Accepted Manuscript

Copper-Catalyzed Synthesis of *#*, *#*-Unsaturated Acylamides *via* Direct Amidation from Cinnamic Acids and *N*-Substituted Formamides

Hong Yan, Hailong Yang, Linhua Lu, Defu Liu, Guangwei Rong, Jincheng Mao

PII: S0040-4020(13)01037-5

DOI: 10.1016/j.tet.2013.06.078

Reference: TET 24554

To appear in: Tetrahedron

Received Date: 20 April 2013

Revised Date: 17 June 2013

Accepted Date: 24 June 2013

Please cite this article as: Yan H, Yang H, Lu L, Liu D, Rong G, Mao J, Copper-Catalyzed Synthesis of #, #-Unsaturated Acylamides *via* Direct Amidation from Cinnamic Acids and *N*-Substituted Formamides, *Tetrahedron* (2013), doi: 10.1016/j.tet.2013.06.078.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron journal homepage: www.elsevier.com

Copper-Catalyzed Synthesis of α , β -Unsaturated Acylamides *via* Direct Amidation from Cinnamic Acids and *N*-Substituted Formamides

Hong Yan, Hailong Yang, Linhua Lu, Defu Liu, Guangwei Rong and Jincheng Mao

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

ARTICLE INFO

Article history: Received

ABSTRACT

A highly effective synthesis of α , β -unsaturated acylamides is reported for the first time *via* copper-catalyzed direct amidation between readily available cinnamic acids and *N*-substituted formamides. The protocol was easily accessible and practical.

2009 Elsevier Ltd. All rights reserved.

Received in revised form Accepted Available online

Keywords: Amidation Cinnamamide N-substituted formamide Ligand-free Cinnamic acid

1. Introduction

Figure 1. Examples of molecules containing cinnamamide moiety

 α , β -Unsaturated acylamides, such as cinnamamides and their derivatives, possess many biological activities such as anticonvulsant, antidepressant, analgesic, antiestrogenic and antifungal properties which have been widely applied in agricultural, pharmaceutical and synthetic chemistry since the

19th century.¹⁻⁷ For example, as shown in Figure 1, N-(2hydroxyethyl)cinnamamide (A) was found to show good anticonvulsant activity and also low toxicity;² The natural piperidine derivative (B) showed good insecticidal activity against the fall armyworm, S. frugiperda.³ The genus piperaceae molecules (C) have been widely studied, due to the biological properties of secondary metabolites from these plants.⁴ Compounds (**D**) represent a novel series of potent small molecule inhibitors that not only have excellent in vitro profiles but also have activity in vivo.⁵ In addition, in the course of screening compounds for pharmacological action, it was observed that α phenyl-*N*,*N*-diethyl cinnamamide potentiated nembutal hypnosis in rats.⁶ Furthermore, *N*,*N*-dimethylcinnamamide compounds are potentially antidepressant. It is noteworthy that the *trans*-isomers possess much more pronounced biological activity than do the *cis*-isomers.⁷ Therefore, the essentially pure *trans*-isomers are preferred.

Scheme 1. Our protocol to prepare cinnamamides *via* coupling between cinnamic acids with *N*-substituted formamides.

Tetrahedror

^{*} Corresponding author. Tel (Fax): +86 512 65880403. E-mail address: jcmao@suda.edu.cn (J. Mao)

Tetrahedron

In view of the preparation of cinnamamides, the routine approach is cascade chlorination of cinnamic acid and amination with secondary amines. These chlorination reagents, such as phosphoryl chloride or thionyl chloride, are usually toxic, volatile, irritative and corrosive. Therefore, a more practical and accessible way to synthesize cinnamamides is highly desirable. Recently, our group reported a copper-catalyzed decarboxylative C-H functionalization between cinnamic acids and benzylic molecules.⁸ As a further extension of our work, we have developed an example of copper-catalyzed direct amidation from cinnamic acids and N-substituted formamides to afford various cinnamamides as shown in Scheme 1. It is noteworthy that in this study, N-substituted formamides were used not only as the solvent, but also as an amine source.⁹ Actually, N,Ndimethylformamide (DMF) has been extensively applied to the of preparation amides in different reactions: a) aminocarbonylation of aryl halides using DMF as an amide source;¹⁰ b) direct aminocarbonylation of azoles with DMF via C-H activation;¹¹ c) tandem chlorination and amidation of carboxylic acids in DMF;¹² d) direct amidation of alcohols or aldehydes with DMF.1

2. Results and discussion

Table 1. Optimization of reaction conditions for the synthesis of cinnamamide (**3aa**)^a

~ ~	COOH 0			0
	+ H N	Copper cat.	\bigwedge	[™] N
\checkmark	Π	Oxidant, 12 h, Ar		I
1a	2a			3aa
entry	Copper cat. (mol%)	Oxidant	T (°C)	Yield $(\%)^b$
1	CuI (20)	DTBP	140	48
2	CuBr (20)	DTBP	140	62
3	CuCl (20)	DTBP	140	64
4	Cu ₂ O (20)	DTBP	140	30
5	Cu powder (20)	DTBP	140	47
6	CuO (20)	DTBP	140	9
7	CuBr ₂ (20)	DTBP	140	41
8	CuCl ₂ •2H ₂ O (20)	DTBP	140	45
9	Cu(OAc)2•H2O (20)	DTBP	140	62
10	Cu(acac) ₂ •H ₂ O (20)	DTBP	140	56
11	CuSO ₄ (20)	DTBP	140	82
12	Cu(OTf)2 (20)	DTBP	140	82
13	CuSO ₄ (20)	(NH ₄) ₂ S ₂ O ₈	140	40
14	CuSO ₄ (20)	TBHP	140	75
15	CuSO ₄ (20)	BQ	140	ND
16	CuSO ₄ (20)	DCP	140	58
17	CuSO ₄ (20)	DTBP	150	80
18	CuSO ₄ (20)	DTBP	130	75
19	CuSO ₄ (20)	DTBP	120	78
20	CuSO ₄ (20)	DTBP	100	83
21	CuSO ₄ (20)	DTBP	80	NR
22	CuSO ₄ (10)	DTBP	100	50
23	$CuSO_4(5)$	DTBP	100	40
24 ^c	CuSO ₄ (20)	DTBP	100	71
25	-	DTBP	100	NR
26	CuSO ₄ (20)	_	100	NR

^a Catalytic conditions: cinnamic acid (**1a**) (0.3 mmol), Copper cat., DMF (2 mL), oxidant (2 equiv), 80-140 °C, 12 h, Ar. ^b Isolated yield based on cinnamic acid. ^c In air.

