

Catalyst-Free and Solvent-Controlled Reductive Coupling of Activated Vinyl Triflates with Chlorotrimethylsilane by Magnesium Metal and Its Synthetic Application

Hirofumi Maekawa,*[®] Katsuaki Noda, Keisuke Kuramochi, and Tianyuan Zhang

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan

Supporting Information

ABSTRACT: Vinylsilanes were directly prepared from the corresponding vinyl triflates under magnesium-promoted reductive conditions in THF with no transition metal catalyst, and gem-bis-silvlated compounds were obtained in NMP. Investigation of the redox potential of starting materials and products suggested that reductive coupling reactions of vinyl triflates might be controlled by the reduction potential. A variety of gem-bis-silvlated compounds and 3-silvladipic acid esters were easily synthesized in only two steps from vinyl triflates in high yields.

lkyl triflates are typical reagents for substitution reactions A with a good leaving group in synthetic organic chemistry, whereas vinyl triflates can be usually used for substitution only in the presence of a transition metal catalyst.¹ Many examples of transition-metal-catalyzed coupling reactions of vinyl triflates, aryl triflates,² vinyl tosylates,³ aryl tosylates,⁴ and aryl mesylates⁵ can be found in organic synthesis; however, there are few catalyst-free coupling reactions, which have been required for a synthetic process. To our best knowledge, only substitution reactions of vinyl triflates by nucleophilic attack of thiophenol⁶ and electrochemical carboxylation of vinyl triflates⁷ were reported with no transition metal catalyst.

Previous Work	S		Introduction of		
Ph ~ CO ₂ Et	+ e, TMSCI DMF	TMS Ph \sim CO ₂ l R \sim CO ₂ l	eficient carb ≘t Et	oon	
This Work	DMF	Simple in	ntroduction of	two electrophiles	
	Ma. TMSCI	10 6/601/		arborn	
TfO	NMP			TMS TMS	
Ph CO ₂ Et	Mg, TMSCI	TMS Ph CO ₂ E	t Mg, TMSCI	Ph CO ₂ Et	
Transition-m controlled so triflate	netal-free an ubstitution o	d solvent- of vinyl	Mg, E⁺ NMP	TMS E Ph CO ₂ Et	
		Introducti electroph	on of two diff iles to electroi	erent n-deficient	

We already reported reductive coupling reactions between electron-deficient atoms and developed carbon-carbon bond or carbon-silicon bond formation reactions by eco-friendly

carbon

magnesium metal as a reductant.⁸ Ethyl cinnamates can be acylated and silvlated at the β -carbon atom of the carbonyl group under reductive reaction conditions.⁹ In this study, we prepared ethyl cinnamates with a triflate at the β -position of the carbonyl group as starting vinyl triflates from easily available ethyl benzoylacetates¹⁰ and investigated their coupling reactions. In our previous results,⁸ aprotic polar solvents, such as DMF or NMP, were required for magnesium-promoted reductive coupling reactions of aromatic carbonyl compounds or aromatic conjugated carbonyl compounds, whereas reductive coupling did not occur in THF and acetonitrile.

Our first attempt to reduce 1a in NMP, DMF, and DMA succeeded to give gem-bis-silvlated compound 2a as a main product with elimination of the triflate, and a reaction in acetonitrile failed as we predicted (Table 1). Surprisingly,

Table 1. Solvent Effects of Magnesium-Promoted Reductive Silvlation of 1a⁴

TfO Ph CO ₂ Et		MS T ^{CO2Et} + Pi	MS ┐┴╱ ^{CO} ₂Et +	
1a	2	a	3a	4a
			GC yield (%	5)
entry	solvent	2a	3a	4a
1	DMF	44	14	0
2	NMP	63	21	0
3	DMA	51	36	0
4	MeCN		complex mixt	ure
5	THF	0	3 ^b	61 ^{<i>b</i>,<i>c</i>}
^{<i>a</i>} Mg (6 equiv), TMSCl (8 equ	uv), rt, 8 h.	^b Isolated yiel	d. $^{c}Z/E = 5/4$.

