CHEMISTRY AN ASIAN JOURNAL

www.chemasianj.org

Accepted Article

Title: Synthesis of trifluoromethylthiolated alkenes and ketones via decarboxylative functionalization of cinnamic acids

Authors: Yangen Huang; Shen Pan; Feng-Ling Qing

This manuscript has been accepted after peer review and the authors have elected to post their Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Asian J. 10.1002/asia.201601098

Link to VoR: http://dx.doi.org/10.1002/asia.201601098

A sister journal of Angewandte Chemie and Chemistry – A European Journal

WILEY-VCH

COMMUNICATION

Synthesis of trifluoromethylthiolated alkenes and ketones via decarboxylative functionalization of cinnamic acids

Shen Pan,^[a] Yangen Huang^{*,[a]} and Feng-Ling Qing^[a,b]

Abstract: A tunable decarboxylative trifluoromethylthiolation of cinnamic acids with AgSCF₃ was developed to afford trifluoromethylthiolated alkenes or ketones, respectively, via transition metal-mediated conditions.

The decarboxylative cross-coupling reaction of carboxylic acids is a fundamentally important transformation in organic chemistry, as carboxylic acids are abundant and inexpensive stock chemicals.¹ This reaction provides a powerful strategy for the formation of carbon-carbon^{1c} and carbon-heteroatom bonds (e.g., C-F(CI),² C-N,³ $C-P^4$ and $C-S^5$) through transition-metal catalysis and/or free radical mechanism.⁶ More specifically, its application on the syntheses of fluorine-containing molecules have attracted much attentions during the past decades.^{2c} For example, the decarboxylative trifluoromethylation has nicely achieved by Hu,⁷ Liu,⁸ Maiti,⁹ Zhu,¹⁰ Duan,¹¹ Cai¹² and Altman¹³ using various trifluoromethylation reagents.¹⁴ However, compared to large number reports on decarboxylative reports trifluoromethylation, the on decarboxylative trifluoromethylthiolation are very rare. Shen and co-workers reported а silver-catalyzed decarboxylative trifluoromethylthiolation of aliphatic carboxylic acids in aqueous emulsion to afford alkyl trifluoromethyl thioethers in high yields.¹⁵ Glorius and co-workers achieved the same conversion by visible light promoted decarboxylation.¹⁶ Among common fluorinecontaining groups, SCF₃ has the highest lipophilicity value $(\pi_x=1.44)$, which is much higher than those of SF₅ $(\pi_x=1.23)$, OCF₃ (π_x =1.04), CF₃ (π_x =0.88), CH₃ (π_x =0.52).¹⁷ So SCF₃containing compounds are increasingly attractive for their potential applications in agrochemicals and pharmaceuticals as well as in materials science. Therefore, efficient methodologies for syntheses of SCF₃-containing molecules bearing C_{sp2}-SCF₃ and C_{sp3} -SCF₃ as well as C_{sp} -SCF₃ bonds have been developed.¹⁸ However, facile construction of C_{vinvl}-SCF₃ bonds are limited, and prefunctionalized starting materials, such as enamines,19 vinyl halides,20 vinylboronic acids21 or terminal alkynes²² are usually used (Scheme 1).

Since 2012, we have been working on installations of SCF₃ group onto organic molecules.²³ We propose that decarboxylative trifluoromethylthiolation might be suitable strategy for the synthesis of vinyl trifluoromethylthioethers via a radical pathway (Scheme 1, bottom). First, SCF₃ radical can be

[a]	Mr. Shen Pan, Dr. Yangen Huang and Dr. Feng-Ling Qing College of Chemistry, Chemical Engineering and Biotechnology
	Donghua University
	2999 North Renmin Road, Shanghai 201620, China
	E-mail: hyg@dhu.edu.cn
[b]	Dr. Feng-Ling Qing
	Key Laboratory of Organofluorine Chemistry
	Shanghai Institute of Organic Chemistry, Chinese Academy of
	Science
	345 Lingling Road, Shanghai 200032, China

Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate))

generated at oxidative conditions. Then, the addition of SCF₃ radical to cinnamic acid will generate radical intermediate A, which further undergoes decarboxylation and oxidation may generate SCF₃-substituted alkenes or ketones depending on conditions such as oxidants and additional nucleophiles (e.g. water) (Scheme 1). Various efficient methods for synthesis of a-SCF₃-substituted ketones which act as important building blocks have been reported including the trifluoromethylthiolation of ahaloketones,²⁴ β-ketoesters,²⁵ silyl enol ethers²⁶ and simple ketones²⁷ with different SCF₃ sources. The decarboxylative trifluoromethylthiolation of α , β -unsaturated carboxylic acids would be another efficient method for synthesis of the α -SCF₃ substituted ketones. As part of our continuing studies on developing methodologies for introduction of SCF₃ into organic molecules, herein we present a tunable and efficient decarboxylative trifluoromethylthiolation of α,β -unsaturated carboxylic acids to afford vinyl trifluoromethyl thioethers and a- SCF_3 substituted ketones, respectively.

Scheme 1. Methods for the syntheses of $\text{SCF}_3\text{-substituted}$ alkenes and $\alpha\text{-}\text{SCF}_3$ substituted ketones.

We used trifluoromethylthiolation of cinnamic acid 1a as the model system. The initiator, oxidant, and solvent critically affect the efficiency of this reaction (for the optimization of the reaction conditions, see ESI, Table S1). Initially, the reaction solvent was examined with Cul and Ag_2CO_3 as initiator and $K_2S_2O_8$ as oxidant at 50 °C. The results disclosed that no reaction occurred in neat solvent such as THF, DCE, CH₃CN, DMSO and DMF, however, the desired product 2a was detected in 40 % yield when mixed solvents CH₃CN/HOAc (4:1) were used. Next, the copper salts including CuTC, CuOAc, CuCN, CuCl, CuBr, $(CH_3CN)_4CuPF_6$ CuCl₂, CuSO₄ and silver salts including Ag₂CO₃, AgBF₄, AgOAc, AgNO₃, AgOTf, Ag₂SO₄ as initiator was explored. The combination of Cul and Ag₂CO₃ was found to be the best initiator. The investigation of oxidants disclosed that peroxydisulfuric acid salts such as $K_2S_2O_8$, $Na_2S_2O_8$ and $(NH_4)_2S_2O_8$ were better than $PhI(OAc)_2$ and tert-butyl hydroperoxide (TBHP). The yield of the decarboxylative trifluoromethylthiolated alkene could be increased from 24% to 52% or 71% with the increase of reaction temperature from 50 $^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$ or 90 $^{\circ}\text{C},$ respectively. Further optimization of the

This article is protected by copyright. All rights reserved

WILEY-VCH

reaction conditions revealed that using AgSCF₃ (2.0 equiv), Cul (1.0 equiv) and Ag₂CO₃ (2.0 equiv), K₂S₂O₈ (2.0 equiv) in CH₃CN/HOAc(2:1) at 90 °C for 1 h could give the desired vinyl trifluoromethyl thioether **2a** in 84% yield with excellent *E/Z* selectivity (94:6).

With the optimized conditions in hand, the scope of the Cumediated decarboxylative trifluoromethylthiolation for preparation of vinyl trifluoromethyl thioether was examined. A variety of aryl substituted a, β-unsaturated carboxylic acids can be transformed into the desired vinyl trifluoromethyl thioether in moderate to good yields (Table 1). Cinnamic acid with an alkyl substitution at ortho-, meta- or para-position gave comparative yield and E/Z selectivity (2b-2d, 2g and 2h). Halogen on the aromatic ring was well tolerated (2i-2l), providing a synthetic handle for further functionalization. Naphthyl and heteroaryl α , β unsaturated carboxylic acids also gave corresponding vinyl trifluoromethyl thioether in moderate yields (2m-2g). In most cases, the E/Z selectivity was good with a ratio range of 78:22-94:6. however, the reversion of the E/Z selectivity was observed for pyridyl α , β -unsaturated carboxylic acid (**2p**, *E*/*Z* 0:100). Unfortunately, aliphatic substituted a, β-unsaturated carboxylic acids and cinnamic acids with a strong electron-withdrawing group such as nitro, cyano, formyl and trifluoromethyl groups were not suitable substrates.

