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ABSTRACT: Visible light-induced decarboxylative sulfonylation of cinnamic acids with aryl sulfonate phenol esters enabled by 
the electron donor-acceptor (EDA) complex is developed. The method offers a mild and green approach for the synthesis of vinyl 
sulfones with excellent functional group compatibility under photocatalyst and oxidant free conditions.

Decarboxylative cross-couplings of carboxylic acids are 
widely used in biological and chemical synthesis1 owing to 
the abundance of carboxylic acids and producing CO2, an 
innocuous compound, as the sole by-product.2 Apart from 
the transition-metal catalyzed decarboxylative processes,3 
recently, visible light-promoted decarboxylative 
functionalization of carboxylic acids or their derivatives has 
attracted considerable research interests due to its high 
efficiency and excellent functional group compatibility.4 
However, most of the developed decarboxylative reactions 
enabled by visible light photoredox catalysis required the use 
of photosensitizers (the polypyridyl metal complexes5 and 
organic dyes6) and the complicated preparation procedures 
make its commercial application obstructed. There is no 
doubt that the development of photocatalyst-free 
decarboxylation reactions is highly desirable, yet a 
challenging goal.7

Vinyl sulfones (α,β-unsaturated sulfones) are commonly 
used subunits in organic compounds and important raw 
materials in the fields ranging from pharmaceuticals to 
materials science.8 They can be further manipulated into 
other useful functional groups due to its chemical 
versatility.9 Consequently, a large number of synthetic 
methodologies have been devoted towards the facile 
synthesis of vinyl sulfones.10 Among the reactions developed, 
decarboxylative sulfonylation of cinnamic acids are one of 
the most attractive methods. In 2014, Guo and co-workers 
reported a vinyl sulfones synthesis through a Cu(II)-
catalyzed decarboxylative sulfonylation of cinnamic acids 
with sodium sulfonates (Scheme 1a).11a Apart from copper, 
other transition metal salts or strong oxidants can also 

promote this transformation with good results (Scheme 
1a).11b-d Similar at the same time, Singh et al. reported a 
I2/TBHP (tert-butyl hydroperoxide)-promoted 
decarboxylative sulfonylation of cinnamic acids with 
sulfonyl hydrazides (Scheme 1b).12 Despite those established 
methodologies are efficient, limitations or drawbacks still 
remain, such as harsh reaction conditions, the requirement of 
strong oxidants or transition-metals. Recently, the group of 
Cai realized a visible light-promoted decarboxylative 
sulfonylation of cinnamic acids with sulfonyl hydrazides by 
using oxygen as the sole terminal oxidant (Scheme 1b).13 
However, eosin Y are required to serve as the photoredox 
catalyst to run the process. It is still an important objective to 
discover new and efficient decarboxylative method to facile 
synthesis of vinyl sulfones from cinnamic acids, especially 
under oxidant and catalyst free reaction conditions.

Scheme 1. Synthesis of Vinyl Sulfones from Cinnamic 
Acids
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Within the frame of our ongoing research interests 
devoted to the development of valuable and efficient radical 
reactions,14 we describe herein a visible light-induced radical 
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decarboxylative sulfonylation of cinnamic acids with aryl 
sulfonate phenol esters (Scheme 1c). It is worth noting that 
photoredox catalyst and oxidant were not required to run the 
reaction and this transformation proceeded at room 
temperature under blue LED irradiation by the formation of 
electron donor-acceptor (EDA) complex.18

Table 1. Reaction Optimization between 1a and 2aa 

Ph COOH +
Cl

OTs Cs2CO3 (3.0 equiv.)
DMA , Ar, rt, 24 h
40 W blue LEDs

Ph Ts

3aa1a 2a

entry deviation from standard conditions yield (%)b

1 None 85
2 DMF instead of DMA 65
3 DMSO instead of DMA 75
4 THF instead of DMA N.R.
5 Acetone instead of DMA N.R.
6 CH3CN instead of DMA N.R.
7 K2CO3 instead of Cs2CO3 trace
8 Na2CO3 instead of Cs2CO3 N.R.
9 K2HPO4 instead of Cs2CO3 N.R.
10 Cs2CO3 (2.0 equiv.) 55
11 2a (2.0 equiv.) 71
12 2a (5.0 equiv.) 87
13 Without Cs2CO3 N.R.
14 In the dark N.R.

MeO

OTs

2b, n.r.

Me

OTs

2c, 10%

F3C

OTs

2e, 51%

NC

OTs

2f, 55% 2i, N.R.

OTs

2d, 42%

H

O2N

OTs

2g, 15%

CF3

OTs

2h, trace

F3C
Ph OTs

a Reaction conditions: Reaction condition: 1a (0.2 mmol, 1.0 
equiv.), 2a (0.6 mmol, 3.0 equiv.), Cs2CO3 (0.6 mmol, 3.0 
equiv.) in DMA (2.0 mL), irradiation by 40 W blue LEDs at 
room temperature for 24 h under argon atmosphere. b Isolated 
yield. 