Received: February 10, 2018

reductive C–Si bond formation of 1a occurred, accompanied by elimination of the triflate group in THF to afford Z/E isomers of the corresponding vinylsilane selectively. As an example of magnesium-promoted reaction in THF, reductive elimination of a fluorine atom of the trifluoroacetyl group has been reported by Uneyama and co-workers, and there is no direct formation of carbon–carbon and carbon–silicon bonds at the sp² carbon atom.¹¹ The leaving group is one of the most important factors in this coupling reaction in THF, and only triflate gave the substituted compound 4a; mesylate 5 was decomposed in situ, and iodinated compound 6 was recovered quantitatively (Scheme 1). Compounds 1a, 5, and 6 were converted into 2a in good yields in NMP.

Scheme 1. Effects of the Leaving Group in Reductive Substitution of Ethyl Cinnamate Derivatives

2a (63%) 🚽	Condition A	Ph CO ₂ Et	Condition B	4a (70%) <i>Z/E</i> = 10/9
2a (64%) 🚽	Condition A	MsO Ph CO ₂ Et	Condition B	decomposition
2a (54%) ◄	Condition A	Ph CO ₂ Et	Condition B	no reaction
Condition A. N	/a (6 eauiv) ⁻	TMSCI (6 equiv) r	t5hGCvield	

Condition B: Mg (3 equiv), TMSCI (3 equiv), rt, 5 h, isolated yield

After the optimization of reaction conditions in THF and NMP, the general tendency of the reactions was examined, and the results are shown in Table 2. In NMP, about 20% of saturated

Table 2. Reductive	Silylation	of 1 by	y Magnesium	Metal in
NMP ^{<i>a</i>} and THF ^{<i>a</i>}				

TfO	Mg	тмз тм	S	TMS		T	ЛŞ	
Ar		- Ar	CO ₂ Et	+ Ar	~ ^{CO} 2	Et + Ar	, ∠~C	O ₂ Et
	1	2		:	3		4	
	Ar			is	solated	yield (9	%)	
entry	(1)	solvent	:	2	ŝ	3		4
1	Ph	NMP	57	2a	20	3a		
2	(1a)	THF					70	4a ^c
3	$4-ClC_6H_4$	NMP	50	2b	17	3b		
4	(1b)	THF					64	4b ^c
5	$4-CH_3C_6H_4$	NMP	58	2c	21	3c		
6	(1c)	THF					50	$4c^d$
7	$3-FC_6H_4$	NMP	42	2d	22	3d		
8	(1d)	THF					64	4d ^c
9	$3-CH_3OC_6H_4$	NMP	49	2e	27	3e		
10	(1e)	THF					43	4e ^e
11	2-naphthyl	NMP	47	2f	25	3f		
12	(1f)	THF					69	4f
^a Mg (6 equiv), TMSC	Cl (6 equiv	v), rt,	5 h. ^b	Mg (3	equiv)), TMS	SCI (3
equiv)	rt, 5 h. $^{c}Z/E =$	10/9. dZ	L/E =	1/1.	Z/E =	10/7.	$J_Z/E =$	= 5/4.

monosilylation product **3** was detected as a byproduct, which could be directly prepared from reductive silylation of ethyl cinnamate 7 in previous results.^{9a,b} In THF, vinylsilane **4** was obtained as a sole product in good to moderate yield.

Reduction of phenylacetylene derivative 8 was carried out because 1a was regarded as an equivalent of 8; however, it was inert under the same reaction conditions in THF, and a low yield of 2a was obtained in NMP and DMF after complete consumption of 8 (Scheme 2).¹²

Scheme 2. Reaction of Phenylacetylene Derivative under the Same Reduction Conditions

		Mg (3 equiv), TMSCI (3 equiv)	no reaction	
//	CO ₂ Et	THF, rt, 5 h	norea	
Ph	8	Mg (6 equiv), TMSCI (8 equiv)	2 2 (22%)
		NMP, rt, 5 h	2a (~~ /0)

From a total view of the results shown in Table 2 and Schemes 1 and 2, we measured the reduction potential of some starting materials and products in NMP and THF; however, significant peaks could not be detected in THF (Table 3). Reduction of 1a

