupling reactions of α,β unsaturated carboxylic acids have drawn significant attention over the last few years [1e,2]. Their straightforward preparation using Perkin reaction, simple handling, non-toxicity, costeffectiveness and stability to air and moisture, in general, make cinnamic acids attractive starting materials in organic synthesis. Moreover, the credibility of the decarboxylative coupling reactions is also leveraged by the ease of their operation and formation of relatively less toxic by-products.

The C=C bond in α,β -unsaturated carboxylic acids is an extra reactive site, which is highly susceptible to attack by radicals. Under suitable conditions, radical attack followed by decarboxylation or oxidation and decarboxylation lead to olefination or oxyfunctionalized products, respectively (Fig. 1) [1e]. However, reports on the synthesis of the latter products via oxidative decarboxylative coupling are relatively scarce. In addition, extensive work has been done in the field of decarboxylative coupling reactions for the formation of C-C bonds but the number of reports on the C-S bond formation is limited [3]. All the previous reports on the decarboxylative coupling reaction of α,β -unsaturated carboxylic acids leading to C-S bond formation employ the coupling of these acids with sulfonyl radical precursors to obtain vinyl sulfones via the olefinic route under transition-metal [4] as well as transitionmetal-free conditions [5] (Scheme 1a). Based on this strategy, Liu et al. reported a synthesis of 2-sulfonylbenzo[b]furans from trans-2-hydroxycinnamic acids and sodium sulfinates mediated by the CuCl₂.2H₂O/AgTFA system via a protodecarboxylation/

A new paradigm of the oxidative decarboxylative sulfono functionalization of cinnamic acids with sulfinate salts mediated by $K_2S_2O_8$ under aerobic conditions to afford synthetically and biologically relevant β -keto sulfones has been described. It is the first report on the transitionmetal-free synthesis of β -keto sulfones from cinnamic acids, which employs environmentally benign, readily available and inexpensive starting materials and oxidants, viz. air and $K_2S_2O_8$.

2009 Elsevier Ltd. All rights reserved.

1

sulfonylation/cyclization cascade (Scheme 1b) [4a]. To the best of our knowledge, there is no report in the literature on the transition-metal-free oxidative coupling of α , β -unsaturated carboxylic acids with sulfinate salts, which can lead to the synthesis of valuable β -keto sulfones.

Fig. 1 Radical functionalizations of α , β -unsaturated carboxylic acids.

β-Keto sulfones, as a class of organosulfur compounds, are well-recognized for their synthetic and biological importance [6]. As building blocks, they are used for the synthesis of γ sulfonyl δ -lactones, β -sulfonyl styrenes, polyfunctionalized 4Hpyrans, quinolines, sulfonyl phenanthrenes and vinylcyclopropanes [7]. As regards their biological significance, they are bestowed with exceptional pharmaceutical properties such as anti-fungal, anti-bacterial, inhibitors of LpxC, MMP and CES1 [8]. Accordingly, a number of methods have been developed for the synthesis of β -keto sulfones [9]. However, the decarboxylative sulfonylation approach for their synthesis is only limited to the use of arylpropiolic acids [9b,d] and β -keto acids [9f] as their precursors. α , β -Unsaturated carboxylic acids have never been used to synthesize β -keto sulfones under transition-metal-free conditions. Nevertheless, a CuBr2-

catalyzed decarboxylative oxysulfonylation of arylacrylic acids using sulfinic acids has been reported for their synthesis by Lei et al. in 2015 [10].Transition-metal-free conditions are highly desirable in the pharmaceutical industry because it makes any protocol free from the adverse traits of transition-metals, viz. toxicity, sensitivity to air or moisture and need of additional cocatalysts/ligands. All the above facts and our previous work on the synthesis of sulfones [11] inspired us to develop a transition-metal-free protocol for the synthesis of β -keto sulfones from α , β -unsaturated carboxylic acids and sodium sulfinates mediated by $K_2S_2O_8$ under aerobic conditions (Scheme 1d).