Table 1. Copper-mediated decarboxylative trifluoromethylthiolation to form trifluoromethyl thioethers. $^{[a,b]}$

[a] Reaction conditions: **1** (1.0 equiv), AgSCF₃ (2.0 equiv), Cul (1.0 equiv) and Ag₂CO₃ (2.0 equiv), $K_2S_2O_8$ (2.0 equiv) in CH₃CN/HOAc (2:1) at 90 °C for 1 h under atmosphere. [b] Isolated yields, the *E/Z* ratio were determined by ¹⁹F NMR spectroscopy.

Based on the successful preparation of vinyl trifluoromethyl thioethers by decarboxylative trifluoromethylthiolation, we turned

our interest to the synthesis of α -SCF₃ substituted ketones via the similar transformation. With cinnamic acid 1a as the model substrate and AgSCF₃ as SCF₃ source, the reaction conditions for the synthesis of α -SCF₃ substituted ketone **3a** were optimized (for the optimization of the reaction conditions, see ESI, Table S2). First, the reaction was performed with Cul as a catalyst and K₂S₂O₈ as an oxidant in CH₃CN/H₂O (2:1) at 50°C for 12 h under O₂ atmosphere, however, no desired product was detected. Then, we investigated the effect of iron salts as catalyst instead of Cu salts. Among the tested iron salts, the best activity was observed with Fe(OAc)₂ affording 3a in 13% yield. The presence of silver salt was crucial to the transformation, and Ag₂SO₄ was proved to be the most effective and led to an increase in the yield to 62%. Similar to the synthetic condition for vinyl trifluoromethyl thioether, peroxydisulfuric acid salts such as K2S2O8, Na2S2O8 and $(NH_4)_2S_2O_8$ were better than PhI(OAc)₂ and *tert*-butyl hydroperoxide (TBHP). Further screening of reaction conditions revealed that the solvent mixture of CH₃CN/H₂O (2:1) was superior to others, and prolonged reaction time from 12 h to 18 h resulted higher yield (62 % to 70 %). It is noteworthy that the transformation become sluggish under Argon atmosphere which indicated that oxygen as a second oxidant was essential.

The scope of substrates for the synthesis of α-SCF₃ substituted ketones under the optimized condition [Fe(OAc)₂ (1.0 equiv), AgSCF3 (1.0 equiv), Ag2SO4 (2.0 equiv), Na2S2O8 (2.0 equiv) in CH₃CN/H₂O (2:1) and O₂ at 50°C for 18 h] was then investigated. A variety of a, β-unsaturated carboxylic acids could be efficiently converted to the desired α -SCF₃ substituted ketones in moderate to good yields (Table 2). Electron-donating and electron-withdrawing substituents at the ortho-, meta- or para -positions on the aromatic ring of cinnamic acids have little influence on the reaction performance. The oxidative decarboxylative trifluoromethylthiolation of para- and metamethoxyphenyl acrylic acid and para- and meta-tolyl acrylic acid proceeded smoothly to give 3b-3e in good yields (45-63%). The α -SCF₃ substituted ketones with isopropyl (3f) and phenyl (3g) substituents were also obtained in yield of 55% and 65%, respectively. Halogen on the aromatic ring was well tolerated in the reaction. The yields of para-, meta- and ortho- chlorophenyl (3h-3j) and bromophenyl (3k-3m) a-SCF3-substituted ketones were varied in the range of 35% to 75%. Unlike the synthesis of vinyl trifluoromethyl thioethers, cinnamic acids with strong electron-withdrawing substituents were also suitable substrates to afford the corresponding para-, meta-trifluoromethyl (3n-3o), para-, meta-cyanophenyl (3q-3r), para-fluorophenyl (3p), 3,4dichlorophenyl (3s) and para-formyl (3t) a-SCF3-substituted ketones in moderate to good yields (53-75%). The α , β unsaturated carboxylic acid with an extra methyl group on the α position also gave 1-phenyl-2-((trifluoromethyl)thio)propan-1-one (3x) in 66% yield. However, the yields of acetamidophenyl (3u, 31%) and heterocycle aromatic (3w, 20%) substituted α -SCF₃ substituted ketones were poor. Surprisingly, when p-nitrocinnamic acid was applied to the iron-mediated reaction system, the vinyl trifluoromethyl thioether (2y, 63%) was obtained as a major product along with α -SCF₃ substituted ketone (**3y**, 21%).