Initially, the model reaction of cinnamic acid (0.3 mmol) with 2 mL of DMF was performed in the presence of CuI (20 mol %) and di-*tert*-butyl peroxide (DTBP) (2 equiv) as the oxidant at 140

^oC under argon atmosphere and *N*,*N*-dimethylcinnamamide was acquired in the yield of 48% (Table 1, entry 1). Among the copper sources screened, most of the copper salts gave moderate yields (entries 1-12). Notably, CuSO₄ and Cu(OTf)₂ showed their best catalytic properties for the amidation (entries 11-12). In view of the cost of these two salts, we chose readily available CuSO₄ as the ideal catalyst. Furthermore, various oxidants were studied, including (NH₄)₂S₂O₈, *tert*-butyl hydroperoxide (TBHP) and dicumyl peroxide (DCP) (entries 13-16), and DTBP proved the best. We found that temperatures in the range from 100 to 150 °C did not influence the model reaction greatly (entries 17-20). However, when the reaction was carried out at 80 °C, no reaction was observed (entry 21). Less copper catalyst led to lower yields of the desired product (entries 22-23). The reaction performed in air afforded a reduced yield of 3aa (entry 24). The control experiments showed that CuSO₄ or DTBP alone could not catalyze the reaction (entries 25-26).

Table 2. Copper-catalyzed amidation between different cinnamic acids (1) with DMF (2a)^a

^a Catalytic conditions: cinnamic acid (**1a**) (0.3 mmol), DMF (**2a**) (2 mL), CuSO₄ (20 mol%), DTBP (2 equiv.), 100 °C, 24 h, Ar. Isolated yield based on cinnamic acid; All of the products were pure *trans*-isomers. ^b 140 °C, 12h.

With the optimized conditions in hand, various cinnamic acids were explored for the amidation reactions at 100–140 °C as shown in Table 2. We were pleased to observe that amidation of the cinnamic acids with electron-withdrawing groups such as 4-Cl, 4-F and 4-CF₃ groups as well as electron-donating groups such as methyl, methoxyl and isopropyl could offer good to excellent yields of corresponding products (**3ba-3la**), and all of the products were the pure *trans*-isomers. However, it is strange to observe that the reaction of (*E*)-4-nitrocinnamic acid afforded the desired product with mixed isomers (*E*/*Z*=10:1) (**3ma**). 1-Naphthylcrylic acid was also a suitable substrate and the desired product was obtained in 82% yield (**3na**). Subsequently, various heterocyclic acrylic acids were investigated in the reaction. 2Furylcrylic acid, 2-thienylcrylic acid and 3-pyridylcrylic acid afforded the corresponding products in moderate to good yields (**30a, 3pa** and **3qa**). When the α -hydrogen of cinnamic acid was substituted by methyl group, the reaction still occurred smoothly (**3ra**).

Table 3. Copper-catalyzed amidation between **1e** with different *N*-substituted formamides (**2**)^a

^a Reaction conditions: 4-isopropylcinnamic acid (**1e**) (0.3 mmol), *N*-substituted formamide (**2**) (2 mL), CuSO₄ (20 mol%), DTBP (2 equiv.), 140 °C, 12 h, Ar. Isolated yield based on cinnamic acid. ^{*b*} 100 °C, 24 h ^{*c*} 48 h. ^{*d*} 24 h

Then, we examined a series of *N*-substituted formamide derivatives and the results were listed in Table 3. It was showed that the longer carbon chain on the N atom resulted in the lower yields of cinnamamides (**3ea** *vs* **3eb** and **3ec**). On the other hand, *N*-formylpyrrolidine, *N*-formylpiperidine and *N*-formylmorpholine afforded the desired products in moderate yields (**3ed**, **3ee** and **3ef**). *N*-Methylformanilide was not suitable for our methodology which probably attributed to the difficulty to destroy the strong conjugation between the amide group and phenyl ring (**3ei**).¹³ For formamide and *N*-methylformamide, neither of them exhibited good reactivities in the reactions with 4-propylcinnamic acid (**3eg** and **3eh**).

Scheme 2. Copper-catalyzed amidation of 2-nitrobenzoic acid with DMF

Scheme 3. Copper-catalyzed amidation between 1a and *N*,*N*-diethylformamide.

To broaden the scope of amidation, 2-nitrobenzoic acid afforded the desired product with a moderate yield using our catalytic system (Scheme 2).¹⁴ Furthermore, *N*,*N*-diethylcinnamamide which showed good activity against Aspergillus niger¹⁵ was obtained in good yield by direct coppercatalyzed amidation between cinnamic acid and *N*,*N*-dimethylformamide (Scheme 3).

Scheme 4. Control experiments and effect of radical inhibitor.

To gain more understanding of this reaction, several experiments were performed (Scheme 4). First, N,N-dimethylthioformamide was employed instead of DMF as the reactant, affording only product **a** in 38% yield whereas decarbonylated product **b** was not observed. This indicated that the carbonyl group of cinnamamide came from cinnamic acid possibly.⁹ When morpholine was used to replace DMF, only a trace of cinnamamide was detected by LC-MS. Radical scavenger TEMPO completely inhibited the reaction at 100 °C whereas the reaction was seriously suppressed at 140 °C. We believe that it might involve a participation of radicals in the catalytic cycle of the reaction.

Scheme 5. The possible mechanism.

Scheme 6. Control experiments to prove the mechanism

Based on previous observations, a plausible mechanism is proposed in Scheme 5. Cu(II) firstly oxidized DTBP and cinnamic acid to create the peroxyester I.¹⁶⁻¹⁸ At the same time, amino radical was generated in situ from DMF.¹³ Secondly, Cu(I) reduced amino radical to the intermediate II through a singleelectron transfer process.¹⁹ Finally, peroxyester I and

Tetrahedron

intermediate II produced the cinnamamide *via* additionelimination. To prove the hypothesis, we exclusively prepared peroxyester I^{20} and treated it with DMF under the foregoing optimized conditions. The expected product was obtained in 75% yield as shown in Scheme 6. However, compared with peroxyester I, ethyl cinnamate was not reacted at all in the same condition.

3. Conclusions

In conclusion, we have developed an efficient and direct method for the synthesis of α , β -unsaturated acylamides from cinnamic acids and *N*-substituted formamides. Both electron-withdrawing and electron-donating groups of the substrates used are well tolerated. In addition, 2-nitrobenzoic acid is also suitable for our catalyst system. It is noteworthy that our protocol is easily accessible and practical: 1) the readily available cinnamic acids could be directly used as the starting materials; 2) our catalyst system is low-cost and ligand-free; 3) the catalytic reaction is highly selective and the desired cinnamic acids were obtained exclusively. Further studies on the mechanism and the application of the reactions are currently in progress.

4. Experiment

4.1 General information

All reactions were carried out under an argon atmosphere condition. Cupric sulfate was purchased from Alfa. Various cinnamic acids and N-substituted formamides were purchased from Aldrich, Acros or Alfa. Column chromatography was generally performed on silica gel (100-200 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light (254 nm) to visualize the course of the reactions. The ¹H (300 MHz or 400 MHz) and ¹³C NMR (75 MHz or 100 MHz) data were recorded on Varian 300 M or 400 M spectrometers using CDCl₃ as solvent. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. ¹H NMR spectra was recorded with tetramethylsilane ($\delta = 0.00$ ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ ($\delta =$ 77.000 ppm) or DMSO-d₆ (δ = 39.500 ppm) as internal reference. ESI-MS and HRMS were performed by the State-authorized Analytical Center in Soochow university.