a) Synthesis of vinyl sulfones

At the outset of our investigation, a model reaction was set up between cinnamic acid 1a (1.0 mmol) and sodium benzene sulfinate 2a (1.5 mmol) using K₂S₂O₈ (1.5 mmol) as an oxidant in DMF (5 mL) at 80 °C in an open flask. To our satisfaction, the desired β -keto sulfone **3a** was formed in 68% yield in 12 hours (Table 1, entry 1). Encouraged by this preliminary success, we next focused our efforts towards the optimization of the reaction conditions. Since the external oxidant was the cornerstone of our strategy, we first scrutinized other oxidants for our protocol which included Na₂S₂O₈, (NH₄)₂S₂O₈, KHSO₅ and DTBP but none of them was found to be more effective than $K_2S_2O_8$ (entries 2-5 versus entry 1). In fact, in the presence of DTBP, vinyl sulfone was obtained as the major product (entry 5). The product formation could not be detected in the absence of any oxidant (entry 6). Therefore, K₂S₂O₈, an inexpensive, readily available and versatile inorganic oxidant [12], remained our choice for the role of an oxidant in the reaction. Any further increase in the amount of the oxidant did not affect the yield of 3a much (entry 7) but a decrease in the amount of K₂S₂O₈ to 1.0 mmol led to a substantial decrease in the yield (entry 8).

In order to decide the best solvent, the model reaction was also performed using different solvents (entries 9-12). Decent yield of the product was obtained in DMSO (entry 9) but the aqueous environment was not conducive to the formation of product (entry 10) which is in accordance with earlier observations [13]. Low yield of the product in toluene (entry 11) and MeCN (entry 12) can be attributed to the low solubility of the model substrate/reagent in these solvents, thus establishing DMF as the best solvent for our developed protocol. When the temperature of the reaction was increased to 100 °C, the yield of the product improved to 83% (entry 13). Increasing the reaction time to 14 hours produced no significant change in the yield of **3a** (entry 14) but decreasing the reaction time to 10 hours was detrimental to the yield (entry 15). On dilution, the yield of the product decreased (entry 16), whereas when 3 mL of DMF was used, the reaction became more complex (entry 17).

Table 1

Optimization of experimental conditions^a

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } } \\ \end{array} } \\ \end{array} } } \\ \end{array} } } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ T } \\ T } \\ T \\ T \\ T } \\ T T T \\ T T \\ T T \\ T T T \\ T T } T \\ T T \\ T \\ T T \\ T \\ T T T T \\ T T T \\ T T \\ T		oxid r) solvent,	oxidant solvent, témp.			
Entry	Oxidant	Solvent	Temper	Time	Yield	
			-ature	(h)	(%) ^b	
			(°C)			
1	$K_2S_2O_8$ (1.5 mmol)	DMF	80	12	68	
2	$Na_2S_2O_8$ (1.5 mmol)	DMF	80	12	32	
3	$(NH_4)_2S_2O_8(1.5 \text{ mmol})$	DMF	80	12	30	
4	$KHSO_5$ (1.5 mmol)	DMF	80	12	61	
5	DTBP (1.5 mmol)	DMF	80	12	18°	
6		DMF	80	12	n.d.	
7	K ₂ S ₂ O ₈ (2.0 mmol)	DMF	80	12	70	
8	K ₂ S ₂ O ₈ (1.0 mmol)	DMF	80	12	47	
9	$K_2S_2O_8(1.5 \text{ mmol})$	DMSO	80	12	65	
10	$K_2S_2O_8(1.5 \text{ mmol})$	H_2O	80	12	traces	
11	$K_2S_2O_8(1.5 \text{ mmol})$	Toluene	80	12	25	
12	K ₂ S ₂ O ₈ (1.5 mmol)	MeCN	80	12	32	
13	$K_2S_2O_8(1.5 \text{ mmol})$	DMF	100	12	88	
14	K ₂ S ₂ O ₈ (1.5 mmol)	DMF	100	14	89	
15	K ₂ S ₂ O ₈ (1.5 mmol)	DMF	100	10	71	
16 ^d	K ₂ S ₂ O ₈ (1.5 mmol)	DMF	100	12	66	
17°	K ₂ S ₂ O ₈ (1.5 mmol)	DMF	100	12	59	

^a Reaction conditions: **1a** (1.0 mmol), **2a** (1.5 equiv.), oxidant, solvent 5 mL, in an open-flask.