Table 3. Hypothesis on the Reduction Potential Border of Magnesium-Promoted Reduction in THF Estimated from the Reduction Potential of Some Compounds in NMP^a

-	Reducible	in NMP	~
<i>Reduction potentil</i> Reducible in THF TfO Ph ← CO ₂ Et 1a (-1.36 V) -1.3 -1.4	al border in THF? MsO Ph → CO₂Et 5 (−1.56 CO₂Et −1.50 V) 1 .5 −1.6 − V vs Ag/AgCl in	Y V) Ph∻CC Ph∻CC 1.7 –1.8 1.7 –1.8 n NMP	$MS = \frac{4a}{CO_2Et} + \frac{4a}{CO_2Et} + \frac{2a}{CO_2Et} + \frac{2a}{C$
compound	potential (V)	compound	potential (V)
1a	-1.36	5	-1.56
™S ™S Ph ^X CO₂Et 2a	-	6	-1.50
TMS Ph ^人 →CO₂Et 3a	-	7	-1.83
4 a	-1 89	8	-1 94

^{*a*}Cyclic voltammetry; Pt as working electrode, Pt as counter electrode, Ag/AgCl as reference electrode, NMP as solvent, nBu_4NClO_4 as supporting electrolyte; scan rate = 0.2 V s⁻¹, scan range = 0 to - 3.00 V.

was possible in THF and NMP, and all of the conjugated carbonyl compounds, except **1a**, could not be reduced in THF. Product **4a** was also inert in THF. Therefore, a hypothesis on the magnesium-promoted reduction in THF is proposed from these results; namely, there may be a reduction potential border for the magnesium-promoted reduction in THF, and its value will be around -1.40 V in NMP.¹³ In NMP and DMF, our previous results suggested that the reduction potential limit of magnesium-promoted reduction would be about -2.40 V.⁸ The approximately estimated value on the reduction potential border enabled us to explore a simple way to prepare various functionalized compounds.

First, selective synthesis of 2 from 4 was investigated, and the results are summarized in Table 4. Both Z and E isomers of 4a were converted into the same gem-bis-silylated compound in excellent yield with less monosilylated compound 3a (entries 1 and 2). The other gem-bis-silylated compounds were easily synthesized from compounds 4 (entries 3-7).

Furthermore, application of a two-step strategy to 1 led to the synthetic possibility of compounds attacked by two different electrophiles at the electron-deficient β -carbon atom of the

Table 4. Reductive Synthesis of gem-Bis-silylated Compounds2 from Vinylsilanes 4 in NMP^a

TMS Ar	CO ₂ Et Mg, TMSCI		S CO ₂ Et ₊	TMS Ar	.CO₂Et
	Ar		isolated	yield (%)	
entry	4	2	2	3	3
1	Ph (4a -Z)	84	2a	12	3a
2	Ph (4a - <i>E</i>)	80	2a	17	3a
3	$4-ClC_{6}H_{4}$ (4b-Z)	86	2b	10	3b
4	$4-CH_{3}C_{6}H_{4}$ (4c-Z)	88	2c	8	3c
5	$3-FC_{6}H_{4}(4d-Z)$	85	2d	11	3d
6	$3-CH_{3}OC_{6}H_{4}$ (4e-Z)	86	2e	9	3e
7	2-naphthyl (4f-Z)	79	2f	10	3f
^{<i>a</i>} Mg (3 e	quiv), TMSCl (3 equiv	7), rt, 5 h.			

carbonyl group. Different silylating agents were applied to this coupling reaction to give *gem*-bis-silylated compounds with different silyl groups (9) in high yields, accompanied by a small amount of **3a** as a byproduct (Scheme 3).¹⁴

Scheme 3. Synthesis of *gem*-Bis-silylated Compounds with Different Silyl Groups

TMS	Mg (3 equiv)	R^{1}_{2}	R ² Si	ſMS
Ph	R ¹ ₂ R ² SiCl (3 equiv)		Ph	∠CO₂Et
4a-Z	NMP	9b 9c 9d	(81%) (85%) (83%)	R^1 = Me, R^2 = Bu R^1 = Me, R^2 = Et R^1 = Et, R^2 = Et