4.2 General procedure for copper-catalyzed direct amidation between cinnamic acid and *N*-substituted formamide:

CuSO₄ (0.06 mmol) and cinnamic acid (0.3 mmol) were added to a Schlenk tube equipped with a magnetic stir bar under argon atmosphere. Then *N*-substituted formamide (2.0 mL) and DTBP (di-tert-butyl peroxide, 0.6 mmol) were added under Ar. The resulting reaction mixture was kept stirring until TLC monitoring indicated the complete disappearance of the starting material. At the end of the reaction, the reaction mixture was cooled to room temperature and was diluted with ethyl acetate and water was added. The combined organic phase was dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was subjected to column chromatography on silica gel using ethyl acetate and petroleum ether mixtures to afford the corresponding product.

(E)-N,N-Dimethylcinnamamide (3aa)

White solid, m.p. 96-98 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.68 (d, *J* = 15.0 Hz, 1H), 7.52 (s, 2H), 7.35 (s, 2H), 6.90 (d, *J* = 15.0 Hz, 1H), 3.17 (s,3H), 3.07 (s,3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.7, 142.3, 135.3, 129.5, 128.8, 127.8, 117.4, 37.4, 35.9. MS ESI (m/z): [M+H]⁺ calcd for C₁₁H₁₄NO, 176.1; found, 176.1.

(E)-3-(4-Chlorophenyl)-N,N-dimethylacrylamide (3ba)

White solid, m.p. 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.61 (d, *J* = 16.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 16.0 Hz, 1H), 3.16 (s, 3H), 3.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.3, 140.9, 135.2, 133.7, 128.9, 128.9, 117.9, 37.3, 35.9. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₁H₁₂ClNNaO, 232.0500; found, 232.0500.

(E)-3-(4-Fluorophenyl)-N,N-dimethylacrylamide (3ca)

White solid, m.p. 94-96 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.64 (d, J = 15.0 Hz, 1H), 7.54-7.49 (m, 2H), 7.09-7.02 (m, 2H), 6.83 (d, J = 15.0 Hz, 1H), 3.17 (s, 3H), 3.07 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.4, 163.3 (d, J = 201.8 Hz), 140.9, 131.4 (d, J = 2.3 Hz), 129.4 (d, J = 8.3 Hz), 117.0, 115.7 (d, J = 21.8 Hz), 37.3, 35.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₁H₁₃FNO, 194.0976; found, 194.0987.

(E)-N,N-Dimethyl-3-(4-(trifluoromethyl)phenyl)acrylamide (3da)

White solid, m.p. 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, J = 16.0 Hz, 1H), 7.62 (s, 4H), 6.97 (d, J = 16.0 Hz, 1H), 3.19 (s, 3H), 3.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.0, 139.6 (d, J = 136.5 Hz), 131.0 (d, J = 32.3 Hz), 127.9, 125.7 (q, J = 3.5 Hz), 122.1, 119.9, 37.4, 35.9. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₂F₃NNaO, 266.0763; found, 266.0766.

(E)-3-(4-Isopropylphenyl)-N,N-dimethylacrylamide (3ea)

White solid, m.p. 42-44 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, J = 16.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 16.0 Hz, 1H), 3.16 (s, 3H), 3.06 (s, 3H), 2.95-2.86 (m, 1H), 1.25 (d, J = 8.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.8, 150.6, 142.2, 132.9, 127.7, 126.8, 116.3, 37.3, 35.8, 33.9, 23.7. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₄H₁₉NNaO, 240.1359; found, 240.1364.

(E)-N,N-Dimethyl-3-(p-tolyl)acrylamide (3fa)

White solid, m.p. 98-100 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.64 (d, J = 16.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 16.0 Hz, 1H), 3.15 (s, 3H), 3.05 (s, 3H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.9, 142.3, 139.8, 132.6, 129.5, 127.7, 116.3, 37.4, 35.9, 21.4. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₅NNaO, 212.1046; found, 212.1053.

(E)-N,N-Dimethyl-3-(m-tolyl)acrylamide (3ga)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ : 7.65 (d, J = 15.0 Hz, 1H), 7.33-7.23 (m, 3H), 7.17 (s, 1H), 6.88 (d, J = 15.0 Hz, 1H), 3.17 (s, 3H), 3.06 (s, 3H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.6, 142.3, 138.2, 135.1, 130.2, 128.5, 128.2, 124.8, 117.0, 37.2, 35.7, 21.2. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₅NNaO, 212.1046; found, 212.1054.

(E)-3-(4-Methoxyphenyl)-N,N-dimethylacrylamide (3ha)

White solid, m.p. 87-89 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.64 (d, J = 15.0 Hz, 1H), 7.48 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 6.76 (d, J = 15.0 Hz, 1H), 3.81 (s, 3H), 3.15 (s, 3H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.9, 160.7, 141.9, 129.2, 127.9, 114.8, 114.1, 55.2, 37.3, 35.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₂H₁₆NO₂, 206.1176; found, 206.1175.

(E)-3-(2-Methoxyphenyl)-N,N-dimethylacrylamide (3ia)

White solid, m.p. 70-72°C; ¹H NMR (300 MHz, CDCl₃) δ : 7.92 (d, J = 15.0 Hz, 1H), 7.49 (d, J = 6.0 Hz, 1H), 7.30-7.27 (m, 1H), 7.02-6.89 (m, 3H), 3.86 (s, 3H), 3.15 (s, 3H), 3.05 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 167.1, 157.9, 137.6, 130.4, 128.7,

124.1, 120.4, 118.2, 110.9, 55.2, 37.2, 35.6. HRMS ESI (m/z): $[M+Na]^+$ calcd for $C_{12}H_{15}NNaO_2$, 228.0995; found, 228.1003.

(*E*)-3-(3-Methoxyphenyl)-*N*,*N*-dimethylacrylamide (3ja)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.63 (d, J = 16.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 4.0 Hz, 1H), 7.04 (s, 1H), 6.91-6.85 (m, 2H), 3.83 (s, 3H), 3.16 (s, 3H), 3.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.6, 159.8, 142.2, 136.7, 129.7, 120.3, 117.7, 115.0, 113.1, 55.3, 37.4, 35.9. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₂H₁₆NO₂, 206.1176; found, 206.1179.

(E)-3-(3,4-Dimethoxyphenyl)-N,N-dimethylacrylamide (3ka)

White solid, m.p. 93-95 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.61 (d, J = 15.0 Hz, 1H), 7.11 (d, J = 6.0 Hz, 1H), 7.03 (s, 1H), 6.85 (d, J = 6.0 Hz, 1H), 6.75 (d, J = 15.0 Hz, 1H), 3.91 (d, J = 3.0 Hz, 6H), 3.17 (s, 3H), 3.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.9, 150.4, 149.0, 142.3, 128.3, 121.7, 115.1, 111.1, 109.9, 55.9, 37.4, 35.9. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₈NO₃, 236.1281; found, 236.1285.