The optimized reaction condition is displayed in entry 1, 
Table 1. Irradiation of a mixture of (E)-cinnamic acid 1a, 4-
chlorophenyl 4-methylbenzenesulfonate 2a and Cs2CO3 in 
N,N-dimethylacetamide (DMA) at room temperature for 24 
h delivered the desired (E)-1-methyl-4-
(styrylsulfonyl)benzene 3aa in 85% isolated yield. 
Employment of DMSO (dimethyl sulfoxide) and DMF 
(dimethylformamide) as the solvent instead of DMA resulted 
in a decreased yield (Table 1, entries 2 and 3). Switching to 
other reaction medias commonly used in chemical synthesis 
was not productive (Table 1, entries 4-6). It should be 
pointed out that other Brønsted bases, such as K2CO3, 
Na2CO3 and K2HPO4 were not suitable for this 
decarboxylative sulfonylation process (Table 1, entries 7-9). 
Lowering the equivalents of base and tosylate 2a played a 
detrimental role as well (Table 1, entries 10 and 11). 
However, no obviously increased yield was observed by 
increasing the amount of tosylate 2a from 3 equivalents to 5 

equivalents (Table 1, entry 12). Moreover, control 
experiments clearly revealed that the reaction was 
completely shut down in the absence of light or Brønsted 
base (Table 1, entries 13 and 14). Interestingly, it was 
observed that the electronic effect of the tosylates 2 played a 
crucial role for the highly efficient transformation. 
Replacement of the chlorine atom of 2a with other 
substituents ranging from electron donating to electron-
withdrawing in character exhibited less efficiency (2b-2g). 
The aliphatic alcohol derived tosylates 2h and 2i were also 
not suitable for this transformation. 

Scheme 2. Reaction Scope with Respect to Cinnamic 
Acids ab
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Ar1 COOH +
Cl

OTs Cs2CO3 (3.0 equiv.)
DMA , Ar, rt, 24 h
40 W blue LEDs

Ar1 Ts

3aa~3ra1a~1r 2a

R2

3oa, R1 = Me, R2 = H, N.R.
3pa, R1 = H, R2 = -Me, trace

a 1a~1q (0.2 mmol), 2a (0.6 mmol), Cs2CO3 (0.6 mmol) in 
DMA (2.0 mL), irradiation by 40 W blue LEDs at room 
temperature for 24 h under argon atmosphere. b Isolated 
yield.

With the optimal reaction conditions in hand, we next 
set out to investigate the scope with respect to cinnamic 
acids. As the results summarized in Scheme 2, a wide 
range of electron-rich and electron-deficient substituents 
can be successfully introduced at different positions on 
the aryl ring of cinnamic acids, affording the 
corresponding vinyl sulfones 3aa-3ia in good yields. The 
aryl di-substituted cinnamic acids 1j, 1k and aryl tri-
substituted cinnamic acid 1l are also amenable substrates 
for the transformation. Moreover, the mild reaction 
conditions enable a broad range of functional groups to be 
tolerated, including ester (3ca), dimethylamine (3da), 
fluorine (3ea, 3ha), chlorine (3fa), trifluoromethyl (3ga), 
and acetal groups (3ja). The 3,3-diphenylacrylic acid 3n 
is also suitable, albeit with relatively low yield (3na, 
43%). Unfortunately, for the cinnamic acid derivatives 
bearing alkyl substituents at alpha- or beta-carbon (3o-
3q), the reaction was limited.
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Scheme 3. Reaction Scope with Respect to Aryl Sulfonate 
Phenol Esters 2a 
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a1a (0.2 mmol), 2j~2v (0.6 mmol), Cs2CO3 (0.6 mmol) in 
DMA (2.0 mL), irradiation by 40 W blue LEDs at room 
temperature for 24 h under argon atmosphere. b Isolated yield.

Next, the scope of the reaction with respect to aryl 
sulfonate phenol esters 2 was examined (Scheme 3). 
Incorporation of both electron-donating group (-tBu) and 
electron-withdrawing group (-CF3, -Cl, -Br, -I) at the para-
position of Ar2 ring did not affect the reaction efficiency 
apparently, giving the corresponding coupling adducts 3ak-
3ao in good to excellent yields. Moreover, the arylsulfonate 
phenol esters bearing substituents at meta- and ortho-
position were also amenable substrates under the optimum 
condition (3ap, 3aq). Substrates possessing a naphthalenyl 
(2r), quinoline (2s) or thiophene (2t) skeleton were also 
accommodated in the transformation, which demonstrated 
the potential application in the synthesis of the medical 
intermediates. Unfortunately, alkylsulfonates such as 
butylsulfonate and trifluoromethylsulfonate were unreactive 
(2u, 2v).

Scheme 4. Follow-up Chemistry
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  The preparative utility of this method can be further 
demonstrated by investigating the follow-up chemistry as 
shown in Scheme 4. First, a large-scale experiment of 1a (6 
mmol) and 2j (18 mmol) was carried out to give the desired 
product 3aj in 82% isolated yield (Scheme 4a). More 
significantly, the vinyl sulfone products can be easily 
converted to other important organic molecules. For instance, 
conjugate Michael addition of vinyl sulfones with 
benzenemethanethiol15 and pyrrolidine16 was conducted to 
deliver the adduct 4 and 5 in excellent yield (Scheme 4b and 
4c). Vinyl silane 6, a valuable synthetic intermediate, can 
also be easily prepared in high yield with vinyl sulfone as the 
starting material under radical reaction conditions (Scheme 
4d).17

Ph COOH +
Cl

OTs Cs2CO3 (3.0 equiv.)
DMA , Ar, rt, 24 h
40 W blue LEDs

Ph Ts

3aa, trace

(c)

1a 2a TEMPO (2.0 equiv.)