Our next target to the coupling reaction of 4 was a new carbon-carbon bond formation at the benzylic position, and methyl acrylate was chosen as a reagent. As shown in Table 5,

 Table 5. Solvent Effects of Magnesium-Promoted Reductive

 and Unsymmetrical Carbon–Carbon Bond Formation

 between 4a and Methyl Acrylate^a

TMS Ph CO ₂ Et 4a-Z	+ 🏷 CO ₂ Me	Mg, TMSCI Ph 10a
entry	solvent	isolated yield (%)
1	DMF	55
2	NMP	83
3	THF	0

 ^{a}Mg (3 equiv), TMSCl (3 equiv), methyl acrylate (4 equiv), -10 °C, 4 h.

unsymmetrical coupling between two different α , β -unsaturated esters in DMF and NMP occurred at β -positions smoothly to give adipic acid ester (**10a**), and NMP was the best solvent.¹⁵

After optimization of the reaction conditions, scope and limitation of this coupling reaction were investigated, as shown in Table 6. Simple and direct coupling reaction between aliphatic α,β -unsaturated ester and aromatic α,β -unsaturated ester 4 proceeded easily to give unsymmetrical adipic acid esters with both an aromatic ring and a silyl group at the 3-position in high yields. The reduction potential of methyl acrylate was measured by cyclic voltammetry, and methyl acrylate showed no significant reduction peak in NMP. This result indicates that methyl acrylate

Table 6. Reductive Carbon–Carbon Bond Formation of Vinylsilane 4 in NMP^{a}

Ar CO ₂ Et	+ 📎 CO ₂ Me	Mg, TMSCI	CO ₂ Me MS CO ₂ Et 10
entry	Ar (4)	isolate	d yield of 10 (%)
1	$4\text{-}\text{ClC}_{6}\text{H}_{4}(\textbf{4b-}Z)$	85	10b
2	$4-CH_{3}C_{6}H_{4}$ (4c-Z)	77	10c
3	$3-FC_{6}H_{4}$ (4d-Z)	69	10d
4	3-CH ₃ OC ₆ H ₄ (4e-Z) 80	10e
5	2-naphthyl (4f-Z)	86	10f
6	$4-FC_{6}H_{4}(4g-Z)$	75	10g
		1 1 1 (

^aMg (3 equiv), TMSCl (3 equiv), methyl acrylate (4 equiv), -10 °C, 4 h.

will be reduced neither in THF nor in NMP, and that the reductive coupling will start from the reduction of aromatic conjugated ester 4.

Plausible reaction mechanisms for a series of coupling reactions are shown in Scheme 4. The most important reaction

Scheme 4. Plausible Reaction Mechanism for Reductive Coupling of Ethyl Cinnamate Derivatives

is the reductive substitution reaction of **1a** by magnesium metal in the presence of chlorotrimethylsilane in THF and NMP (mechanism A). Single electron transfer from magnesium metal to vinyl triflate **1a** in the presence of chlorotrimethylsilane in THF or NMP, followed by elimination of the triflate as an anion and the second electron transfer, will give a vinyl anion (**12**).¹⁶ Silylation of **12** afforded vinylsilane **4a** as Z/E isomers, and no further reaction occurred in THF. The second reductive silylation of **4a** proceeded in NMP to give *gem*-bis-silylated compound **2a** as a main product. Anion **12** will be stabilized by a magnesium ion in THF, such as a vinyl Grignard reagent, whereas **12** may be unstable in NMP and abstract a proton, for

Organic Letters

example, from solvent NMP to give monosily lated compound 3a in part. $^{17}\,$

Isolation of 4a enabled us to explore novel synthetic processes (mechanism B). In NMP, 4a could be reduced by magnesium metal to give an anion radical species (13). An anionic species derived from 13 or 13 itself will attack chlorotrialkylsilane, nucleophilically, or will be subjected to Michael addition to methyl acrylate, respectively.¹⁸ Protonation after the reaction brought about selective formation of *gem*-bis-silylated compounds 9 and adipic acid derivatives 10 in high yields.

