

pubs.acs.org/OrgLett

Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on May 15, 2021 at 06:52:40 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Letter

Synthesis of Difluoromethanesulfinate Esters by the Difluoromethanesulfinylation of Alcohols

Yuji Sumii,^{||} Kenta Sasaki,^{||} Okiya Matsubara, and Norio Shibata*

ABSTRACT: Herein, we report the first synthesis of difluoromethanesulfinate esters via the direct difluoromethanesulfinylation of alcohols with $HCF_2SO_2Na/Ph_2P(O)Cl$. Primary, secondary, and tertiary alcohols were converted to the corresponding difluoromethanesulfinate esters in good to excellent yields under mild conditions. The late-stage functionalization of complexed biologically active natural products was also demonstrated. The method was extended to the trifluoromethanesulfinylation of alcohols using CF_3SO_2Na in the presence of a catalytic amount of Me_3SiCl to provide trifluoromethanesulfinate esters.

rganofluorine compounds have gained significant attention in recent decades in the fields of pharmaceuticals and agrochemicals. Although more than 325 fluoropharmaceuticals¹ and 424 fluoro-agrochemicals² have been registered globally since the 1950s, organofluorine compounds are relatively scarce in nature.³ In contrast, organosulfur compounds have a long history as components of pharmaceuticals and agrochemicals due to their abundance in natural products.⁴ As a result, the trifluoromethylthio (SCF₃) group has become an attractive motif in drug design.⁵ Although many SCF₃-containing biologically active compounds have been patented, drug marketing has been limited to agrochemicals, such as monepantel, cefazaflur, toltrazuril, and vaniliprole.² Indeed, currently, no SCF₃-containing pharmaceuticals have been approved for human use. This can be partly attributed to the high lipophilicity of the SCF₃ group $(\pi = 1.44)^6$ because lipophilicity plays a critical role in determining the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of a drug. Although high lipophilicity contributes to good permeability, broad absorption, and good distribution, it also results in low solubility, poor pharmacokinetics, and high toxicity.⁷ Thus, the fine-tuning of the lipophilicity of a drug candidate with minimum structural alterations is of great importance to improving the prospects of clinical success. In this context, difluoromethylthio (SCF₂H) and difluoromethanesulfonyl (SO₂CF₂H) groups have been considered useful tools for the fine adjustment of ADMET properties because both units are hybrids of SCF₃, in addition to being hydrogenbond donor motifs. Some examples of drug candidates containing SCF₂H/SO₂CF₂H units are shown in Figure 1.^{1,2,8}

Inspired by the advantages that the $SCF_3/SCF_2H/SO_2CF_2H$ units can bring to medicinal chemistry, we became interested

Figure 1. Examples of biologically active SCF_2H - and SO_2CF_2H -containing compounds.

in a new motif, viz., the difluoromethanesulfinyl (S(O)CF₂H) group. Due to the presence of a characteristic ionic sulfinyl (S⁺-O⁻) unit, the S(O)CF₂H group possesses a different balance of lipophilicity and hydrophilicity. The estimated log *P* and pK_a values⁹ of PhCH₂O-SCF₂H, PhCH₂O-S(O)CF₂H, and PhCH₂O-SO₂CF₂H are shown in Table S1. It therefore has potential as a novel tool for fine-tuning the ADMET properties of drug candidates. Although various methods have been reported for the preparation of compounds containing the SCF₃,^{5,10} SCF₂H,¹¹ and SO₂CF₂H¹² groups, the prepara-

Received: February 26, 2021 Published: March 19, 2021

tion of $S(O)CF_2H$ -containing compounds has received little attention,¹³ as has the direct introduction of the $S(O)CF_2H$ group.¹⁴ Recently, we achieved the difluoromethylthiolation of carbon nucleophiles through the use of sodium difluoromethanesulfinate (HCF₂SO₂Na) and chlorodiphenylphosphine (Ph₂PCl) in the presence of chlorotrimethylsilane (Me₃SiCl) at a high reaction temperature (Figure 2a).¹⁵ A variety of Csp²