Table 2. Iron-mediated decarboxylative trifluoromethylthiolation to form $\alpha\text{-}SCF_3$ substituted ketones. $^{[a,b]}$

For internal use, please do not delete. Submitted_Manuscript

COMMUNICATION

WILEY-VCH

[a] Reaction conditions: 1 (2.0 equiv), AgSCF₃ (1.0 equiv), Fe(OAc)₂ (1.0 equiv), Ag₂SO₄ (2.0 equiv), Na₂S₂O₈ (2.0 equiv), O₂ (balloon) in CH₃CN/H₂O (2:1) at 50 °C for 18 h. [b] Isolated yields.

In order to understand the reaction mechanism, the radical trapping and isotope-labeling experiments were carried out. When 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or 2,6-ditert-butyl-4-methylphenol (BHT) as radical scavenger was added to the reaction systems, the iron/copper mediated decarboxylative trifluoromethylthiolation between cinnamic acid and AgSCF₃ were both totally suppressed, suggesting that these transformation might proceed via a radical process (see ESI). Molecular oxygen is essential to the formation of α -SCF₃ substituted ketones. When the reaction was carried out under an argon atmosphere, the corresponding α -SCF₃ substituted ketone **3a** was not obtained, indicating that the formation of α -SCF₃ substituted ketones required the presence of oxygen. In an attempt to gain close insights into the origin of the oxygen in the newly formed carbonyl group of α -SCF₃-substituted ketones, isotope labeling experiments were performed by using ¹⁸Olabeled water as a co-solvent instead of normal water. The content of ¹⁸O-labeled product 3a (¹⁸O-3a) was increased to 78%, showing that the oxygen atom of carbonyl group in 3a was from water instead of molecular oxygen (Scheme 2).

Scheme 2. Isotope-labeling experiments under the standard conditions.

On the basis of these observations and previous reports,^{8,9,28} a plausible mechanism is proposed (Scheme 3). Initially, the oxidation of AgSCF₃ by peroxydisulfuric acid salt affords Ag(II)SCF₃ species, which triggers the F₃CS radical after the following single electron transfer course. Reaction of the cinnamic acid with Cu(I) or Fe(II) would produce a salt of **B**. The addition of F₃CS radical to **B** generates the corresponding alkyl radical intermediate **C**. Single electron transfer of **C** with Ag(II) to form the key intermediate **D**, which underwent elimination to afford vinyl trifluoromethyl thioethers **2**. The carbon cation intermediate **D** will quickly transformed into hydroxyl intermediate **E** in the presence of water. **E** was then oxidized by O₂ to produce **F** and byproduct aldehyde. Finally, decarboxylation of **F** leads to the desired α -SCF₃ ketones. Fe(OAc)₂ and CuI are likely to assist the elimination of CO₂.

Scheme 3. Proposed reaction mechanism.

In conclusion, the decarboxylative trifluoromethylthiolation of α , β -unsaturated carboxylic acids was achieved. Vinyl trifluoromethyl thioethers and α -SCF₃ substituted ketones can be selectively synthesized via adjusting the reaction systems with AgSCF₃ as SCF₃ source. These reactions have good functional group compatibilities, and provides novel pathway for the construction of C-SCF₃ bonds. Preliminary mechanism study revealed that these reactions proceeded *via* a radical mechanism, and oxygen atoms of carbonyl group of products **3** was found to be derived from water. Further investigation of these procedures focusing on using alkyl-substituted acrylic acids as substrates is currently underway in our laboratory.

WILEY-VCH

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21421002, 21332010, and 21272036), National Basic Research Program of China (2012CB21600), Shanghai Municipal Education Commission (No. 13ZZ047) and Fundamental Research Funds for the Central Universities (2232015D3-13). We also gratefully acknowledge the invaluable discussion with Prof. Dr. Bo Xu.