In conclusion, magnesium-promoted reductive silylation of aromatic vinyl triflates 1 proceeded with no transition metal catalyst. The reaction could be controlled by the choice of solvent, and this result suggested that the reduction by magnesium in THF would have a potential limit much more positive than that in NMP. Intermediates, vinylsilanes 4, which would be generated in the reduction in NMP were trapped and isolated selectively in the reduction in THF. These phenomena were utilized in the selective introduction of two different electrophiles to the electron-deficient carbon, especially synthesis of *gem*-bis-silylated compounds 2, 9, and 3-silyladipic acid esters 10. Related studies are in progress.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.8b00496.

¹H and ¹³C NMR spectra of **1b**-**f**, **2a**-**f**, **3d**, **3e**, (*Z*)-**4b**-**g**, (*E*)-**4b**-**f**, **5**, **9b**-**d**, and **10a**-**g**, and ¹⁹F NMR spectra of **2d**, **3d**, (*Z*)-**4d**, (*E*)-**4d**, (*Z*)-**4g**, **10d**, and **10g** (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: maekawa@vos.nagaokaut.ac.jp. ORCID [©]

Hirofumi Maekawa: 0000-0002-8192-8518

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by the Japan Society for the Promotion of Science KAKENHI Grant Nos. 25410110 and 16K05768.

REFERENCES

(1) (a) Zou, Y.; Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Chem. - Eur. J.
2013, 19, 3504. (b) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.
(c) Shirakawa, E.; Imazaki, Y.; Hayashi, T. Chem. Lett. 2008, 37, 654.
(d) Shirakawa, E.; Sato, T.; Imazaki, Y.; Kimura, T.; Hayashi, T. Chem. Commun. 2007, 43, 4513. (e) Kacprzynski, M. A.; Kazane, S. A.; May, T. L.; Hoveyda, A. H. Org. Lett. 2007, 9, 3187. (f) Senboku, H.; Kanaya, H.; Tokuda, M. Synlett 2002, 2002, 0140. (g) Jutand, A.; Négri, S. Synlett 1997, 1997, 719.

(2) (a) Hsieh, J.-C.; Chu, Y.-H.; Muralirajan, K.; Cheng, C.-H. Chem. Commun. 2017, 53, 11584. (b) Tasker, S. Z.; Gutierrez, A. C.; Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 1858. (c) Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Angew. Chem., Int. Ed. 2012, 51, 5915. (d) Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 13848. (e) Fristrup, P.; Le Quement, S.; Tanner, D.; Norrby, P.-O. Organometallics 2004, 23, 6160. (f) Olofsson, K.; Larhed, M.; Hallberg, A. J. Org. Chem. 1998, 63, 5076. (g) Jutand, A.; Négri, S. Eur. J. Org. Chem. 1998, 1998, 1811. (h) Jutand, A.; Négri, S.; Mosleh, A. J. Chem. Soc., Chem. Commun. 1992, 1729. (4) (a) Correa, A.; Martin, R. J. Am. Chem. Soc. 2014, 136, 7253.
(b) Zhao, B. Synth. Commun. 2013, 43, 2110. (c) Wang, Z.-Y.; Chen, G.-Q.; Shao, L.-X. J. Org. Chem. 2012, 77, 6608. (d) Murata, M.; Oda, T.; Sogabe, Y.; Tone, H.; Namikoshi, T.; Watanabe, S. Chem. Lett. 2011, 40, 962.

(5) (a) Shen, C.; Yang, G.; Zhang, W. Org. Biomol. Chem. 2012, 10, 3500. (b) Fan, X.-H.; Yang, L.-M. Eur. J. Org. Chem. 2011, 2011, 1467.
(6) (a) Shi, X.; Quintero, E.; Lee, S.; Jing, L.; Herng, T. S.; Zheng, B.; Huang, K.-W.; Lopez Navarrete, J. T.; Ding, J.; Kim, D.; Casado, J.; Chi, C. Chem. Sci. 2016, 7, 3036. (b) Singh, V. K.; Salvatori, P.; Amat, A.; Agrawal, S.; De Angelis, F.; Nazeeruddin, M. K.; Krishna, N. V.; Giribabu, L. Inorg. Chim. Acta 2013, 407, 289.