Figure 2. Difluoromethanethiolation vs difluoromethanesulfinylation with HCF_2SO_2Na . (a) Reaction of C-nucleophiles including phenols (previous work). (b) Reaction of alcohols 1 (this work).

and Csp³ nucleophiles, such as indoles, pyrroles, pyrazoles, enamines, ketones, and β -keto esters, were transformed to the corresponding Csp² and Csp³ SCF₂H products in good yields. Even phenols and naphthols, possessing a free OH moiety, were also selectively Csp²-difluoromethylthiolated on the aromatic ring, while the corresponding *O*-SCF₂H products were not detected. This reaction required two moles of both HCF₂SO₂Na and Ph₂PCl to generate *S*-(difluoromethyl)diphenylphosphinothioate (Ph₂P(O)-SCF₂H, I), which is the actual reagent involved in the difluoromethylthiolation reaction.

Thus, we herein report a new system for the difluoromethanesulfinylation of alcohols to provide previously unknown difluoromethanesulfinate esters (Figure 2b). In the presence of HCF_2SO_2Na and $Ph_2P(O)Cl$, a wide variety of alcohols 1, including primary, secondary, and tertiary alcohols, are efficiently converted to the corresponding difluoromethanesulfinate esters 2 (R-OS(O)CF₂H) at room temperature in good to excellent yields (Figure 2b). Although trifluorome-thanesulfinate esters $(R-OS(O)CF_3)^{13f,16}$ and difluorometha-nesulfonate esters $(R-OS(O)_2CF_2H)^{8a,c,13f,17}$ have been previously reported, to the best of our knowledge, this is the first example of the synthesis of difluoromethanesulfinate esters. The mechanistic details of this transformation are revealed by NMR and LC-MS analyses of the reaction mixtures. The developed method is then extended to the trifluoromethanesulfinylation of alcohols 1 using sodium trifluoromethanesulfinate (CF₃SO₂Na) instead of HCF₂SO₂Na to provide trifluoromethanesulfinate esters 3.

Based on reactive species I determined in our previous study¹⁵ (Figure 2a), we initially envisaged that the ideal reactive species II for the difluoromethanesulfinylation reaction could be generated by a 1:1 combination of HCF_2SO_2Na and $Ph_2P(O)Cl$, which subsequently reacts with alcohols 1 to provide difluoromethanesulfinate esters 2 (Scheme 1).

We thus attempted the reaction of alcohol 1a under the optimal conditions for the difluoromethylthiolation reaction in the presence of Me₃SiCl in MeCN but using Ph₂P(O)Cl instead of Ph₂PCl (Table 1). As expected, the desired difluoromethanesulfinate ester, 4-phenylbutyl difluoromethanesulfinate (2a), was obtained in 69% yield (run 1). Subsequent solvent screening (runs 2–5) indicated that

Scheme 1. Generation of Active Species^a

"An expected reactive species II was generated from HCF_2SO_2Na and $Ph_2P(O)Cl$ for the difluoromethanesulfinylation process to yield difluoromethanesulfinate esters 2.

Table 1. Optimization of the Difluoromethane sulfinylation of $1a^a$

	1)	Ph ₂ P(O)Cl (Y ed 30 min. rt. solve	quiv) nt 🌼	~ ~ 0 0	FaH
	HCF ₂ SO ₂ Na —			Solution Sector	
	(X equiv) 2)	4-phenyl-1-buta Me ₂ SiCl (cat.)	nol (1a)	2a	
		3 h, rt			
run	solvent	additive	X (equiv)	Y (equiv)	yield (%) ^b
1	MeCN	Me ₃ SiCl	2.0	2.0	69
2	DCE	Me ₃ SiCl	2.0	2.0	89
3	THF	Me ₃ SiCl	2.0	2.0	57
4	DMF	Me ₃ SiCl	2.0	2.0	50
5	toluene	Me ₃ SiCl	2.0	2.0	93
6	toluene	-	2.0	2.0	98
7	toluene	-	1.5	1.5	88
8	toluene	-	1.0	1.0	62
9	toluene	-	2.0	1.0	90 (89%) ^c
10	toluene	-	1.5	1.0	78
11	toluene	-	1.2	1.0	64

