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ABSTRACT: Aztreonam, first discovered in 1980, is an FDA approved, intravenous, monocyclic beta-lactam antibiotic. 
Aztreonam is active against gram-negative bacteria and is still used today. The oral bioavailability of aztreonam in human is less 
than 1%. Herein we describe the design and synthesis of potential oral prodrugs of aztreonam.

The inexorable rise of antibiotic resistance has forced 
clinical reliance onto a small group of drugs which themselves 
continue to lose efficacy. Oral antibiotics in particular, are 
urgently needed to safeguard future therapeutic options, 
including the ability to treat outside the hospital.1,2  Aztreonam 
3 is a totally synthetic antibiotic discovered by workers at E.R. 
Squibb & Sons in 1980.3-6 It is the only monocyclic beta-
lactam antibiotic approved by the FDA (1986). Aztreonam is 
scientifically significant chemically in validating the 
hypothesis that antimicrobial activity in beta-lactams was not 
rigidly dependent upon having a second ring fused to the 
monocycle as in penicillins and cephalosporins; and 
biologically aztreonam was the first of several examples of 
how a simple monocyclic beta-lactam when suitably equipped 
with electron  with-drawing N-substituents and within the 
contraints imposed by other well documented binding 
interactions could possess high antibiotic activity.7-10

Aztreonam has potent activity against susceptible Gram-
negative bacteria including Pseudomonas aeruginosa,11 and 
although it is nearly 40 years old, aztreonam is still used 
clinically, and is noteworthy for being resistant to the growing 
problem of metallo beta-lactamases. However, the drug must 
be administered intravenously as the human bioavailability is 
<1%.12

Recently we have reported that the beta-lactamase inhibitor 
(BLI) avibactam 113,14 which has poor oral bioavailability in 
man, could be converted into derivatives 2 which show high 
oral bioavailability in four (4) animal species including 
human.15-18 With the aim of creating an orally absorbed 
prodrug of aztreonam we sought to apply the novel prodrug 
design strategy previously applied to oral avibactam 
prodrugs.19 Both avibactam 1 and aztreonam 3 fall into a 
limited class of approved drugs containing an essential sulfate 
grouping. However, the chemistry of aztreonam and 
avibactam differ in that avibactam 1 has an O-sulfate group, 
while aztreonam 3 has an N-sulfate group.  

Figure 1. Comparison of aztreonam and avibactam and respective 
prodrugs
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Figure 2 shows three potential routes to key intermediate D. 
Though various beta-lactam nitrogens have been sulfenylated 
and tosylated, considerable efforts to sulfamylate beta-lactam 
nitrogen (A) were unsuccessful.20-23 The closure of the ring via 
an activated theonine hydroxyl (B), which is the method that 
aztreonam is actually synthesized, led mostly to beta-
elimination to the corresponding dehydro-threonine.24,25 
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Figure 2. Potential routes to key intermediate D.
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The following describes a successful target (D) synthesis 
(Figure 3). Starting with Boc-O-benzyl threonine 5, treatment 
with triflic anhydride (to give 6) followed by reaction with 
tetrabutylammonium azide gave 7.26 Trimethylphosphine 
reduction of the azide produced amino ester 8 in 77 % yield. 
N-sulfonylation with chlorosulfonate 9 to give 10 proved to be 
a difficult step and even after considerable optimization using 
organic solvents and bases only proceeded to sulfamate 10 in 
33% yield. Subsequently, use of Schotten-Bauman conditions 
greatly improved the reaction to >70% yield. Quantitative 
hydrogenolysis of 10 afforded the sulfamate acid 11, which 
smoothly underwent the critical cyclization with TCFH27 (80-
89%) to beta-lactam 12, the key intermediate in the overall 
synthesis. As expected with an activated beta-lactam, 12a 
displayed a strong 1813 cm-1 peak in the infrared spectrum. 
Beta-lactams 12a-c were deprotected in high yield to give 
13a-c, which are one of the two acylation precursors needed to 
provide the desired target prodrugs 4. 