(7) Senboku, H.; Fujimura, Y.; Kamekawa, H.; Tokuda, M. Electrochim. Acta 2000, 45, 2995.

(8) Recent results: (a) Zhang, T.; Maekawa, H. Org. Lett. 2017, 19, 6602. (b) Maekawa, H.; Okawara, H.; Murakami, T. Tetrahedron Lett. 2017, 58, 206. (c) Zhang, T.; Zhang, Z.; Nishiyama, Y.; Maekawa, H. Tetrahedron 2016, 72, 2293. (d) Maekawa, H.; Nishiyama, Y. Tetrahedron 2015, 71, 6694. (e) Zhang, T.; Takano, A.; Nishiyama, Y.; Maekawa, H. Tetrahedron 2015, 71, 2629. (f) Maekawa, H.; Takano, A.; Watanabe, M. Tetrahedron Lett. 2014, 55, 6208. (g) Maekawa, H.; Kudo, M.; Nishiyama, Y.; Shimizu, K.; Abe, M. Tetrahedron 2014, 70, 2081. (h) Maekawa, H.; Ozaki, T.; Zulkeflee, D.; Murakami, T.; Kihara, S.; Nishiguchi, I. Synlett 2012, 23, 401.

(9) Silylation: (a) Kundu, P. K.; Ghosh, S. K. Tetrahedron 2010, 66, 8562. (b) Ohno, T.; Nakahiro, H.; Sanemitsu, K.; Hirashima, T.; Nishiguchi, I. Tetrahedron Lett. 1992, 33, 5515. (c) Picard, J.-P.; Dunogues, J.; Calas, R. J. Organomet. Chem. 1974, 77, 167. (d) Picard, J.-P. J. Organomet. Chem. 1972, 34, 279. Acylation: (e) Ohno, T.; Sakai, M.; Ishino, Y.; Shibata, T.; Maekawa, H.; Nishiguchi, I. Org. Lett. 2001, 3, 3439. (f) Ohno, T.; Aramaki, H.; Nakahiro, H.; Nishiguchi, I. Tetrahedron 1996, 52, 1943. (g) Lund, H.; Degrand, C. Tetrahedron Lett. 1977, 18, 3593. (h) Shono, T.; Nishiguchi, I.; Ohmizu, H. J. Am. Chem. Soc. 1977, 99, 7396.

(10) Loreto, M. A.; Pompei, F.; Tardella, P. A.; Tofani, D. *Tetrahedron* **1997**, *53*, 15853.

(11) (a) Amii, H.; Hatamoto, Y.; Seo, M.; Uneyama, K. J. Org. Chem. 2001, 66, 7216. (b) Mae, M.; Amii, H.; Uneyama, K. Tetrahedron Lett. 2000, 41, 7893. (c) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K. Chem. Commun. 1999, 1323. (d) Uneyama, K.; Mizutani, G.; Maeda, K.; Kato, T. J. Org. Chem. 1999, 64, 6717.

(12) The yield of 2a in DMF was 18%.

(13) It is impossible to have a precise discussion on the reduction potential of the compounds treated in this reaction because our trial to measure the reduction potential in THF failed, and the reduction potentials of an organic compound in different solvents are not the same, in general. The reduction potential in NMP has been used as a standard to classify compounds.

(14) Monosilylated compound 3a was obtained in 12-13% yield as a byproduct in all cases.

(15) Addition of chlorotrimethylsilane to this C–C bond formation reaction is probably essential to activate the surface of magnesium metal and to stabilize intermediates generated during the reaction. The typical additives for Grignard reactions, such as iodine, iodomethane, and 1,2dibromoethane, were inappropriate for our magnesium-promoted reduction.

(16) In the electron transfer reaction, formation of dianionic species is thought to be unfavorable, and elimination of a triflate from 11 prior to the second electron transfer is adopted in Scheme 4.⁷

(17) In NMP, monosilylated compound 3a may also be generated from an anion radical species 13.

(18) Before hydrolysis, a ketene silyl acetal or a magnesium enolate may be formed in situ.