^{*a*}Ph₂P(O)Cl was added to a solution of HCF₂SO₂Na in the desired solvent (1.0 mL). The mixture was stirred at rt for 30 min. A solution of 4-phenyl-1-butanol (1a, 0.2 mmol) in the desired solvent (1.0 mL) and Me₃SiCl (0.02 mmol, 0.1 equiv) were added separately to the mixture and stirred at rt. ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy using fluorobenzene as an internal standard. ^{*c*}Isolated yield.

toluene (run 5) was the best solvent for this transformation, while DCE (run 2, 89%) is not attractive from the view of green chemistry. Interestingly, the reaction did not require the addition of Me₃SiCl, with the desired compound being obtained in 98% yield in the absence of this reagent (run 6). Although the number of equivalents of both HCF₂SO₂Na and Ph₂P(O)Cl could be reduced to 1.5 and 1.0, the yields also reduced gradually (i.e., 88 and 62%, respectively). The molar ratio of HCF₂SO₂Na to Ph₂P(O)Cl was also varied, and it was found that a high yield was maintained using a 2:1 molar ratio (run 9).

With the optimized conditions in hand (run 9, Table 1), the substrate scope of the reaction was investigated (Scheme 2). Benzyl alcohols (1b-1e) were converted to the corresponding difluoromethanesulfinate esters (2b-2e) in good to excellent yields (80-88%). The presence of electron-donating (Me, 1c), halogen (Br, 2d), and electron-withdrawing (NO₂, 1e) substituents was also supported. Primary alcohols (1f, 1g), a secondary alcohol (L-menthol (1h)), and a tertiary alcohol (1-adamantanol (1i)) were also nicely converted to the corresponding esters (2f-2i) in high yields (79–98%). Interestingly, the alkene moiety in 9-decen-1-ol (1g) remained intact under the conditions employed, and the desired difluoromethanesulfinate ester (2g) was obtained in 98% yield.

Late-stage selective functionalization of complexed molecules without an adverse effect on other functional groups in the molecule is a challenge. We thus attempted the

Scheme 2. Substrate Scope for the Difluoromethanesulfinylation of Alcohol 1^a

^{*a*}Reaction conditions: $Ph_2P(O)Cl$ (0.2 mmol, 1.0 equiv) was added to a solution of HCF_2SO_2Na (0.4 mmol, 2.0 equiv) in toluene (1.0 mL), and the mixture was stirred at rt for 30 min. A solution of 2 (0.2 mmol) in toluene (1.0 mL) was then added to the mixture and stirred at rt for 3 h. ^{*b*}Reaction was conducted with 1.0 g (7.7 mmol) of 1f. ^{*c*}4.0 equiv of $Ph_2P(O)Cl$ and 4.0 equiv of HCF_2SO_2Na were used. ^{*d*}2.0 equiv of $Ph_2P(O)Cl$ and 2.0 equiv of HCF_2SO_2Na were used. ^{*c*}Yield was determined by ¹⁹F NMR of the crude product, due to the instability of 2m.