Keywords: Trifluormethylthiolation • decarboxylation • ketone • alkene • cinnamic acid

- a) W. I. Dzik, P. P. Lange, L. J. Goossen, *Chem. Sci.* 2012, 3, 2671-2678; b) C. Shen, P. Zhang, Q. Sun, S. Bai, A. T. S. Hor, X. Liu, *Chem. Soc. Rev.* 2015, 44, 291-314; c) N. Rodriguez and L. J. Goossen, *Chem. Soc. Rev.* 2011, 40, 5030-5048; d) R. Shang and L. Liu, *Sci. China Chem.* 2011, 54, 1670-1687; e) J. Ji, P. Liu and P. Sun, *Chem. Commun.* 2015, 51, 7546-7549; f) K. Park, S. Lee, *RSC Adv.* 2013, 3, 14165-14182; g) J. Xuan, Z.-G. Zhang, W.-J. Xiao, *Angew. Chem., Int. Ed.* 2015, 54, 15632-15641; h) L. J.Goossen, K. Goossen, *Top. Organometal. Chem.* 2013, 44, 121-142.
- a) Y. Luo, X. Pan and J. Wu, *Tetrahedron Lett.* 2010, *51*, 6646-6648; b)
 S. Ventre, F. R. Petronijevic and D. W. MacMillan, *J. Am. Chem. Soc.* 2015, *137*, 5654-5657; c) Y. Qiao, L. Zhu, B. Ambler and R. Altman, *Curr. Top. Med. Chem.* 2014, *14*, 966-978.
- [3] W. Jia and N. Jiao, Org. Lett. 2010, 12, 2000-2003.
- [4] J. Hu, N. Zhao, B. Yang, G. Wang, L. N. Guo, Y. M. Liang and S. D. Yang, *Chem. Eur. J.* 2011, *17*, 5516-5521.
- [5] C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. Hor and X. Liu, *Chem. Soc. Rev.* 2015, 44, 291-314.
- [6] a) P. Margaretha, *Sci. Synth.* 2007, *35*, 49-57; b) A. J. Borah and G. Yan, *Org. Biomol. Chem.* 2015, *13*, 8094-8115; c) D. Katayev, K. F. Pfister, T. Wendling, L. J. Goossen, *Chem. Eur. J.* 2014, *20*, 9902-9905; d) J. Tang, D. Hackenberger, L. J. Goossen, *Angew. Chem., Int. Ed.* doi:10.1002/anie.201605744.
- [7] a) Z. He, R. Zhang, M. Hu, L. Li, C. Ni and J. Hu, *Chem. Sci.* 2013, *4*, 3478-3483; b) Z. He, T. Luo, M. Hu, Y. Cao and J. Hu, *Angew. Chem.*, *Int. Ed.* 2012, *51*, 3944-3947.
- [8] a) Z. Li, Z. Cui and Z.-Q. Liu, Org. Lett. 2013, 15, 406-409; b) X.-J. Shang, Z. Li and Z.-Q. Liu, Tetrahedron Lett. 2015, 56, 233-235.
- [9] T. Patra, A. Deb, S. Manna, U. Sharma and D. Maiti, *Eur. J. Org. Chem.*2013, 5247-5250.
- [10] P. Xu, A. Abdukader, K. Hu, Y. Cheng and C. Zhu, *Chem. Commun.* 2014, *50*, 2308-2310.
- [11] a) Y. Lu, Y. Li, R. Zhang, K. Jin and C. Duan, *J. Fluorine Chem.* 2014, 161, 128-133; b) Y. Li, T. Chen, H. Wang, R. Zhang, K. Jin, X. Wang and C. Duan, Synlett. 2011, 1713-1716.
- [12] J.-J. Ma, W.-B. Yi, G.-P. Lu and C. Cai, Adv. Synth. Catal. 2015, 357, 3447-3452.
- [13] a) B. R. Ambler and R. A. Altman, *Org. Lett.* 2013, *15*, 5578-5581; b) B.
 R. Ambler, S. Peddi and R. A. Altman, *Org. Lett.* 2015, *17*, 2506-2509;
 c) B. R. Ambler, L. Zhu and R. A. Altman, *J. Org. Chem.* 2015, *80*, 8449-8457; d) B. R. Ambler, S. Peddi and R. A. Altman, *Synthesis.* 2014, *46*, 1938-1946.
- [14] C. Alonso, E. Martinez de Marigorta, G. Rubiales and F. Palacios, *Chem. Rev.* 2015, 115, 1847-1935.
- [15] F. Hu, X. Shao, D. Zhu, L. Lu and Q. Shen, Angew. Chem., Int. Ed. 2014, 53, 6105-6109.
- [16] L. Candish, L. Pitzer, A. Gomez-Suarez and F. Glorius, *Chem. Eur. J.* 2016, 22, 4753-4756.
- [17] C. Hansch, A. Leo and R. W. Taft, Chem. Rev. 1991, 91, 165-195.