Figure 1. (a) UV-vis experiments; (b) Electronic photos of 
DMA solution with different components; (c) Radical 
trapping experiment.

To confirm the photoactive species of this catalyst-free 
decarboxylative process, a series of optical absorption 
spectra of the solution were recorded. Ultraviolet-visible 
spectroscopy (UV/Vis) measurements were conducted with a 
mixture of stoichiometric amounts of cinnamic acid 1a, aryl 
sulfonate phenol ester 2a, and Cs2CO3 in DMA (Figure 1a). 
The reaction mixture exhibited a clear absorption onset that 
overlaps with the blue LED wavelength, which explained the 
essential role of visible light irradiation. Control experiments 
indicated that no obvious change of the absorption was 
observed when the cinnamic acid 1a was removed from the 
reaction mixture. As shown in Figure 1b, the solution 
developed a yellowish colour change from colourless when 
2a was mixed with Cs2CO3 in DMA, and its optical 
absorption spectra showed a bathochromic displacement in 
the visible region, which is diagnostic of an EDA complex.18 
Furthermore, the radical trapping experiment was conducted 
using the TEMPO (2,2,6,6-tetramethyl-4-piperidinol) as the 
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radical scavenger (Figure 1c). Only trace amount of product 
3aa was observed indicating a radical mechanism.

Scheme 5. Plausible Reaction Mechanism
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Based on the experimental evidence in combination with 
previous literature reports, a plausible reaction mechanism 
was proposed in Scheme 5. Initially, an electron donor-
acceptor (EDA) complex A18,10j was formed between aryl 
sulfonate phenol ester and DMA with the assistance of 
Cs2CO3. Under visible light irradiation, the excited complex 
A* underwent a single electron transfer (SET)19 to deliver 
radical anion species B and carbon-centered radical 
intermediate C. Fragmentation of B provided the sulfonyl 
radical which subsequently added to the double bond of 
cinnamic acid to give benzyl radical D. Single electron 
oxidation of benzyl radical D by excited complex A* 
afforded E and regenerated anion radical B.20 Finally, 
decarboxylation of E produced the final vinyl sulfone 
product 3aa.

In summary, we have developed a visible light-induced 
decarboxylative sulfonylation of cinnamic acids with aryl 
sulfonate phenol esters under photoredox catalyst and 
oxidant free conditions. Mechanistic investigation revealed 
that the EDA complex was formed as the key photoactive 
species in the reaction system. This method provided a green 
and convenient approach for the preparation of important 
vinyl sulfones in good yields with excellent functional group 
compatibility. More importantly, the large-scale reaction and 
the synthetic application of the formed vinyl sulfones to 
other important organic molecules further rendered this 
approach attractive and valuable 

EXPERIMENTAL SECTION

General Information. All reactions involving air- or 
moisture-sensitive reagents or intermediates were carried out 
in pre-heated glassware under an argon atmosphere using 
standard Schlenk techniques. All other solvents and reagents 
were purified according to standard procedures or were used 
as received from Alfa Aesar, TCI, Aldrich, Fluka, Acros or 
ABCR. The starting materials were synthesized according to 
literature procedures. TLC was performed using Merck silica 
gel 60 F-254 plates, detection of compounds with UV light. 
Flash column chromatography (FC) was performed using 
Merck or Fluka silica gel 60 (40-63 µm) applying a pressure 
of about 0.2 bar. 1H NMR and 13C NMR spectra were 
recorded on a Bruker Avance 400 spectrometer at ambient 

temperature. Data for 1H NMR are reported as follows: 
chemical shift (ppm, scale), multiplicity (s = singlet, d = 
doublet, t = triplet, q = quartet, m = multiplet and/or 
multiplet resonances, br = broad), coupling constant (Hz), 
and integration. Data for 13C NMR are reported in terms of 
chemical shift (ppm, scale), multiplicity, and coupling 
constant (Hz). Mass spectra were recorded on a Finnigan 
MAT 4200S, a Bruker Daltonics Micro Tof, a Waters-
Micromass Quatro LCZ (ESI); peaks are given in m/z (% of 
basis peak). All photolytic reactions were performed using 
40 W Kessil Blue LED lamps (PR160-456 nm, 100% 
intensity).

Follow-up Chemistry. Cinnamic acid 1a (1.0 equiv., 6 
mmol), arene sulfonate ester 2 h (3 equiv., 18 mmol), 
Cs2CO3 (3.0 equiv., 18 mmol) were placed in a transparent 
Schlenk tube equipped with a stirring bar. The tube was 
evacuated and filled with argon (three cycles). To these 
solids, anhydrous DMA (50 mL) were added via a gastight 
syringe under argon atmosphere. The reaction mixture was 
stirred under the irradiation of a 40 W blue LEDs at room 
temperature for 24 h. The mixture was quenched with 
saturated NaCl solution and extracted with ethyl acetate (3 x 
50 mL). The organic layers were combined and concentrated 
under vacuo. The product 3ah was purified by flash column 
chromatography on silica gel with petroleum ether/ethyl 
acetate = 10:1 as eluent (1.19 g, 82% yield).