^b Isolated yield, n.d. = not detected.

° Corresponding vinyl sulfone was obtained in 57% yield.

^d Solvent 7 mL.

e Solvent 3 mL.

After deciding the optimal reaction conditions, our next goal was to examine the substrate scope of the reaction with respect to both the starting materials (Table 2). Cinnamic acids with both electron-donating or -withdrawing group and halogens on the phenyl ring reacted with sodium benzene sulfinate to produce the desired sulfones 3a-h in good to excellent yields (74-93%). The developed protocol could be successfully applied irrespective of the position of the methoxy group at the ortho-, meta- or para- position of the aryl ring in cinnamic acids with not much difference in the efficiency of the transformation (3c-e). The heterocyclic derivative, 3-(pyridin-2yl)acrylic acid and the corresponding alkyl derivative (hex-2enoic acid) of cinnamic acid were not amenable to our oxidative decarboxylative protocol (compounds 3i and j). Similarly, in the case of sulfinate salts, a broad range of substituents on the aromatic ring were well tolerated (3k-o). In general, the sulfinate salts with electron-donating groups on the aryl ring gave better yield of the products (3k and 3l) than those with electron-withdrawing groups on the ring (3m-o). The methodology could be extended successfully to naphthyl (3p) and alkyl sulfinates (3q) as well.

In view of gaining insight into the mechanism of the reaction, a number of control experiments were performed (Scheme 2). In the presence of 2 equivalents of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) under standard conditions, the product was formed in traces which suggested a radical pathway (Scheme 2a). In the absence of oxygen (N₂ atmosphere), no product formation could be detected (Scheme 2b). On the basis of this result, we concluded that the source of keto oxygen atom in the synthesized sulfones was atmospheric oxygen. This was further confirmed by isotopic labeling experiments (Scheme 2c). With these results in hand and on the

basis of literature precedents [13], a tentative mechanism has been proposed in Scheme 3. Initially, $K_2S_2O_8$ oxidizes sulfinate salt to sulfone radical I. The attack of radical I on cinnamic acid with ensuing addition of atmospheric oxygen would produce the peroxide radical II. The decomposition of II could form the radical intermediate III, which is subsequently transformed into IV by $K_2S_2O_8$. Then, the compound IV undergoes decarboxylation via the cyclization process under the standard conditions to give V, which finally ketonises to the product 3.

Table 2

Scope of α,β -unsaturated carboxylic acids and sulfinate salts^a

^a For experimental procedure, see Supplementary data.

- ^b Isolated yield of the purified products **3**.
- ^c All compounds gave satisfactory spectral (¹H NMR, ¹³C NMR and HRMS) data [9c,10].

a) Evidence in support of radical pathway

Scheme 2. Control experiments.

In conclusion, we have developed the first transitionmetal-free route to β -keto sulfones from cinnamic acids and sulfinate salts mediated by K₂S₂O₈. Experimental evidences suggest that atmospheric oxygen is the source of keto oxygen atom in the synthesized sulfones and the developed method follows a radical pathway. The aerobic oxidative decarboxylative approach for the synthesis β -keto sulfones capitalizes on the use of inexpensive, easily accessible and environmentally benign substrates/oxidant. The use of cinnamic acids as the precursors to β -keto sulfones under transitionmetal-free conditions is the highlight of the developed protocol.

Scheme 3. Plausible mechanism for the formation of β -keto sulfones.