difluoromethanesulfinylation of several biologically active complexed molecules under the optimized conditions. Steroid (1j) was first examined. The corresponding difluoromethanesulfinate ester 2j was obtained in good yield without any damage to the multiple stereocenters. 4-Hydroxy-N-Bocproline (1k) was next converted to the corresponding sulfinyl ester (2k) in 48% yield. For antitumor diterpenoid andrographolide (11), double difluoromethanesulfinylation was observed in two secondary alcohol moieties to furnish the difluoromethanesulfinate diester of andrographolide (2l) in 49% yield. The tertiary alcohol of 10-deacetylbaccatin III (1m), a synthetic intermediate of anticancer drug Paclitaxel, was converted to the sulfinyl ester (2m) in 54% yield. Antiangiogenic fumagillol (1n) gave the corresponding difluoromethanesulfinyl ester (2n) in 40% yield without opening of the reactive epoxy groups. As indicated, a variety of functional groups such as amino, alkene, conjugated alkene, ketone, oxetane, and epoxide were accommodated in the substrates without affecting the sulfinylation process.

We subsequently considered the syntheses of trifluoromethanesulfinate esters 3. While the trifluoromethanesulfinylation of alcohols was seminally reported by Hendrickson and coworkers in 1976^{16a} and improved by Billard and Langlois et al. in 1999,^{16b} we wished to consider our protocol for the trifluoromethanesulfinylation of alcohols **1**. After the brief optimization of reaction conditions (Table S2), we found the reaction in the presence of a catalytic amount of Me_3SiCl to be suitable.

The substrate scope of the difluoromethanesulfinylation was then examined for the same series of alcohols 1 to afford the corresponding trifluoromethylsulfinate esters 3 in good to excellent yields (Scheme 3). Primary, secondary, and tertiary

^{*a*}Reaction conditions: Ph₂P(O)Cl (0.2 mmol, 1.0 equiv) was added to a solution of CF₃SO₂Na (0.4 mmol, 2.0 equiv) in toluene (1.0 mL), and the mixture was stirred at rt for 30 min. A solution of **2** (0.2 mmol) in toluene (1.0 mL) and Me₃SiCl (0.02 mmol, 0.1 equiv) were then added to the mixture and stirred at rt for 3 h. ^{*b*} Yield of **3c** was determined by ¹⁹F NMR of the crude product.

alcohols, including steroid 1j and diterpenoid 1k, were efficiently converted to the desired esters (3h-3k) over a reaction time of 3 h. The structure of 3e was also determined unequivocally by X-ray crystallography.

¹⁹F NMR spectroscopy (Figure 3 and Figure S1 of the Supporting Information (SI)) was then carried out for HCF₂SO₂Na; no peak was observed due to its low solubility in *d*-toluene (Figure 2a). When $Ph_2P(O)Cl$ was added to the solution, a sharp doublet appeared at -118.2 ppm (I = 56.4Hz) within 10 min (Figure 2b), although this signal disappeared upon the addition of alcohol 1a. At this point, product 2a was newly detected as a clear AB quartet (-123.5 and -125.9 ppm, J = 272.1 and 53.6 Hz) (Figure 2c). The sharp doublet observed at -118.2 ppm was therefore considered the active species for this transformation. Furthermore, a new doublet appeared at -125.3 ppm (J = 56.4 Hz), which was confirmed to be $HCF_2S(O)OH 4$ by further ¹⁹F NMR experiments (Figures S2 and S3 in the SI). Interestingly, the doublet at -125.3 ppm then slowly disappeared spontaneously over several hours, as discussed later.

Based on the ¹⁹F NMR analysis and an additional LC-ESI-MS (Figure S4 in the SI), a plausible reaction mechanism was determined, as shown in Figure 3. More specifically, in this mechanism, the first mole of HF_2CSO_2Na reacts with $Ph_2P(O)$ Cl to form the initial intermediate $Ph_2P-O-S(O)CF_2H$ II (detected by LC-ESI-MS) and eliminate NaCl, as detected

Figure 3. ^{19}F NMR experiments in toluene- $d_6.$ (a) HCF_2SO_2Na (2 equiv). (b) The solution of (a) 10 min after the addition of Ph_2P(O) Cl (1 equiv). (c) The solution of (a) 30 min after the addition of alcohol 1a. (d) The solution of (a) 7 h after the addition of alcohol 1a.