(*E*)-*N*,*N*-Dimethyl-3-(3,4,5-trimethoxyphenyl)acrylamide (3la) White solid, m.p. 110-112 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.50 (d, *J* = 15.0 Hz, 1H), 6.70 (d, *J* = 18.0 Hz, 3H), 3.80 (d, *J* = 6.0 Hz, 9H), 3.10 (s, 3H), 2.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.4, 153.2, 142.2, 139.3, 130.7, 116.5, 104.8, 60.7, 56.0, 37.3, 35.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₄H₂₀NO₄, 266.1387; found, 266.1395.

N,*N*-Dimethyl-3-(4-nitrophenyl)acrylamide (3ma)

Yellow solid, m.p. 174-180 °C. (*E*)-*N*,*N*-Dimethyl-3-(4nitrophenyl)acrylamide: ¹H NMR (400 MHz, CDCl₃) δ : 8.23 (d, *J* = 8.0 Hz, 2H), 7.71-7.66 (m, 3H), 7.04 (d, *J* = 16.0 Hz, 1H), 3.21 (s, 3H), 3.10 (s, 3H); (*Z*)-*N*,*N*-Dimethyl-3-(4nitrophenyl)acrylamide: ¹H NMR (400 MHz, CDCl₃) δ : 8.18 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 12.0 Hz, 2H), 6.72 (d, *J* = 12.0 Hz, 1H), 6.31 (d, *J* = 12.0 Hz, 1H), 3.01 (s, 3H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.6, 148.0, 141.5, 139.5, 128.3, 124.0, 121.7, 37.4, 36.0. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₁H₁₃N₂O₃, 221.0921; found, 221.0920.

(E)-N,N-Dimethyl-3-(naphthalen-1-yl)acrylamide (3na)

Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.49 (d, J = 16.0 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.57-7.50 (m, 2H), 7.49-7.44 (m, 1H), 6.94 (d, J = 16.0 Hz, 1H), 3.18 (s, 3H), 3.10 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.6, 139.7, 133.6, 133.1, 131.5, 129.7, 128.5, 126.6, 126.1, 125.4, 124.5, 123.8, 120.5, 37.5, 36.0. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₅H₁₅NNaO, 248.1046; found, 248.1046.

(E)-3-(Furan-2-yl)-N,N-dimethylacrylamide (30a)

Brown oil. ¹H NMR (300 MHz, CDCl₃) δ : 7.47-7.36 (m, 2H), 6.81(d, *J* = 15.0 Hz, 1H), 6.55 (s, 1H), 6.45 (s, 1H), 3.16 (s, 3H), 3.06(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.5, 151.6, 143.7, 129.1, 114.8, 113.7, 112.1, 37.3, 35.9. HRMS ESI (m/z): [M+Na]⁺ calcd for C₉H₁₁NNaO₂, 188.0687; found, 188.0694.

(E)-N,N-Dimethyl-3-(thiophen-2-yl)acrylamide (3pa)

Brown solid, m.p. 92-94 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, J = 16.0 Hz, 1H), 7.31 (d, J = 4.0 Hz, 1H), 7.21 (d, J = 4.0 Hz, 1H), 7.04-7.02 (m, 1H), 6.69 (d, J = 16.0 Hz, 1H), 3.14 (s, 3H), 3.05 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.2, 140.4, 135.0, 130.0, 127.8, 127.0, 116.0, 37.3, 35.8. HRMS ESI (m/z): $[M+H]^+$ calcd for C₉H₁₂NOS, 182.0634; found, 182.0639.

(E)-N,N-Dimethyl-3-(pyridin-3-yl)acrylamide (3qa)

Yellow solid, m.p. 100-102 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.76 (d, J = 1.6.0 Hz, 1H), 8.58-8.56 (m, 1H), 7.84-7.81 (m, 1H), 7.65 (d, J = 16.0 Hz, 1H), 7.33-7.30 (m, 1H), 6.98 (d, J = 16.0 Hz, 1H), 3.19 (s, 3H), 3.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 165.9, 150.1, 149.1, 138.5, 134.2, 131.0, 123.5, 119.5, 37.3, 35.9. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₀H₁₃N₂O, 177.1022; found, 177.1014.

(E)-N,N,2-Trimethyl-3-phenylacrylamide (3ra)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.40-7.33 (m, 4H), 7.30-7.28 (m, 1H), 6.55 (s, 1H), 3.07 (s, 6H), 2.12 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.6, 136.0, 133.3, 129.6, 129.0, 128.3, 127.3, 38.7, 34.9, 15.9. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₂H₁₆NO, 190.1226; found, 190.1231.

(E)-N,N-Diethyl-3-(4-isopropylphenyl)acrylamide (3eb)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, J = 16.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 16.0 Hz, 1H), 3.52-3.44 (m, 4H), 2.97- 2.86 (m, 1H), 1.25 (d, J = 8.0 Hz, 9H), 1.19 (t, J = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 165.8, 150.5, 142.2, 133.0, 127.7, 126.8, 116.7, 42.2, 41.0, 33.9, 23.7, 15.0, 13.2. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₆H₂₄NO, 246.1852; found, 246.1854.

(E)-N,N-Dibutyl-3-(4-isopropylphenyl)acrylamide (3ec)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, J = 16.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 16.0 Hz, 1H), 3.44-3.37 (m, 4H), 2.97-2.87 (m, 1H), 1.66-1.54 (m, 4H), 1.42-1.31 (m, 4H), 1.26 (d, J = 8.0 Hz, 6H), 0.99-0.93 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.2, 150.5, 142.1, 133.2, 127.8, 126.8, 116.8, 47.9, 46.7, 34.0, 31.9, 30.1, 23.8, 20.3, 20.1, 13.9, 13.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₂₀H₃₂NO, 302.2478; found, 302.2468.

(*E*)-3-(4-Isopropylphenyl)-1-(pyrrolidin-1-yl)prop-2-en-1-one (3ed)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, J = 16.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.69 (d, J = 16.0 Hz, 1H), 3.64-3.57 (m, 4H), 2.97-2.86 (m, 1H), 2.03-1.96 (m, 2H), 1.92-1.85 (m, 2H), 1.25 (d, J = 8.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 164.8, 150.6, 141.6, 132.8, 127.8, 126.7, 117.7, 46.5, 45.9, 33.9, 26.0, 24.2, 23.7. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₆H₂₂NO, 244.1696; found, 244.1695.