General Procedure for the synthesis of aryl sulfonate 
esters: An oven dried round bottom flask was charged under 
stream of argon with corresponding arenesulfonyl chloride 
(12 mmol, 1.2 equiv.), DCM (40 mL), corresponding phenol 
(10 mmol, 1 equiv.), triethylamine (2.12 mL, 15 mmol, 1.5 
equiv.) and stirred at 0 ℃  until completion (monitored by 
GC/MS). Reaction mixture was then diluted with 40 mL 
H2O and extracted 3 times with 25 mL DCM. Combined 
organic phases were dried over magnesium sulfate, filtered 
through short celite pad and concentrated under reduced 
pressure. Purification by column chromatography (petroleum 
ether/ethyl acetate) afforded corresponding arene sulfonate 
ester.

General Procedure one (GP 1) for the synthesis of 
vinyl sulfones: Cinnamic acid 1 (1.0 equiv., 0.2 mmol), 
arene sulfonate ester 2 (3.0 equiv., 0.6 mmol), Cs2CO3 (3.0 
equiv., 0.6 mmol) were placed in a transparent Schlenk tube 
equipped with a stirring bar. The tube was evacuated and 
filled with argon (three times). Then, anhydrous DMA (2.0 
mL) were added under argon atmosphere. The reaction 
mixture was stirred under the irradiation of a 40 W blue 
LEDs at room temperature for 24 h. After that, the mixture 
was quenched with sat. NaCl solution and extracted with 
ethyl acetate (3 x 10 mL). The combined organic layers were 
dried over Na2SO4 and concentrated under vacuo. The crude 
product was purified by flash column chromatography on 
silica gel with a mixture of petroleum ether and ethyl acetate 
as eluent.

3,3-diphenylacrylic acid (1n)21

COOH
Ph

Ph

1n was synthesized according to the reported procedure as 
white solid (1.38g, 62%). Eluent: petroleum ether/ethyl 
acetate/acetic acid = 2:2:0.01. 1H NMR (400 MHz, CDCl3) δ 
10.28 (s, 1H), 7.38 – 7.17 (m, 10H), 6.31 (s, 1H). 13C{1H} 
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5

NMR (101 MHz, CDCl3) δ 171.2, 159.0, 140.8, 138.4, 
129.7, 129.3, 128.7, 128.5, 128.4, 127.9, 116.5. 
(E)-3-phenylbut-2-enoic acid (1o)22

COOH
Ph

1o was synthesized according to the reported procedure as 
white solid (1.54g, 95%). Eluent: petroleum ether/ethyl 
acetate/acetic acid = 2:2:0.01. 1H NMR (400 MHz, CDCl3) δ 
7.53 – 7.47 (m, 2H), 7.42 – 7.37 (m, 3H), 6.20 – 6.16 (m, 
1H), 2.61 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 172.1, 
158.5, 142.0, 129.3, 128.5, 126.4, 116.4, 18.3. 

4-chlorophenyl 4-methylbenzenesulfonate (2a)23

Cl

O
S

O

O

2a was synthesized according to the General Procedure as a 
white solid in 95% yield (2.68 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.69 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.27 – 7.21 
(m, 2H), 6.96 – 6.87 (m, 2H), 2.45 (s, 3H). 13C{1H} NMR 
(101 MHz, CDCl3) δ 148.0, 145.6, 132.7, 132.0, 129.8, 
129.7, 128.5, 123.7, 21.7. 

4-methoxyphenyl 4-methylbenzenesulfonate (2b)24

OMe

O
S

O

O

2b was synthesized according to the General Procedure as 
a white solid in 86% yield (2.39 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.68 (d, J = 10.2 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 6.92 – 
6.84 (m, 2H), 6.80 – 6.73 (m, 2H), 3.76 (s, 3H), 2.44 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3) δ 158.2, 145.2, 143.1, 
132.4, 129.6, 128.5, 123.3, 114.4, 55.5, 21.6.

p-tolyl 4-methylbenzenesulfonate (2c)24

Me

O
S

O

O

2c was synthesized according to the General Procedure as 
a white solid in 90% yield (2.36 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.70 (d, J = 7.7 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 7.06 (d, J = 
7.9 Hz, 2H), 6.85 (d, J = 7.7 Hz, 2H), 2.44 (s, 3H), 2.30 (s, 
3H). 13C{1H} NMR (101 MHz, CDCl3) δ 147.5, 145.1, 136.9, 
132.5, 130.0, 129.6, 128.5, 122.0, 21.6, 20.8.

phenyl 4-methylbenzenesulfonate (2d)24

O
S

O

O

2d was synthesized according to the General Procedure as 
a white solid in 96% yield (2.38 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.74 – 7.66 (m, 2H), 7.34 – 7.20 (m, 5H), 6.99 – 6.96 (m, 
2H), 2.44 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 149.6, 
145.3, 132.4, 129.7, 129.6, 128.5, 127.1, 122.4, 21.7.