visually. Although intermediate II could be considered the reactive species for the difluoromethanesulfinylation of alcohols 1 (path A), this is not the main pathway because the reaction requires 2 equiv of HF_2CSO_2Na for a quantitative conversion. Thus, intermediate II rapidly reacts with the second mole of HF_2CSO_2Na to form a more reactive, symmetrical anhydride $(HCF_2S(O))_2O$ III (detected by LC-ESI-MS) with the release of $Ph_2P(O)ONa$ (detected as $Ph_2P(O)O^-$ by LC-ESI-MS) via path B (Scheme 4). Finally,

anhydride III (presumably corresponding to the signal at -118.2 ppm) reacts with alcohols 1 at room temperature to furnish the desired sulfinate esters 2 with the release of sulfinic acid, HCF₂S(O)OH 4. The unstable HCF₂S(O)OH 4 (observed at -125.3 ppm, as confirmed by ¹⁹F NMR experiments) slowly decomposes into gaseous SO₂ and H₂CF₂, resulting in the disappearance of the doublet at -125.3 ppm. The observation of >50% of 1a when only 1 mol of HF₂CSO₂Na was employed (i.e., 62%, run 8, Table 1) could be explained by the contribution of path **A**, which cannot be fully ruled out. However, the use of 2 equiv of HF₂CSO₂Na promotes the complete transformation. Finally, we note that in the trifluoromethanesulfinylation of 1 Me₃SiCl catalytically activates the symmetrical anhydride, (CF₃S(O))₂O, which is generated from Ph₂P(O)Cl and 2 equiv of CF₃SO₂Na.

In conclusion, we developed a novel difluoromethanesulfinylation of alcohols based on the HF₂CSO₂Na/Ph₂P(O)Cl system. A variety of previously known difluoromethanesulfinate esters, $ROS(O)CF_2H$, were synthesized in good to excellent yields under mild reaction conditions. The late-stage functionalization of biologically active natural products was also demonstrated. This protocol is the first example of the preparation of difluoromethanesulfinate esters. Our method was also extended to the trifluoromethylsulfinylation transformation using CF₃SO₂Na in the presence of a catalytic amount of Me₃SiCl to afford the corresponding trifluoromethanesulfinate esters, $ROS(O)CF_3$, in good to excellent yields. These systems should be considered novel tools for the direct transformation of biologically attractive alcohols into their diand trifluoromethanesulfinate esters. Application of this method for the preparation of a drug library is currently under investigation, and the results will be presented in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c00688.

Tables S1 and S2, Figures S1–S4, experimental procedures, characterization data, and copies of the NMR spectra for products 2 and 3 (PDF)

Accession Codes

CCDC 2056418 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Norio Shibata – Department of Life Science and Applied Chemistry and Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-5888, Japan; Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, China; orcid.org/0000-0002-3742-4064; Email: nozshiba@ nitech.ac.jp

Organic Letters

Letter

Authors

- Yuji Sumii Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-5888, Japan; © orcid.org/0000-0003-3900-1089
- Kenta Sasaki Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-5888, Japan
- Okiya Matsubara Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-5888, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c00688

Author Contributions

^{II}Y.S. and K.S. contributed equally to this work. All authors have approved the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (Grant Number 18H02553). Sodium difluoromethanesulfinate was provided from Juhua Group Ltd. (China), and sodium trifluoromethanesulfinate was provided from Central Glass, Inc. (Japan). We thank Mr. Satoshi Gondo (Nagoya Institute of Technology) for the initial studies.

REFERENCES

 Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega 2020, 5, 10633-10640.
 Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. *iScience* 2020, 23, 101467.

(3) O'Hagan, D.; Deng, H. Enzymatic Fluorination and Biotechnological Developments of the Fluorinase. *Chem. Rev.* **2015**, *115*, 634– 649.