(*E*)-3-(4-Isopropylphenyl)-1-(piperidin-1-yl)prop-2-en-1-one (3ee)

White solid, m.p. 53-55 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.62 (d, J = 16.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 16.0 Hz, 1H), 3.62 (d, J = 28.0 Hz, 4H), 2.96-2.86 (m, 1H), 1.69-1.66 (m, 2H), 1.61-1.57 (m, 4H), 1.25 (d, J = 8.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 165.51, 150.51, 142.14, 133.06, 127.69, 126.78, 116.63, 46.96, 43.29, 33.95, 26.70, 25.56, 24.60, 23.77. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₇H₂₄NO, 258.1852; found, 258.1841.

(*E*)-3-(4-Isopropylphenyl)-1-morpholinoprop-2-en-1-one (3ef) Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, *J* = 16.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 16.0 Hz, 1H), 3.70 (d, *J* = 16.0 Hz, 8H), 2.97-2.87 (m, 1H), 1.26 (d, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ :

6

Tetrahedron

165.7, 150.9, 143.2, 132.7, 127.8, 126.9, 115.4, 66.8, 46.3, 46.1, 42.4, 34.0, 23.7. HRMS ESI (m/z): $[M+H]^+$ calcd for $C_{16}H_{22}NO_2$, 260.1645; found, 260.1646.

(E)-3-(4-Isopropylphenyl)acrylamide (3eg)

White solid, m.p. 195-197 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 7.51 (s, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 16.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.06 (s, 1H), 6.56 (d, J = 16.0 Hz, 1H), 2.94-2.84 (m, 1H), 1.19(d, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 166.9, 150.1, 139.3, 132.6, 127.7, 126.9, 121.3, 33.4, 23.7. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₅NNaO, 212.1046; found, 212.1042.

(E)-3-(4-Isopropylphenyl)-N-methylacrylamide (3eh)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.61 (d, J = 16.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.38 (d, J = 16.0 Hz, 1H), 5.90 (s, 1H), 2.94-2.87 (m, 4H), 1.24 (d, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.2, 151.0, 140.9, 132.7, 128.0, 127.1, 119.8, 34.2, 26.7, 24.0. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₈NO, 204.1383; found, 204.1384.

N,N-Dimethyl-2-nitrobenzamide

Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ : 8.20 (d, J = 6.0 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.41 (d, J = 6 Hz, 1H), 3.17 (s, 3H), 2.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 167.9, 145.1, 134.6, 133.3, 129.7, 128.1, 124.7, 38.2, 34.9. HRMS ESI (m/z): [M+Na]⁺ calcd for C₉H₁₀N₂NaO₃, 217.0584; found, 217.0593.

N,N-Diethylcinnamamide

White solid, m.p. 67-69 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.71 (d, *J* = 16.0 Hz, 1H), 7.54-7.51 (m, 2H), 7.39-7.33 (m, 3H), 6.83 (d, *J* = 16.0 Hz, 1H), 3.52-3.45 (m, 4H), 1.26 (t, *J* = 8.0 Hz, 3H), 1.19 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.9, 142.5, 135.7, 129.6, 128.9, 127.9, 118.0, 42.5, 41.3, 15.3, 13.4. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₈NO, 204.1383; found, 204.1379.

(E)-tert-Butyl 3-phenylprop-2-eneperoxoate (I)

¹H NMR (400 MHz, CDCl₃) δ : 7.75 (d, J = 16.0 Hz, 1H), 7.53 (t, J = 4.0 Hz, 2H), 7.40 (t, J = 3.0 Hz, 3H), 6.41 (d, J = 16.0 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.5, 146.3, 134.2, 130.9, 129.2, 128.4, 113.4, 83.9, 26.4. MS ESI (m/z): [M+Na]⁺ calcd for C₁₃H₁₆NaO₃, 243.1; found, 243.1.

Acknowledgments

We are grateful to the grants from International S&T Cooperation Program of Jiangsu Province (BZ2010048), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Key Laboratory of Organic Synthesis of Jiangsu Province.

References and notes

 (a) Hirsch-Weil, D.; Abboud, K. A.; Hong, S. Chem. Commun. 2010, 46, 7525–7527; (b) Nemoto, T.; Kakei, H.; Gnanadesikan, V.; Tosaki, S.Y.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 14544–14545; (c) Tosaki, S.-Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 2147–2155; (d) Cheung, C. W.; Buchwald, S. L. J. Org. Chem. 2012, 77, 7526– 7537; (e) Lesniak, S.; Nazarski, R. B.; Pasternak, B. Tetrahedron 2009, 65, 6364–6369.

- Guan, L.-P.; Sui, X.; Deng, X.-Q.; Zhao, D.-H.; Qu, Y.-L.; Quan, Z.-S. Med. Chem. Res. 2011, 20, 601–606.
- Castral, T. C.; Matos, A. P.; Monteiro, J. L.; Araujo, F. M.; Bondancia, T. M.; Batista-Pereira, L. G.; Fernandes, J. B.; Vieira, P. C.; da Silva, M. F. G. F.; Correa, A. G. J. Agric. Food Chem. 2011, 59, 4822–4827.
- (a) Kato, M. J.; Furlan, M. Pure Appl. Chem. 2007, 79, 529–538;
 (b) Dyer, L. A.; Dodson, C. D.; Stireman, J. O.; Tobler, M. A.; Smilanich, A. M.; Fincher, R. M.; Letourneau, D. K. J. Chem. Ecol. 2003, 29, 2499–2514; (c) Richards, L. A.; Dyer, L. A.; Smilanich, A. M.; Dodson, C. D. J. Chem. Ecol. 2010, 36, 1105– 1113.
- Slee, D. H.; Romano, S. J.; Yu, J.; Nguyen, T. N.; John, J. K.; Raheja, N. K.; Axe, F. U.; Jones, T. K.; Ripka, W. C. J. Med. Chem. 2001, 44, 2094–2107.
- Para, D.; Schwenk, E.; Villani, F.; Klingsbe, E. J. Am. Chem. Soc. 1950, 72, 3885–3886.
- 7. Smith Kline & French Larboratoryties, **1968**, Patent GB 1131727.
- 8. Yang, H.; Yan, H.; Sun, P.; Zhu, Y.; Lu, L.; Liu, D.; Rong, G. *Chem. Commun.* **2012**, *48*, 7847–7849.
- 9. Ding, S.; Jiao, N. Angew. Chem. Int. Ed. 2012, 51, 9226–9237.
- (a) Wan, Y.; Alterman, M.; Larhed, M.; Hallberg, A. J. Org. Chem. 2002, 67, 6232–6235; (b) Hosoi, K.; Nozaki, K.; Hiyama, T. Org. Lett. 2002, 4, 2849–2851; (c) Tambade, P. J.; Patil, Y. P.; Bhanushali, M. J.; Bhanage, B. M. Tetrahedron Lett. 2008, 49, 2221–2224; (d) Sawant, D. N.; Wagh, Y. S.; Bhatte, K. D.; Bhanage, B. M. J. Org. Chem. 2011, 76, 5489–5494; (e) Ju, J.; Jeong, M.; Moon, J.; Jung, H. M.; Lee, S. Org. Lett. 2007, 9, 4615–4618; (f) Jo, Y.; Ju, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2009, 74, 6358–6361.
- 11. He, T.; Li, H.; Li, P.; Wang, L. Chem. Commun. 2011, 47, 8946– 8948.
- 12. Kumagai, T.; Kawase, T. Tetrahedron 2010, 66, 8968-8973.
- (a) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem. Int. Ed. 2012, 51, 3231–3235; (b) Xu, K.; Hu, Y.; Zhang, S.; Zha, Z.; Wang, Z. Chem. Eur. J. 2012, 18, 9793–9797.
- During our submission, the similar methodology was reported for the synthesis of amides, please see: Kumar, P. S.; Kumar, G. S.; Kumar, R. A.; Reddy, N. V.; Reddy, K. R. *Eur. J. Org. Chem.* 2013, 1218–1222.
- Narasimhan, B.; Belsare, D.; Pharande, D.; Mourya, V.; Dhake, A. Eur. J. Med. Chem. 2004, 39, 827–834.
- Gephart, R. T.; McMullin, C. L.; Sapiezynski, N. G.; Jang, E. S.; Aguila, M. J. B.; Cundari, T. R.; Warren, T. H. J. Am. Chem. Soc. 2012, 134, 17350–17353.
- Rout, S. K.; Guin, S.; Ghara, K. K.; Banerjee, A.; Patel, B. K. Org. Lett. 2012, 14, 3982–3985.
- 18. Rothenberg, G.; Feldberg, L.; Wiener, H.; Sasson, Y. J. Chem. Soc. Perkin Trans. 2 1998, 2, 2429–2434.
- Li, Y.; Xie, Y.; Zhang, R.; Jin, K.; Wang, X.; Duan, C. J. Org. Chem. 2011, 76, 5444–5449.
- Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Chem. Commun. 2011, 47, 10827–10829.