4-(trifluoromethyl)phenyl 4-methylbenzenesulfonate (2e) 

25

CF3

O
S

O

O

2e was synthesized according to the General Procedure as 
a white solid in 92% yield (2.91 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.72 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.34 (d, J = 

8.0 Hz, 2H), 7.12 (d, J = 8.5 Hz, 2H), 2.46 (s, 3H). 13C{1H} 
NMR (101 MHz, CDCl3) δ 151.9, 145.8, 132.0, 129.9, 129.3 
(d, J = 33.0 Hz), 128.5, 127.0 (q, J = 3.7 Hz), 123.5 (d, J = 
272.2 Hz), 122.8, 21.7.

4-cyanophenyl 4-methylbenzenesulfonate (2f) 26

CN

O
S

O

O

2f was synthesized according to the General Procedure as 
a white solid in 68% yield (1.86 g). Eluent: petroleum 
ether/ethyl acetate = 5:1. 1H NMR (400 MHz, CDCl3) δ 7.74 
– 7.69 (m, 2H), 7.64 – 7.59 (m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 
7.17 – 7.10 (m, 2H), 2.46 (s, 3H). 13C{1H} NMR (101 MHz, 
CDCl3) δ 152.5, 146.1, 133.9, 131.8, 130.0, 128.4, 123.4, 
117.7, 111.1, 21.7.

4-nitrophenyl 4-methylbenzenesulfonate (2g)

NO2

O
S

O

O

2g was synthesized according to the General Procedure as 
a white solid in 85% yield (2.5 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
8.24 – 8.15 (m, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.1 
Hz, 2H), 7.19 (d, J = 9.2 Hz, 2H), 2.47 (s, 3H). 13C NMR 
(101 MHz, CDCl3) δ 153.9, 146.2, 146.1, 131.7, 130.1, 
128.4, 125.4, 123.2, 21.7. HRMS (ESI) exact mass 
calculated for C13H12NO5S: 294.0431 ([M+H]+), found: 
294.0430.

1,1,1,3,3,3-hexafluoropropan-2-yl 4-
methylbenzenesulfonate (2h)27

O
S

O

O

CF3

CF3

2h was synthesized according to 2j was synthesized 
according to the General Procedure as a colorless liquid in 
95% yield (3.06 g). Eluent: petroleum ether/ethyl acetate = 
10:1. 1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.4 Hz, 2H), 
7.30 (d, J = 8.1 Hz, 2H), 5.25 – 5.14 (m, 1H), 2.38 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 146.66 (s), 130.15 (s), 128.14 
(s), 120.1 (q, J = 282 Hz), 72.1 (septet, J = 32.5 Hz).

3-phenylpropyl 4-methylbenzenesulfonate (2i)28

O
S

O

O Ph

2i was synthesized according to the reported procedure as 
a colorless liquid (2.41g, 83%). Eluent: petroleum ether/ethyl 
acetate = 10:1.1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.3 
Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.25 – 7.14 (m, 3H), 7.09 
– 7.01 (m, 2H), 4.01 (t, J = 6.2 Hz, 2H), 2.67 – 2.57 (m, 2H), 
2.43 (s, 3H), 2.00 – 1.85 (m, 2H). 13C NMR (101 MHz, 
CDCl3) δ 144.8, 140.4, 133.1, 129.9, 128.5, 128.4, 127.9, 
126.1, 69.7, 31.4, 30.4, 21.6.

4-chlorophenyl benzenesulfonate (2j) 23

Cl

O
S

O

O

2j was synthesized according to the General Procedure as 
a white solid in 95% yield (2.55 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.84 – 7.82 (m, 2H), 7.72 – 7.64 (m, 1H), 7.58 – 7.50 (m, 
2H), 7.28 – 7.21 (m, 2H), 6.95 – 6.87 (m, 2H). 13C{1H} 
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6

NMR (101 MHz, CDCl3) δ 147.9, 135.0, 134.4, 132.9, 
129.7, 129.2, 128.5, 123.7.

4-chlorophenyl 4-(tert-butyl)benzenesulfonate (2k)

Cl

O
S

O

O

t-Bu
2k was synthesized according to the General Procedure as 

a white solid in 81% yield (2.62 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.75 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.7 Hz, 2H), 7.29 – 
7.22 (m, 2H), 6.98 – 6.91 (m, 2H), 1.35 (s, 9H). 13C{1H} 
NMR (101 MHz, CDCl3) δ 158.6, 148.0, 132.7, 132.0, 
129.7, 128.3, 126.2, 123.7, 35.3, 31.0. HRMS (ESI) exact 
mass calculated for C16H18ClO3S: 325.0660 ([M+H]+), 
found: 325.0662.

4-chlorophenyl 4-(trifluoromethyl)benzenesulfonate (2l)

Cl

O
S

O

O

F3C

2l was synthesized according to the General Procedure as 
a white solid in 88% yield (2.96 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.98 (d, J = 8.2 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H), 7.34 – 7.24 
(m, 2H), 6.99 – 6.91 (m, 2H). 13C{1H} NMR (101 MHz, 
CDCl3) δ 147.6, 138.6, 136.0 (q, J = 33.4 Hz), 133.3, 130.0, 
129.1, 126.4 (q, J = 3.7 Hz), 123.6, 122.9 (d, J = 273.3 Hz). 
HRMS (ESI) exact mass calculated for C13H9ClF3O3S: 
336.9908 ([M+H]+), found: 336.9912.