(4) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. Data-Mining for Sulfur and Fluorine: An Evaluation of Pharmaceuticals To Reveal Opportunities for Drug Design and Discovery. *J. Med. Chem.* **2014**, *57*, 2832–2842.

(5) (a) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Synthetic Methods for Compounds Having CF₃–S Units on Carbon by Trifluoromethylation, Trifluoromethylthiolation, Triflylation, and Related Reactions. *Chem. Rev.* **2015**, *115*, 731–764. (b) Ni, C.; Hu, M.; Hu, J. Good Partnership between Sulfur and Fluorine: Sulfur-Based Fluorination and Fluoroalkylation Reagents for Organic Synthesis. *Chem. Rev.* **2015**, *115*, 765–825.

(6) (a) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. Aromatic substituent constants for structure-activity correlations. *J. Med. Chem.* **1973**, *16*, 1207–1216. (b) Yagupol'skii, L. M.; Ilchenko, A. Y.; Kondratenko, N. V. Russ. Chem. Rev. **1974**, *43*, 32–47. (c) Hansch, C.; Leo, A.; Taft, R. W. The Electronic Nature of Fluorine-containing Substituents. Chem. Rev. **1991**, *91*, 165–195.

(7) See Reviews: (a) Waring, M. J. Lipophilicity in Drug Discovery. Drug Discovery 2010, 5, 235–248. (b) Meanwell, N. A. Improving Drug Candidates by Design: a Focus on Physicochemical Properties as a Means of Improving Compound Disposition and Safety. Chem. Res. Toxicol. 2011, 24, 1420–1456. (c) Kramer, C.; Ting, A.; Zheng, H.; Hert, J.; Schindler, T.; Stahl, M.; Robb, G.; Crawford, J. J.; Blaney, J.; Montague, S.; Leach, A. G.; Dossetter, A. G.; Griffen, E. J. Learning medicinal chemistry absorption, distribution, metabolism, excretion, and toxicity (ADMET) rules from cross-company matched molecular pairs analysis (MMPA). J. Med. Chem. 2018, 61, 3277–3292. (d) Johnson, T. W.; Gallego, R. A.; Edwards, M. P. Lipophilic Efficiency as an Important Metric in Drug Design. J. Med. Chem. 2018, 61, 6401–6420. (e) Miller, R. R.; Madeira, M.; Wood, H. B.; Geissler, W. M.; Raab, C. E.; Martin, I. J. Integrating the Impact of Lipophilicity on Potency and Pharmacokinetic Parameters Enables the Use of Diverse Chemical Space during Small Molecule Drug Optimization. J. Med. Chem. 2020, 63, 12156–12170.

(8) (a) Danko, P.; Flury, T.; Hall, R. G.; Karrer, F.; Kienast, H.; Kriz, M.; Leuenberger, K.; Pascual, A.; Steiger, A.; Trah, S. Substituted α-(phenylhydrazono)phenylacetonitrile derivatives. Part 1: A new class of uncoupler of oxidative phosphorylation. *Pest Manage. Sci.* **2006**, *62*, 229–235. (b) Auler, T.; Dietrich, H.; Feucht, D.; Hills, M.; Kehne, H.; Müeller, K.-H.; Waldraff, C. Sulfonylamino(thio)carbonyl Compounds in the form of Herbicides or Plant Growth Regulators. PCT Int. Appl. WO 2006/114221 A1 20060211, 2006. (c) Doyle, K. J.; Duffy, J. E. S.; Geney, R. J. J.; Hardy, D.; Jones, G. P.; Menet, C. J. M.; Palmer, N. J.; Peach, J.; Schmitt, B. A. Imidazo [4, 5 -C] Pyridine Derivatives Useful for the Treatment of Degenerative and Inflammatory Diseases. PCT Int. Appl. WO 2013117645 A1 20130815, 2013.