- [18] Partial recent reviews: a) A. Tilii and T. Billard, Angew. Chem., Int. Ed. 2013, 52, 6818-6819; b) L. Chu and F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513-1522; c) G. Landelle, A. Panossian and F. R. Leroux, Curr. Top. Med. Chem. 2014, 14, 941-951; d) F. Toulgoat, S. Alazet and T. Billard, Eur. J. Org. Chem. 2014, 2415-2428; e) J.-H. Lin, Y.-L. Ji and J.-C. Xiao, Curr. Org. Chem. 2015, 19, 1541-1553; f) X. Shao, C. Xu, L. Lu and Q. Shen, Acc. Chem. Res. 2015, 48, 1227-1236; g) X.-H. Xu, K. Matsuzaki and N. Shibata, Chem. Rev. 2015, 115, 731-764; h) X. Yang, T. Wu, R. J. Phipps and F. D. Toste, Chem. Rev. 2015, 35, 556-569; j) Q. Z. Zheng and N. Jiao, Chem. Soc. Rev.2016, DOI: 10.1039/c6cs00107f.
- [19] a) Y. D. Yang, A. Azuma, E. Tokunaga, M. Yamasaki and M. Shiro, N. Shibata, *J. Am. Chem. Soc.* **2013**, *135*, 8782-8785; b) H. Xiang and C. Yang, *Org. Lett.* **2014**, *16*, 5686-5689.
- [20] a) Y. Huang, J. Ding, C. Wu, H. Zheng and Z. Weng, *J. Org. Chem.* 2015, *80*, 2912-2917; b) X.-H. Xu, M. Taniguchi, X. Wang, E. Tokunaga, T. Ozawa, H. Masuda and N. Shibata, *Angew. Chem., Int. Ed.* 2013, *52*, 12628-12631; c) M. Rueping, N. Tolstoluzhsky and P. Nikolaienko, *Chem. Eur. J.* 2013, *19*, 14043-14046. d) R. Honeker, R. A. Garza-Sanchez, M. N. Hopkinson and F. Glorius, *Chem. Eur. J.* 2016, *22*, 4395-4399.
- [21] a)Q. Glenadel, S. Alazet, A. Tiili and T. Billard, *Chem. Eur. J.* 2015, *21*, 14694-14698; b) S. Arimori, M. Takada and N. Shibata, *Dalton Trans.* 2015, *44*, 19456-19459; c) R. Pluta, P. Nikolaienko and M. Rueping, *Angew. Chem., Int. Ed.* 2014, *53*, 1650-1653; d) K. Kang, C. Xu and Q. Shen, *Org. Chem. Front.* 2014, *1*, 294-297; e) C.-P. Zhang and D. A. Vicic, *Chem. Asian J.* 2012, *7*, 1756-1758.
- [22] W. Wu, W. Dai, X. Ji and S. Cao, Org. Lett. 2016, 18, 2918–2921.
- [23] a) C. Chen, L. Chu and F.-L. Qing, J. Am. Chem. Soc. 2012, 134, 12454-12457; b) C. Chen, Y. Xie, L. Chu, R.-W. Wang, X. Zhang and F.-L. Qing, Angew. Chem., Int. Ed. 2012, 51, 2492-2495; c) C. Chen, X. H. Xu, B. Yang and F.-L. Qing, Org. Lett. 2014, 16, 3372-3375; d) J.-B. Liu, X.-H. Xu, Z.-H. Chen and F.-L. Qing, Angew. Chem., Int. Ed. 2015, 54, 897-900.