4-chlorophenyl 4-chlorobenzenesulfonate (2m) 23

Cl

O
S

O

O

Cl
2m was synthesized according to the General Procedure as a 
white solid in 75% yield (2.26 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.80 – 7.72 (m, 2H), 7.55 – 7.46 (m, 2H), 7.32 – 7.23 (m, 
2H), 6.98 – 6.89 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) 
δ 147.8, 141.2, 133.5, 133.1, 129.9, 129.6, 123.6. (One 
carbon is overlapped).

4-chlorophenyl 4-bromobenzenesulfonate (2n) 23

Cl

O
S

O

O

Br
2n was synthesized according to the General Procedure as 

a white solid in 78% yield (2.70 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.68 (s, 4H), 7.29 – 7.23 (m, 2H), 6.97 – 6.90 (m, 2H). 
13C{1H} NMR (101 MHz, CDCl3) δ 147.8, 134.0, 133.1, 
132.6, 129.9, 129.3, 123.6, 116.8.

4-chlorophenyl 4-iodobenzenesulfonate (2o)

Cl

O
S

O

O

I
2o was synthesized according to the General Procedure as 

a white solid in 71% yield (2.80 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.93 – 7.87 (m, 2H), 7.55 – 7.48 (m, 2H), 7.30 – 7.24 (m, 
2H), 6.98 – 6.89 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) 
δ 147.8, 138.5, 134.7, 133.1, 129.9, 129.6, 123.5, 102.5. 

HRMS (ESI) exact mass calculated for C12H9ClIO3S: 
394.9000 ([M+H]+), found: 394.9000.

4-chlorophenyl 3-chlorobenzenesulfonate (2p)

Cl

O
S

O

O

Cl
2p was synthesized according to the General Procedure as 

a white solid in 75% yield (2.25 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.84 (t, J = 1.8 Hz, 1H), 7.75 – 7.64 (m, 2H), 7.50 (d, J = 8.0 
Hz, 1H), 7.33 – 7.22 (m, 2H), 6.99 – 6.92 (m, 2H). 13C NMR 
(101 MHz, CDCl3) δ 147.7, 136.6, 135.6, 134.6, 133.1, 
130.6, 129.9, 128.4, 126.6, 123.6. HRMS (ESI) exact mass 
calculated for C12H9Cl2O3S: 302.9644 ([M+H]+), found: 
302.9644.

4-chlorophenyl 2-chlorobenzenesulfonate (2q)

Cl

O
S

O

OCl

2q was synthesized according to the General Procedure as 
a white solid in 81% yield (2.43 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.95 – 7.88 (m, 1H), 7.66 – 7.54 (m, 2H), 7.40 –7.36 (m, 1H), 
7.30 – 7.22 (m, 2H), 7.11 – 7.04 (m, 2H). 13C NMR (101 
MHz, CDCl3) δ 147.7, 135.4, 133.3, 133.1, 133.0, 132.5, 
132.2, 129.8, 127.1, 123.4. HRMS (ESI) exact mass 
calculated for C12H9Cl2O3S: 302.9644 ([M+H]+), found: 
302.9644.

4-chlorophenyl naphthalene-2-sulfonate (2r)

Cl

O
S

O

O

2r was synthesized according to the General Procedure as 
a colorless solid in 85% yield (2.70 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 13C{1H} NMR (101 MHz, CDCl3) 
δ 148.0, 135.5, 132.9, 131.9, 131.8, 130.6, 129.8, 129.7, 
129.6, 128.1, 128.0, 123.7, 122.8 (One carbon is overlapped). 
HRMS (ESI) exact mass calculated for C16H12ClO3S: 
319.0190 ([M+H]+), found: 319.0193.

4-chlorophenyl quinoline-8-sulfonate (2s)

Cl

O
S

O

ON

2s was synthesized according to the General Procedure as 
a white solid in 72% yield (2.30 g). Eluent: petroleum 
ether/ethyl acetate = 5:1. 1H NMR (400 MHz, CDCl3) δ 9.23 
(dd, J = 4.2, 1.7 Hz, 1H), 8.37 (dd, J = 7.4, 1.3 Hz, 1H), 8.31 
(dd, J = 8.4, 1.7 Hz, 1H), 8.15 (dd, J = 8.2, 1.3 Hz, 1H), 7.66 
– 7.55 (m, 2H), 7.22 – 7.13 (m, 2H), 7.05 – 6.95 (m, 2H). 
13C{1H} NMR (101 MHz, CDCl3) δ 152.4, 148.3, 144.0, 
136.7, 135.6, 134.2, 132.6, 129.6, 129.0, 125.3, 123.6, 122.7, 
116.8. HRMS (ESI) exact mass calculated for C15H11ClNO3S: 
320.0143 ([M+H]+), found: 320.0141.