(9) Yang, Q.; Li, Y.; Yang, J.-D.; Liu, Y.; Zhang, L.; Luo, S.; Cheng, J.-P. Holistic Prediction of pKa in Diverse Solvents Based on Machine Learning Approach Intermediates. *Angew. Chem., Int. Ed.* **2020**, *59*, 19282–19291.

(10) See recent Reviews: (a) Toulgoat, F.; Alazet, S.; Billard, T. Direct Trifluoromethylthiolation Reactions: The "Renaissance" of an Old Concept. Eur. J. Org. Chem. 2014, 2014, 2415-2428. (b) Barata-Vallejo, S.; Bonesi, S.; Postigo, A. Late stage trifluoromethylthiolation strategies for organic compounds. Org. Biomol. Chem. 2016, 14, 7150-7182. (c) Hardy, M. A.; Chachignon, H.; Cahard, D. Advances in Asymmetric Di- and Trifluoromethylthiolation, and Di- and Trifluoromethoxylation Reactions. Asian J. Org. Chem. 2019, 8, 591-609. (d) Lin, Y.-M.; Jiang, L.-Q.; Yi, W.-B. Trifluoromethanesulfonyl-Based Reagents for Direct Trifluoromethylthiolation through Deoxygenative Reduction. Asian. J. Org. Chem. 2019, 8, 627-636. (e) Hamzehloo, M.; Hosseinian, A.; Ebrahimiasl, S.; Monfared, E.; Vessally, A. Direct C-H trifluoromethylthiolation of (hetero)arenes: A review. J. Fluorine Chem. 2019, 224, 52-60. (f) Guo-Liang, X.; Shang-Hua, J.; Xiangdong, S.; Behmagham, F. Recent trends in direct trifluoromethylthiolation of Nsingle bondH bonds. J. Fluorine Chem. 2020, 235, 109524. (g) Li, M.; Xue, X.-S.; Cheng, J.-P. Establishing Cation and Radical Donor Ability Scales of Electrophilic F, CF₃, and SCF₃ Transfer Reagents. Acc. Chem. Res. 2020, 53, 182-197. (h) Huang, Y.; Zhang, M.; Lin, Q.; Weng, Z. [(bpy)CuSCF₃]: A Practical and Efficient Reagent for the Construction of C-SCF3 Bonds. Synlett 2021, 32, 109-118. (i) Yang, X.-H.; Chang, D.; Zhao, R.; Shi, L. Recent Advances and Uses of $(Me_4N)XCF_3$ (X = S, Se) in the Synthesis of Trifluoromethylthiolated and Trifluoromethylselenolated Compounds. Asian J. Org. Chem. 2021, 10, 61-73.

(11) See Reviews and those references: (a) Xiong, H.-Y.; Pannecoucke, X.; Besset, T. Recent Advances in the Synthesis of SCF₂H- and SCF₂FG-Containing Molecules. *Chem. - Eur. J.* **2016**, *22*, 16734–16749. (b) Xiao, X.; Zheng, Z.-T.; Li, T.; Zheng, J.-L.; Tao, T.; Chen, L.-M.; Gu, J.-Y.; Yao, X.; Lin, J.-H.; Xiao, J.-C. Recent Advances in Difluoromethylthiolation. *Synthesis* **2020**, *52*, 197–207. (12) Oxidation of the SCF₂H group. The reaction of difluoromethanesulfonyl chloride or difluoromethanesulfonic anhydride is commonly used for the preparation of SO₂CF₂H.