Supporting Information

Copper-Catalyzed Synthesis of α , β -Unsaturated Acylamides via

Direct Amidation from Cinnamic Acids and N-Substituted

Formamides

Hong Yan, Hailong Yang, Linhua Lu, Defu Liu, Guangwei Rong and Jincheng Mao*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical

Engineering and Materials Science Soochow University, Suzhou 215123, P. R. China

Fax: (+86)512-6588-0403

E-mail: jcmao@suda.edu.cn

General Information:

All reactions were carried out under an argon atmosphere condition. Cupric sulfate was purchased from Alfa. Various cinnamic acids and *N*-substituted formamides were purchased from Aldrich, Acros or Alfa. Column chromatography was generally performed on silica gel (100-200 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light (254 nm) to visualize the course of the reactions. The ¹H (300 MHz or 400 MHz) and ¹³C NMR (75 MHz or 100 MHz) data were recorded on Varian 300 M or 400 M spectrometers using CDCl₃ as solvent. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with tetramethylsilane ($\delta = 0.00$ ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ ($\delta = 77.000$ ppm) or DMSO-d₆ ($\delta = 39.500$ ppm) as internal reference in Soochow University.

General procedure for copper-catalyzed direct amidation between cinnamic acid and *N*-substituted formamide: CuSO₄ (0.06 mmol) and cinnamic acid (0.3 mmol) were added to a Schlenk tube equipped with a magnetic stir bar under argon atmosphere. Then *N*-substituted formamide (2.0 mL) and DTBP (di-tert-butyl peroxide, 0.6 mmol) were added under Ar. The resulting reaction mixture was kept stirring until TLC monitoring indicated the complete disappearance of the starting material. At the end of the reaction, the reaction mixture was cooled to room temperature and was diluted with ethyl acetate and water was added. The combined organic phase was dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was subjected to column chromatography on silica gel using ethyl acetate and petroleum ether mixtures to afford the corresponding product.

Characterization of the corresponding products:

(*E*)-*N*,*N*-Dimethylcinnamamide (3aa)

¹H NMR (300 MHz, CDCl₃) δ : 7.68 (d, J = 15.0 Hz, 1H), 7.52 (s, 2H), 7.35 (s, 2H), 6.90 (d, J = 15.0 Hz, 1H), 3.17 (s,3H), 3.07 (s,3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.7, 142.3, 135.3, 129.5, 128.8, 127.8, 117.4, 37.4, 35.9. MS ESI (m/z): [M+H]⁺ calcd for C₁₁H₁₄NO, 176.1; found, 176.1.

(E)-3-(4-Chlorophenyl)-N,N-dimethylacrylamide (3ba)

¹H NMR (400 MHz, CDCl₃) δ : 7.61 (d, J = 16.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 16.0 Hz, 1H), 3.16 (s, 3H), 3.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.3, 140.9, 135.2, 133.7, 128.9, 128.9, 117.9, 37.3, 35.9. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₁H₁₂ClNNaO, 232.0500; found, 232.0500.

(*E*)-3-(4-Fluorophenyl)-*N*,*N*-dimethylacrylamide (3ca)

¹H NMR (300 MHz, CDCl₃) δ : 7.64 (d, J = 15.0 Hz, 1H), 7.54-7.49 (m, 2H), 7.09-7.02 (m, 2H), 6.83 (d, J = 15.0 Hz, 1H), 3.17 (s, 3H), 3.07 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.4, 163.3 (d, J = 201.8 Hz), 140.9, 131.4 (d, J = 2.3 Hz), 129.4 (d, J = 8.3 Hz), 117.0, 115.7 (d, J = 21.8 Hz), 37.3, 35.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₁H₁₃FNO, 194.0976; found, 194.0987.

(E)-N,N-Dimethyl-3-(4-(trifluoromethyl)phenyl)acrylamide (3da)

¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, J = 16.0 Hz, 1H), 7.62 (s, 4H), 6.97 (d, J = 16.0 Hz, 1H), 3.19 (s, 3H), 3.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.0, 139.6 (d, J = 136.5 Hz), 131.0 (d, J = 32.3 Hz), 127.9, 125.7 (q, J = 3.5 Hz), 122.1, 119.9, 37.4, 35.9. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₂F₃NNaO, 266.0763; found, 266.0766.

(E)-3-(4-Isopropylphenyl)-N,N-dimethylacrylamide (3ea)

¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, J = 16.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 16.0 Hz, 1H), 3.16 (s, 3H), 3.06 (s, 3H), 2.95-2.86 (m, 1H), 1.25 (d, J = 8.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.8, 150.6, 142.2, 132.9, 127.7, 126.8, 116.3, 37.3, 35.8, 33.9, 23.7. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₄H₁₉NNaO, 240.1359; found, 240.1364.

(*E*)-*N*,*N*-Dimethyl-3-(p-tolyl)acrylamide (3fa)

¹H NMR (400 MHz, CDCl₃) δ: 7.64 (d, J = 16.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 16.0 Hz, 1H), 3.15 (s, 3H), 3.05 (s, 3H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 166.9, 142.3, 139.8, 132.6, 129.5, 127.7, 116.3, 37.4, 35.9, 21.4. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₅NNaO, 212.1046; found, 212.1053.