Figure 3. Synthesis of key intermediate 13.
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An alternative synthetic route to an analogous Cbz-
protected version of 12 proceeded from the commercially 
available amino N-sulfate 14 (Figure 4). Following formation 
of the N-Cbz beta-lactam 15, desulfation with TFA afforded 
16. Treatment of 16 with aqueous formic acid afforded 

crystalline amino acid 17. It was necessary to protect the acid 
of 17 as tert-butyl ester to obtain good yields in the following 
N-sulfamation, which proceeds after deprotection to give acid 
19, (the Cbz analog of 11a). Cyclization of 19 to 20 was 
carried out with TFCH as in Figure 3. Both synthetic routes to 
13 were approximately equivalent in yield, and effort required, 
although the route in Figure 4 could be undertaken on a larger 
scale, since the starting material could be purchased on >100g 
amounts. 

Figure 4. Synthesis of key intermediate 20 and 13.
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Though N-activated as beta-lactam sulfamates, both 
protected intermediates 12a-c and 20 proved to be stable, well 
behaved compounds. Deprotection of 12a (MsOH) led to a 
purer product 13a than did hydrogenolysis of 20 
(H2/Pd/MeOH) and was generally used in the balance of the 
syntheses.28 In order to prepare the target prodrug double 
esters, commercially available sidechain tert-butyl ester 21 
was esterified on the free carboxyl with (9H-fluoren-9-
yl)methanol to give 22. The diester was treated with TFA and 
from the resulting neopentyl acid 24 the ethyl ester was 
prepared, and deprotected to afford 26 (Figure 5).  

With the key components in hand (21, 26, 13a-c), efforts to 
convert these into the target compounds were undertaken.29 To 
maintain stability of the final products, the coupled materials 
were kept as the TFA salts, as we observed the heteroaromatic 
amine is nucleophilic enough to attack the activated beta-
lactam. Coupling of amines 13a-c (EDCI) with the individual 
ester sidechains produced the final products 27-29. The tert-
butyl esters 27b, 28b, 29b were deprotected with TFA to give 
free acid as TFA salts 27c, 28c, 29c in 65-71% yields over 
three steps (Boc-deprotection, amide coupling and tert-butyl 
ester deprotection).

Figure 5. Preparation of sidechain esters and acylation
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When the fully elaborated potential prodrugs 28c and 29c 
were treated with carboxyesterase 1 (CES1)30,31 both rapidly 
and cleanly expelled aztreonam in high yields, with compound 
28c releasing aztreonam within 2 min when incubated with 
CES1 and compound 29c requiring ca. 10-20 min for maximal 
release of aztreonam when incubated with CES1 (Table 1). 
Hence, a mechanism as depicted in Figure 6 is proposed for 
aztreonam release with both pro-moieties. In the case of 28c 
the product of release besides aztreonam were 3,3-dimethyl 
tetrahydrofuran (identical to an authentic sample). Esterase 
cleavage of 29c yielded aztreonam and 5,5-
dimethyltetrahydro-2H-pyran-2-one / 5-hydroxy-4,4-
dimethylpentanoic (identical to an authentic sample).32 

Table 1. 

Figure 6. Mechanism of prodrug release with CES1.
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The rise in resistance to the antibiotics which for years were 
the standards of care, has by now compromised them severely. 
In recent years there have been no new safe and effective 
FDA-approved oral antibiotics with broad coverage for serious 
Gram-negative infections. Patients who in past years could 
have been treated with oral antibiotics now have to remain in 
the hospital and be treated with intravenous antibiotics. 
Aztreonam, a still effective Gram-negative antibiotic, has been 
used for 40 years, but its oral bioavailability of ~1% in human 
has restricted its use to hospital settings. Availability of an oral 
version of aztreonam could help fill an important medical need 
and also reduce the cost of treatment. The potential prodrugs 
of aztreonam reported herein are being evaluated for their oral 
bioavailability in animals. Results of these studies will be 
reported in due course. 
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5

Table 1. Release of Aztreonam from Prodrugs using CES1.

Timepoint after treatment with CES1a,b

Prodrug
0 min 1 min 2 min 5 min 10 min 20 min 30 min

27c BQL BQL 4 8 14 23 28
28c BQL 80 >95 >95 >95 >95 >95
29c BQL 24 45 76 86 90 90

a) 0.5 mg of prodrug / mL of 2.5% acetonitrile in 0.05 M citrate buffer at pH 4.7 incubated at 37 °C with 150 Units / mL of 
CES1 enzyme. b) Release of aztreonam as monitored by HPLC reported at each timepoint.
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