- [24] a) M. Jiang, F. Zhu, H. Xiang, X. Xu, L. Deng and C. Yang, *Org. Biomol. Chem.* 2015, *13*, 6935-6939; b) P. Zhu, X. He, X. Chen, Y. You, Y. Yuan and Z. Weng, *Tetrahedron* 2014, *70*, 672-677; c) Y. Huang, X. He, X. Lin, M. Rong and Z. Weng, *Org. Lett.* 2014, *16*, 3284-3287; d) Y. Huang, X. He, H. Li and Z. Weng, *Eur. J. Org. Chem.* 2014, 7324-7328; e) S.-G. Li and S. Z. Zard, *Org. Lett.* 2013, *15*, 5898-5901.
- [25] a) C. Xu, B. Ma and Q. Shen, *Angew. Chem., Int. Ed. 2014, 53*, 9316-9320; b) E. V. Vinogradova, P. Mueller and S. L. Buchwald, *Angew. Chem., Int. Ed.* 2014, *53*, 3125-3128; c) Q.-H. Deng, C. Rettenmeier, H. Wadepohl and L. H. Gade, *Chem. Eur. J.* 2014, *20*, 93-97; d) X. Wang, T. Yang, X. Cheng and Q. Shen, *Angew. Chem., Int. Ed.* 2013, *52*, 12860-12864; e) X. Shao, X. Wang, T. Yang, L. Lu and Q. Shen, *Angew. Chem., Int. Ed.* 2013, *52*, 3457-3460.
- [26] a) S. Arimori, M. Takada and N. Shibata, Org. Lett. 2015, 17, 1063-1065; b) S. Munavalli, D. K. Rohrbaugh, D. I. Rossman, W. G. Wagner and H. D. Durst, Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 1021-1031.
- [27] a) X. Shao, C. Xu, L. Lu and Q. Shen, J. Org. Chem. 2015, 80, 3012-3021; b) S. Alazet, E. Ismalaj, Q. Glenadel, D. Le Bars and T. Billard, *Eur. J. Org. Chem.* 2015, 4607-4610; c) S. Alazet, L. Zimmer and T. Billard, *Chem. Eur. J.* 2014, 20, 8589-8593; d) W. Wu, X. Zhang, F. Liang, and S. Cao, Org. Biomol. Chem. 2015, 13, 6992-6999; e) C. Li, K. Zhang, X.-H. Xu and F.-L. Qing, *Tetrahedron Lett.* 2015, 56, 6273-6275.
- [28] a) F. Yin and X. S. Wang, *Org. Lett.* **2014**. 16. 1128-1131; b) Y. F. Qiu, X. Y. Zhu, Y. X. Li, Y. T. He, F. Yang, J. Wang, H. L. Hua, L. Zheng, L. C. Wang, X. Y. Liu and Y. M. Liang, *Org. Lett.* **2015**, *17*, 3694-3697; c) N. Fuentes, W. Kong, L. Fernandez-Sanchez, E. Merino and C. Nevado, *J. Am. Chem. Soc.* **2015**, *137*, 964-973.

For internal use, please do not delete. Submitted_Manuscript

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

COMMUNICATION

The decarboxylative trifluoromethylthiolation of cinnamic acids was achieved. Vinyl trifluoromethyl thioethers and α -SCF₃-substituted ketones can be selectively synthesized via adjusting the reaction systems with AgSCF₃ as SCF₃ source.

Shen Pan, Yangen Huang,* Feng-Ling Qing

Page No. – Page No.

Synthesis of trifluoromethylthiolated alkenes and ketones via decarboxylative functionalization of cinnamic acids

For internal use, please do not delete. Submitted_Manuscript This article is protected by copyright. All rights reserved