Acknowledgements

We sincerely thank SAIF, Punjab University, Chandigarh, for providing spectra.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/xxxxxxxxxxxxxxx

References and notes

- (a) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 115 (2015) 12138;
 (b) W. Zi, Z. Zuo, D. Ma, Acc. Chem. Res. 48 (2015) 702;
 (c) Y. Yang, J. Lan, J. You, Chem. Rev. 117 (2017) 8787;
 (d) J. Twilton, C. Le, P. Zhang, M.H. Shaw, R.W. Evans, D.W.C. MacMillan, Nat. Rev. Chem.1 (2017) 52;
- (e) T. Zhang, N.-X. Wang, Y. Xing, J. Org. Chem. 83 (2018) 7559.
 [2] (a) A.J. Borah, G. Yan, Org. Biomol. Chem. 13 (2015) 8094;
 (b) J. Schwarz, B. König, Green Chem. 20 (2018) 323;
 (c) A. Hosseinian, P.D.K. Nezhad, S. Ahmadi, Z. Rahmani, A. Monfared, J. Sulfur Chem. 40 (2019) 88.
- [3] C. Shen, P. Zhang, Q. Sun, S. Bai, T.S.A. Hor, X. Liu, Chem. Soc. Rev. 44 (2015) 291.
- [4] (a) H.-S. Li, G. Liu, J. Org. Chem. 79 (2014) 509;
 (b) Q. Jiang, B. Xu, J. Jia, A. Zhao, Y.-R. Zhao, Y.-Y. Li, N.-N. He, C.-C. Guo, J. Org. Chem. 79 (2014) 7372;
 (c) B.V. Rokade, K.R. Prabhu, J. Org. Chem. 79 (2014) 8110;
 (d) R. Guo, Q. Gui, D. Wang, Z. Tan, Catal. Lett. 144 (2014) 1377;
 (e) P. Qian, M. Bi, J. Su, Z. Zha, Z. Wang, J. Org. Chem. 81 (2016) 4876;
 (f) S. Cai, Y. Xu, D. Chen, L. Li, Q. Chen, M. Huang, W. Weng,
- Org. Lett. 18 (2016) 2990. [5] (a) Y. Xu, X. Tang, W. Hu, W. Wu, H. Jiang, Green Chem. 16 (2014) 3720;

(b) P. Katrun, S. Hlekhlai, J. Meesin, M. Pohmakotr, V. Reutrakul,
T. Jaipetch, D. Soorukrama, C. Kuhakarn, Org. Biomol. Chem. 13 (2015) 4785;

- (c) J. Gao, J. Lai, G. Yuan, RSC Adv. 5 (2015) 66723.
- [6] Y.M. Markitanov, V.M. Timoshenko, Y.G. Shermolovich, J. Sulfur Chem. 35 (2014) 188.
- [7] (a) M.-Y. Chang, Y.-C. Chen, C.-K. Chan, Tetrahedron 70 (2014) 8908;
 - (b) M.-Y. Chang, Y.-C. Chen, C.-K. Chan, Tetrahedron 71 (2015) 782;