(*E*)-*N*,*N*-Dimethyl-3-(*m*-tolyl)acrylamide (3ga)

¹H NMR (300 MHz, CDCl₃) δ : 7.65 (d, J = 15.0 Hz, 1H), 7.33-7.23 (m, 3H), 7.17 (s, 1H), 6.88 (d, J = 15.0 Hz, 1H), 3.17 (s, 3H), 3.06 (s, 3H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.6, 142.3, 138.2, 135.1, 130.2, 128.5, 128.2, 124.8, 117.0, 37.2, 35.7, 21.2. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₅NNaO, 212.1046; found, 212.1054.

(E)-3-(4-Methoxyphenyl)-N,N-dimethylacrylamide (3ha)

¹H NMR (300 MHz, CDCl₃) δ : 7.64 (d, J = 15.0 Hz, 1H), 7.48 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 6.76 (d, J = 15.0 Hz, 1H), 3.81 (s, 3H), 3.15 (s, 3H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.9, 160.7, 141.9, 129.2, 127.9, 114.8, 114.1, 55.2, 37.3, 35.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₂H₁₆NO₂, 206.1176; found, 206.1175.

(E)-3-(2-Methoxyphenyl)-N,N-dimethylacrylamide (3ia)

¹H NMR (300 MHz, CDCl₃) δ : 7.92 (d, J = 15.0 Hz, 1H), 7.49 (d, J = 6.0 Hz, 1H), 7.30-7.27 (m, 1H), 7.02-6.89 (m, 3H), 3.86 (s, 3H), 3.15 (s, 3H), 3.05 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 167.1, 157.9, 137.6, 130.4, 128.7, 124.1, 120.4, 118.2, 110.9, 55.2, 37.2, 35.6. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₅NNaO₂, 228.0995; found, 228.1003.

(E)-3-(3-Methoxyphenyl)-N,N-dimethylacrylamide (3ja)

¹H NMR (400 MHz, CDCl₃) δ : 7.63 (d, *J* = 16.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 4.0 Hz, 1H), 7.04 (s, 1H), 6.91-6.85 (m, 2H), 3.83 (s, 3H), 3.16 (s, 3H), 3.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.6, 159.8, 142.2, 136.7, 129.7, 120.3, 117.7, 115.0, 113.1, 55.3, 37.4, 35.9. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₂H₁₆NO₂, 206.1176; found, 206.1179.

(E)-3-(3,4-Dimethoxyphenyl)-N,N-dimethylacrylamide (3ka)

¹H NMR (300 MHz, CDCl₃) δ : 7.61 (d, *J* = 15.0 Hz, 1H), 7.11 (d, *J* = 6.0 Hz, 1H), 7.03 (s, 1H), 6.85 (d, *J* = 6.0 Hz, 1H), 6.75 (d, *J* = 15.0 Hz, 1H), 3.91 (d, *J* = 3.0 Hz, 6H), 3.17 (s, 3H), 3.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.9, 150.4, 149.0, 142.3, 128.3, 121.7, 115.1, 111.1, 109.9, 55.9, 37.4, 35.9. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₈NO₃, 236.1281; found, 236.1285.

(*E*)-*N*,*N*-Dimethyl-3-(3,4,5-trimethoxyphenyl)acrylamide (3la)

¹H NMR (300 MHz, CDCl₃) δ : 7.50 (d, J = 15.0 Hz, 1H), 6.70 (d, J = 18.0 Hz, 3H), 3.80 (d, J = 6.0 Hz, 9H), 3.10 (s, 3H), 2.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.4, 153.2, 142.2, 139.3, 130.7, 116.5, 104.8, 60.7, 56.0, 37.3, 35.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₄H₂₀NO₄, 266.1387; found, 266.1395.

 O_2N^{\prime}

N,*N*-Dimethyl-3-(4-nitrophenyl)acrylamide (3ma)

(*E*)-*N*,*N*-**Dimethyl-3-(4-nitrophenyl)acrylamide:** ¹H NMR (400 MHz, CDCl₃) δ : 8.23 (d, *J* = 8.0 Hz, 2H), 7.71-7.66 (m, 3H), 7.04 (d, *J* = 16.0 Hz, 1H), 3.21 (s, 3H), 3.10 (s, 3H); (*Z*)-*N*,*N*-**Dimethyl-3-(4-nitrophenyl)acrylamide:** ¹H NMR (400 MHz, CDCl₃) δ : 8.18 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 12.0 Hz, 2H), 6.72 (d, *J* = 12.0 Hz, 1H), 6.31 (d, *J* = 12.0 Hz, 1H), 3.01 (s, 3H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.6, 148.0, 141.5, 139.5, 128.3, 124.0, 121.7, 37.4, 36.0. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₁H₁₃N₂O₃, 221.0921; found, 221.092.

(E)-N,N-Dimethyl-3-(naphthalen-1-yl)acrylamide (3na)

¹H NMR (400 MHz, CDCl₃) δ : 8.49 (d, *J* = 16.0 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.57-7.50 (m, 2H), 7.49-7.44 (m, 1H), 6.94 (d, *J* = 16.0 Hz, 1H), 3.18 (s, 3H), 3.10 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.6, 139.7, 133.6, 133.1, 131.5, 129.7, 128.5, 126.6, 126.1, 125.4, 124.5, 123.8, 120.5, 37.5, 36.0. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₅H₁₅NNaO, 248.1046; found, 248.1046.

(E)-3-(Furan-2-yl)-N,N-dimethylacrylamide (30a)

¹H NMR (300 MHz, CDCl₃) δ : 7.47-7.36 (m, 2H), 6.81(d, J = 15.0 Hz, 1H), 6.55 (s, 1H), 6.45 (s, 1H), 3.16 (s, 3H), 3.06(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.5, 151.6, 143.7, 129.1, 114.8, 113.7, 112.1, 37.3, 35.9. HRMS ESI (m/z): [M+Na]⁺ calcd for C₉H₁₁NNaO₂, 188.0687; found, 188.0694.

(E)-N,N-Dimethyl-3-(thiophen-2-yl)acrylamide (3pa)

¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, *J* = 16.0 Hz, 1H), 7.31 (d, *J* = 4.0 Hz, 1H), 7.21 (d, *J* = 4.0 Hz, 1H), 7.04-7.02 (m, 1H), 6.69 (d, *J* = 16.0 Hz, 1H), 3.14 (s, 3H), 3.05 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.2, 140.4, 135.0, 130.0, 127.8, 127.0, 116.0, 37.3, 35.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₉H₁₂NOS, 182.0634; found, 182.0639.