(13) (a) Zhu, L.; Li, Y.; Ni, C.; Hu, J.; Beier, P.; Wang, Y.; Prakash, G. K. S.; Olah, G. A. Nucleophilic (phenylsulfinyl)difluoromethylation of carbonyl compounds with difluoromethyl phenyl sulfoxide. J. Fluorine Chem. **2007**, 128, 1241–1247. (b) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. New Electrophilic Difluoromethylating Reagent. Org. Lett. **2007**, 9, 1863– 1866. (c) Lin, Y.; Yi, W.; Shen, W.; Lu, G. A Route to α -Fluoroalkyl Sulfides from α -Fluorodiaroylmethanes. Org. Lett. **2016**, 18, 592–595. (d) Batisse, C.; Panossian, A.; Hanquet, G.; Leroux, F. R. Access towards enantiopure α,α -difluoromethyl alcohols by means of sulfoxides as traceless chiral auxiliaries. Chem. Commun. **2018**, 54, 10423–10426. (e) Sokolenko, L. V.; Orlova, R. K.; Filatov, A. A.; Yagupolskii, Y. L.; Magnier, E.; Pégot, B.; Diter, P. General, Practical and Selective Oxidation Protocol for CF_3S into $CF_3S(O)$ Group. *Molecules* **2019**, *24*, 1249. (f) Krishnamurti, V.; Barrett, C.; Prakash, G. K. S. Synthesis and Applications of Fluorinated Sulfoxides (RSORF) and Sulfones (RSO₂RF). In *Emerging Fluorinated Motifs: Synthesis, Properties, and Applications;* Ma, J.-A., Cahard, D., Eds.; Wiley, John Wiley & Sons, Ltd., 2020; pp 477–549.

(14) (a) Zhang, C. P.; Wang, Z. L.; Chen, Q. Y.; Zhang, C. T.; Xiao, J. C. One-pot synthesis of arylfluoroalkylsulfoxides and study of their anomalous ¹⁹F NMR behavior. J. Fluorine Chem. 2010, 131, 433–438.
(b) Arimori, S.; Matsubara, O.; Takada, M.; Shiro, M.; Shibata, N. Difluoromethylsulfonyl Hypervalent Iodonium Ylides for Electrophilic Difluoromethylthiolation Reactions Under Copper Catalysis. R. Soc. Open Sci. 2016, 3, 160102.

(15) Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Difluoromethylthiolation of Phenols and Related Compounds with a $HF_2CSO_2Na/Ph_2PCl/Me_3SiCl$ System. Org. Lett. 2017, 19, 934–937.

(16) (a) Hendrickson, J. B.; Skipper, P. L. Synthetic manipulation of the triflone group: Formation from alcohols, constructions, and conversion to ketones and amines. Tetrahedron 1976, 32, 1627-1635. (b) Billard, T.; Greiner, A.; Langlois, B. R. A new equivalent of the $CF_3S(O)^+$ cation. Synthesis of trifluoromethanesulfinates and trifluoromethanesulfinamides. Tetrahedron 1999, 55, 7243-7250. (c) Hasegawa, A.; Ishikawa, T.; Ishihara, K.; Yamamoto, H. Facile Synthesis of Aryl- and Alkyl-bis(trifluoromethylsulfonyl)methanes. Bull. Chem. Soc. Jpn. 2005, 78, 1401-1410. (d) Suzuki, S.; Kamo, T.; Fukushi, K.; Tokunaga, E.; Sumii, Y.; Shibata, N. Intramolecular aminotrifluoromethanesulfinyloxylation of ω -aminoalkenes by CF₃SO₂Na/Pd(OAc)₂/PhI(OAc)₂/tBuOCl/PivOH system. Synlett 2018, 29, 425-429. (e) Wang, H.; Li, H.; Zheng, Y.; Lian, P.; Wan, X. Rapid Interception of CnF_{2n+1}(O)SO. Radical with Copper-Based Carbene: A Novel Access to Perfluoroalkanesulfinate Ester. Chem.-Eur. J. 2019, 25, 2195-2198.

(17) Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A. From Difluoromethyl 2-Pyridyl Sulfone to Difluorinated Sulfonates: A Protocol for Nucleophilic Difluoro(sulfonato)methylation. *Angew. Chem., Int. Ed.* **2011**, *50*, 2559–2563. Letter