- (c) C.-K. Chan, Y.-H. Chen, R.-T. Hsu, M.-Y. Chang, Tetrahedron 73 (2017) 46;
- (d) J.L. Marco, J. Org. Chem. 62 (1997) 6575;
- (e) J.-L. Marco, L. Fernández, N. Khiar, P. Fernández, A. Romeros, J. Org. Chem. 60 (1995) 6678;
- (f) R.E. Swenson, T.J. Sowin, H.Q. Zhang, J. Org. Chem. 67 (2002) 9182.
- [8] (a) H. Peng, Y. Cheng, N. Ni, M. Li, G. Choudhary, H.T. Chou, C.D. Lu, P.C. Tai, B. Wang, ChemMedChem 4 (2009) 1457;
 (b) J.I. Montgomery, M.F. Brown, U. Reilly, L.M. Price, J.A.
 - (b) J.I. Montgomery, M.F. Brown, U. Reilly, L.M. Price, J.A. Abramite, J. Arcari, R. Barham, Y. Che, J.M. Chen, S.W. Chung, E.M. Collantes, C. Desbonnet, M. Doroski, J. Doty, J.J. Engtrakul, T.M. Harris, M. Huband, J.D. Knafels, K.L. Leach, S. Liu, A. Marfat, L. McAllister, E. McElroy, C.A. Menard, M. MittonFry, L. Mullins, M.C. Noe, J. O'Donnell, R. Oliver, J. Penzien, M. Plummer, V. Shanmugasundaram, C. Thoma, A.P. Tomaras, D.P. Uccello, A. Vaz, D.G. Wishka, J. Med. Chem. 55 (2012) 1662;
 - (c) V. Aranapakam, G.T. Grosu, J.M. Davis, B. Hu, J. Ellingboe, J.L. Baker, J.S. Skotnicki, A. Zask, J.F. DiJoseph, A. Sung, M.A. Sharr, L.M. Killar, T. Walter, G. Jin, R. Cowling, J. Med. Chem. 46 (2003) 2361.
- [9] For recent examples see; (a) S. Deng, E. Liang, Y. Wu, X. Tang, Tetrahedron Lett. 59 (2018) 3955;
 (b) Y.-S. Xiong, J. Weng, G. Lua, Adv. Synth. Catal. 360 (2018) 1611;
 (c) W. Chen, X. Liu, E. Chen, B. Chen, J. Shao, Y. Yu, Org. Chem. Front. 4 (2017) 1162;
 (d) J. Yu, R. Mao, Q. Wang, J. Wu, Org. Chem. Front. 4 (2017) 617;
 (e) W.-C. Gao, Y.-F. Cheng, Y.-Z. Shang, H.-H. Chang, X. Li, R Zhou, Y. Qiao, W.-L. Wei, J. Org. Chem. 83 (2018) 11956;
 (f) F. Han, B. Su, P. Song, Y. Wang, L. Jia, S. Xun, M. Hu, L. Zou, Tetrahedron 74 (2018) 5908.
- [10] Q. Lu, J. Zhang, P. Peng, G. Zhang, Z. Huang, H. Yi, J.T. Millercd, A. Lei, Chem. Sci. 6 (2015) 4851.
- [11] (a) R. Chawla, R. Kapoor, A.K. Singh, L.D.S. Yadav, Green Chem. 14 (2012) 1308;

(b) R. Chawla, A.K. Singh, L.D.S. Yadav, Tetrahedron 69 (2013) 1720;

(c) R. Chawla, A.K. Singh, L.D.S. Yadav, Eur. J. Org. Chem. (2014) 2032;

(d) A.K. Singh, R. Chawla, T. Keshari, V.K. Yadav, L.D.S. Yadav, Org. Biomol. Chem. 12 (2014) 8550;

(e) A.K. Singh, R. Chawla, L.D.S. Yadav, Tetrahedron Lett. 55 (2014) 4742;

(f) A.K. Singh, R. Chawla, L.D.S. Yadav, Tetrahedron Lett. 55 (2014) 2845;

(g) R. Chawla, L.D.S. Yadav, Org. Biomol. Chem. 17 (2019) 4761.

- [12] S. Mandal, T. Bera, G. Dubey, J. Saha, J. K. Laha, ACS Catal. 8 (2018) 5085.
- [13] P.-Y. Ji, Y.-F. Liu, J.-W. Xu, W.-P. Luo, Q. Liu, C.-C. Guo, J. Org. Chem. 82 (2017) 2965.

Highlights

• Metal-free one-pot approach to β-keto sulfones.

• Use of air and $K_2S_2O_8$ as eco-friendly and inexpensive oxidants.

• Decarboxylative oxysulfonylation of cinnamic acids.

Accepter • A synthetically useful radical pathway is developed.