(E)-N,N-Dimethyl-3-(pyridin-3-yl)acrylamide (3qa)

¹H NMR (400 MHz, CDCl₃) δ: 8.76 (d, J = 1.6.0 Hz, 1H), 8.58-8.56 (m, 1H), 7.84-7.81 (m, 1H), 7.65 (d, J = 16.0 Hz, 1H), 7.33-7.30 (m, 1H), 6.98 (d, J = 16.0 Hz, 1H), 3.19 (s, 3H), 3.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 165.9, 150.1, 149.1, 138.5, 134.2, 131.0, 123.5, 119.5, 37.3, 35.9. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₀H₁₃N₂O, 177.1022; found, 177.1014.

(E)-N,N,2-Trimethyl-3-phenylacrylamide (3ra)

¹H NMR (400 MHz, CDCl₃) δ : 7.40-7.33 (m, 4H), 7.30-7.28 (m, 1H), 6.55 (s, 1H), 3.07 (s, 6H), 2.12 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.6, 136.0, 133.3, 129.6, 129.0, 128.3, 127.3, 38.7, 34.9, 15.9. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₂H₁₆NO, 190.1226; found, 190.1231.

(*E*)-*N*,*N*-Diethyl-3-(4-isopropylphenyl)acrylamide (3eb)

¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, J = 16.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 16.0 Hz, 1H), 3.52-3.44 (m, 4H), 2.97- 2.86 (m, 1H), 1.25 (d, J = 8.0 Hz, 9H), 1.19 (t, J = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 165.8, 150.5, 142.2, 133.0, 127.7, 126.8, 116.7, 42.2, 41.0, 33.9, 23.7, 15.0, 13.2. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₆H₂₄NO, 246.1852; found, 246.1854.

(E)-N,N-Dibutyl-3-(4-isopropylphenyl)acrylamide (3ec)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.68 (d, *J* = 16.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.79 (d, *J* = 16.0 Hz, 1H), 3.44-3.37 (m, 4H), 2.97-2.87 (m, 1H), 1.66-1.54 (m, 4H), 1.42-1.31 (m, 4H), 1.26 (d, *J* = 8.0 Hz, 6H), 0.99-0.93 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) *δ*: 166.2, 150.5, 142.1, 133.2, 127.8, 126.8, 116.8, 47.9, 46.7, 34.0, 31.9, 30.1, 23.8, 20.3, 20.1, 13.9, 13.8. HRMS ESI (m/z): [M+H]⁺ calcd for C₂₀H₃₂NO, 302.2478; found, 302.2468.

(E)-3-(4-Isopropylphenyl)-1-(pyrrolidin-1-yl)prop-2-en-1-one (3ed)

¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, *J* = 16.0 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 16.0 Hz, 1H), 3.64-3.57 (m, 4H), 2.97-2.86 (m, 1H), 2.03-1.96 (m, 2H), 1.92-1.85 (m, 2H), 1.25 (d, *J* = 8.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 164.8, 150.6, 141.6, 132.8, 127.8, 126.7, 117.7, 46.5, 45.9, 33.9, 26.0, 24.2, 23.7. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₆H₂₂NO, 244.1696; found, 244.1695.

(E)-3-(4-isopropylphenyl)-1-(piperidin-1-yl)prop-2-en-1-one (3ee)

¹H NMR (400 MHz, CDCl₃) δ : 7.62 (d, *J* = 16.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 16.0 Hz, 1H), 3.62 (d, *J* = 28.0 Hz, 4H), 2.96-2.86 (m, 1H), 1.69-1.66 (m, 2H), 1.61-1.57 (m, 4H), 1.25 (d, *J* = 8.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 165.51, 150.51, 142.14, 133.06, 127.69, 126.78, 116.63, 46.96, 43.29, 33.95, 26.70, 25.56, 24.60, 23.77. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₇H₂₄NO, 258.1852; found, 258.1841.

(E)-3-(4-Isopropylphenyl)-1-morpholinoprop-2-en-1-one (3ef)

¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, *J* = 16.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 16.0 Hz, 1H), 3.70 (d, *J* = 16.0 Hz, 8H), 2.97-2.87 (m, 1H), 1.26 (d, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.7, 150.9, 143.2, 132.7, 127.8, 126.9, 115.4, 66.8, 46.3, 46.1, 42.4, 34.0, 23.7. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₆H₂₂NO₂, 260.1645; found, 260.1646.

(E)-3-(4-Isopropylphenyl)acrylamide (3eg)

¹H NMR (400 MHz, DMSO-d₆) δ : 7.51 (s, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 16.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.06 (s, 1H), 6.56 (d, J = 16.0 Hz, 1H), 2.94-2.84 (m, 1H), 1.19(d, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 166.9, 150.1, 139.3, 132.6, 127.7, 126.9, 121.3, 33.4, 23.7. HRMS ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₅NNaO, 212.1046; found, 212.1042.

(E)-3-(4-Isopropylphenyl)-N-methylacrylamide (3eh)

¹H NMR (400 MHz, CDCl₃) δ : 7.61 (d, J = 16.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.38 (d, J = 16.0 Hz, 1H), 5.90 (s, 1H), 2.94-2.87 (m, 4H), 1.24 (d, J = 8.0 Hz, 6H); ¹³C

NMR (100 MHz, CDCl₃) δ : 167.2, 151.0, 140.9, 132.7, 128.0, 127.1, 119.8, 34.2, 26.7, 24.0. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₈NO, 204.1383; found, 204.1384.

N,N-Dimethyl-2-nitrobenzamide

¹H NMR (300 MHz, CDCl₃) δ : 8.20 (d, *J* = 6.0 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 6 Hz, 1H), 3.17 (s, 3H), 2.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 167.9, 145.1, 134.6, 133.3, 129.7, 128.1, 124.7, 38.2, 34.9. HRMS ESI (m/z): [M+Na]⁺ calcd for C₉H₁₀N₂NaO₃, 217.0584; found, 217.0593.

N,N-diethylcinnamamide

¹H NMR (400 MHz, CDCl₃) δ : 7.71 (d, *J* = 16.0 Hz, 1H), 7.54-7.51 (m, 2H), 7.39-7.33 (m, 3H), 6.83 (d, *J* = 16.0 Hz, 1H), 3.52-3.45 (m, 4H), 1.26 (t, *J* = 8.0 Hz, 3H), 1.19 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.9, 142.5, 135.7, 129.6, 128.9, 127.9, 118.0, 42.5, 41.3, 15.3, 13.4. HRMS ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₈NO, 204.1383; found, 204.1379.

(E)-tert-Butyl 3-phenylprop-2-eneperoxoate (I)

¹H NMR (400 MHz, CDCl₃) δ : 7.75 (d, J = 16.0 Hz, 1H), 7.53 (t, J = 4.0 Hz, 2H), 7.40 (t, J = 3.0 Hz, 3H), 6.41 (d, J = 16.0 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.5, 146.3, 134.2, 130.9, 129.2, 128.4, 113.4, 83.9, 26.4. MS ESI (m/z): [M+Na]⁺ calcd for C₁₃H₁₆NaO₃, 243.1; found, 243.1.

Copy of HRMS and NMR Spectra for desired products:

-S33-

-S36-