4-chlorophenyl thiophene-2-sulfonate (2t)

Cl

O
S

O

O

S
2t was synthesized according to the General Procedure as 

a white solid in 65% yield (1.78 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
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7.74 (dd, J = 5.0, 1.3 Hz, 1H), 7.59 (dd, J = 3.8, 1.3 Hz, 1H), 
7.31 – 7.25 (m, 2H), 7.12 (dd, J = 5.0, 3.9 Hz, 1H), 7.02 – 
6.94 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 148.0, 
135.6, 134.9, 134.2, 133.1, 129.8, 127.6, 123.6. HRMS (ESI) 
exact mass calculated for C10H8ClO3S2: 274.9598 ([M+H]+), 
found: 274.9601.

4-chlorophenyl trifluoromethanesulfonate (2u)29

Cl

O
S

O

O

F3C

2u was synthesized according to the General Procedure as 
a colorless liquid in 90% yield (2.34 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.45 – 7.36 (m, 2H), 7.26 – 7.18 (m, 2H). 13C NMR (101 
MHz, CDCl3) δ 148.0, 134.4, 130.5, 122.8, 118.7 (q, J = 
320.9 Hz).

4-chlorophenyl butane-1-sulfonate (2v)

Cl

O
S

O

O

2v was synthesized according to the General Procedure as 
a colorless liquid in 81% yield (2.01 g). Eluent: petroleum 
ether/ethyl acetate = 10:1. 1H NMR (400 MHz, CDCl3) δ 
7.40 – 7.32 (m, 2H), 7.24 – 7.18 (m, 2H), 3.25 (dd, J = 8.4, 
7.4 Hz, 2H), 1.96 – 1.92 (m, 2H), 1.59 – 1.45 (m, 2H), 0.99 – 
0.95 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 147.4, 132.8, 
130.0, 123.4, 50.3, 25.4, 21.3, 13.4. HRMS (ESI) exact mass 
calculated for C10H14ClO3S: 249.0347 ([M+H]+), found: 
249.0349.

 (E)-1-methyl-4-(styrylsulfonyl)benzene (3aa)30

S
O

O

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3aa as a colorless solid in 85% yield (43.8 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3aa were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.76 (d, J = 8.3 
Hz, 2H), 7.58 (d, J = 15.4 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.34 
– 7.26 (m, 5H), 6.78 (d, J = 15.4 Hz, 1H), 2.36 (s, 3H). 
13C{1H} NMR (100 MHz, CDCl3, 300 K): δ (ppm) = 144.3, 
141.9, 137.7, 132.4, 131.1, 129.9, 129.0, 128.5, 127.7, 127.6, 
21.5.

(E)-1-methyl-4-((4-methylstyryl)sulfonyl)benzene (3ba)11b

S
O

O

According to GP 1 with 1b (32.4 mg, 0.200 mmol, 1.0 
equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ba as a colorless solid in 75% yield (40.8 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3ba were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.74 (d, J = 8.3 
Hz, 2H), 7.55 (d, J = 15.4 Hz, 1H), 7.27 (dd, J = 12.4, 8.1 

Hz, 4H), 7.11 (d, J = 8.0 Hz, 2H), 6.72 (d, J = 15.4 Hz, 1H), 
2.35 (s, 3H), 2.29 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 
300 K): δ (ppm) = 144.2, 141.9, 141.6, 137.9, 129.8, 129.7, 
129.6, 128.5, 127.6, 126.4, 21.6, 21.5.

(E)-1-methoxy-4-(2-tosylvinyl)benzene (3ca)10j

S
O

O

MeO
According to GP 1 with 1c (35.6 mg, 0.200 mmol, 1.0 

equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ca as a colorless solid in 82% yield (47.2 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3ca were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.83 (d, J = 8.3 
Hz, 2H), 7.62 (d, J = 15.4 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.34 
(d, J = 8.0 Hz, 2H), 6.95 – 6.87 (m, 2H), 6.71 (d, J = 15.4 
Hz, 1H), 3.84 (s, 3H), 2.44 (s, 3H). 13C{1H} NMR (100 
MHz, CDCl3, 300 K): δ (ppm) = 161.9, 144.1, 141.7, 138.1, 
130.3, 129.9, 127.5, 125.0, 124.7, 114.5, 55.4, 21.6.

(E)-N,N-dimethyl-4-(2-tosylvinyl)aniline (3da)

S
O

O

N

According to GP 1 with 1d (38.2 mg, 0.200 mmol, 1.0 
equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3da as a pale-yellow solid in 35% yield (21.1 mg, 
eluent: PE/EA = 5:1). 1H NMR (400 MHz, CDCl3, 300 K): δ 
(ppm) = 7.81 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 15.2 Hz, 1H), 
7.33 (dd, J = 17.1, 8.5 Hz, 4H), 6.61 (dd, J = 35.3, 12.0 Hz, 
3H), 3.02 (s, 6H), 2.42 (s, 3H). 13C{1H} NMR (100 MHz, 
CDCl3, 300 K): δ (ppm) = 152.0, 143.7, 142.7, 138.9, 130.3, 
129.7, 129.4, 127.4, 121.3, 111.9, 40.2, 21.5. HRMS (ESI) 
exact mass calculated for C17H20NO2S: 302.1209 ([M+H]+), 
found: 302.1211.

(E)-1-fluoro-4-(2-tosylvinyl)benzene (3ea)31

S
O

O

F
According to GP 1 with 1e (33.2 mg, 0.200 mmol, 1.0 

equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ea as a colorless solid in 72% yield (39.7 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3ea were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.83 (d, J = 8.3 
Hz, 2H), 7.62 (d, J = 15.4 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.35 
(d, J = 8.0 Hz, 2H), 7.08 (t, J = 8.6 Hz, 2H), 6.78 (d, J = 15.4 
Hz, 1H), 2.46 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 300 
K): δ (ppm) = 164.4 (d, J = 251.8 Hz), 144.5, 140.6, 137.7, 
130.5 (d, J = 8.7 Hz), 130.0, 128.7 (d, J = 3.4 Hz), 127.7, 
127.4 (d, J = 2.4 Hz), 116.3 (d, J = 22.1 Hz), 21.6. 19F NMR 
(376 MHz, CDCl3) δ (ppm) = -107.92.

(E)-1-chloro-4-(2-tosylvinyl)benzene (3fa)31
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S
O

O

Cl
According to GP 1 with 1f (36.5 mg, 0.200 mmol, 1.0 

equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3fa as a colorless solid in 85% yield (49.6 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3fa were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.74 (d, J = 8.3 
Hz, 2H), 7.52 (d, J = 15.4 Hz, 1H), 7.37 – 7.24 (m, 6H), 6.76 
(d, J = 15.4 Hz, 1H), 2.36 (s, 3H). 13C{1H} NMR (100 MHz, 
CDCl3, 300 K): δ (ppm) = 144.5, 140.3, 137.4, 137.0, 130.9, 
129.9, 129.6, 129.3, 128.2, 127.7, 21.6.

 (E)-1-methyl-4-((4-
(trifluoromethyl)styryl)sulfonyl)benzene (3ga)

S
O

O

F3C

According to GP 1 with 1g (43.2 mg, 0.200 mmol, 1.0 
equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ga as a colorless solid in 64% yield (41.7 mg, 
eluent: PE/EA = 10:1). 1H NMR (400 MHz, CDCl3, 300 K): 
δ (ppm) = 7.84 (d, J = 8.3 Hz, 2H), 7.72 – 7.56 (m, 5H), 7.37 
(d, J = 8.0 Hz, 2H), 6.95 (d, J = 15.5 Hz, 1H), 2.45 (s, 3H). 
13C{1H} NMR (100 MHz, CDCl3, 300 K): δ (ppm) = 144.8, 
139.8, 137.1, 135.8, 132.5(d, J = 32.9 Hz), 130.3, 130.0, 
128.66, 127.8, 126.01 (q, J = 3.8 Hz), 123.59 (d, J = 272.3 
Hz), 21.6. 19F NMR (376 MHz, CDCl3) δ (ppm) = - 62.97. 
HRMS (ESI) exact mass calculated for C16H14F3O2S: 
327.0661 ([M+H]+), found: 327.0664.

(E)-1-fluoro-2-(2-tosylvinyl)benzene (3ha)

S
O

O

F
According to GP 1 with 1h (33.2 mg, 0.200 mmol, 1.0 

equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ha as a colorless solid in 76% yield (41.9 mg, 
eluent: PE/EA = 10:1). 1H NMR (400 MHz, CDCl3, 300 K): 
δ (ppm) = 7.75 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 15.6 Hz, 1H), 
7.41 – 7.24 (m, 4H), 7.13 – 6.98 (m, 2H), 6.93 (d, J = 15.6 
Hz, 1H), 2.36 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 300 
K): δ (ppm) = 161.5 (d, J = 255.3 Hz), 144.4, 137.5, 134.9 
(d, J = 2.2 Hz), 132.5 (d, J = 8.9 Hz), 130.5 (d, J = 8.5 Hz), 
130.2 (d, J = 2.6 Hz), 129.9, 127.8, 124.6 (d, J = 3.7 Hz), 
120.6 (d, J = 11.5 Hz), 116.4 (d, J = 21.7 Hz), 21.6. 19F NMR 
(376 MHz, CDCl3) δ (ppm) = -112.48. HRMS (ESI) exact 
mass calculated for C15H14FO2S: 277.0693 ([M+H]+), found: 
277.0691.

(E)-1-methoxy-3-(2-tosylvinyl)benzene (3ia)11b

S
O

O
MeO

According to GP 1 with 1i (35.6 mg, 0.200 mmol, 1.0 
equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ia as a colorless solid in 72% yield (41.4 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3ia were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.75 (d, J = 8.3 
Hz, 2H), 7.55 (d, J = 15.4 Hz, 1H), 7.30 – 7.19 (m, 3H), 6.99 
(d, J = 7.6 Hz, 1H), 6.92 – 6.84 (m, 2H), 6.76 (d, J = 15.4 
Hz, 1H), 3.74 (s, 3H), 2.36 (s, 3H). 13C{1H} NMR (100 
MHz, CDCl3, 300 K): δ (ppm) = 159.9, 144.4, 141.8, 137.7, 
133.7, 130.0, 129.9, 127.8, 127.7, 121.1, 117.0, 113.3, 55.3, 
21.5. 

(E)-5-(2-tosylvinyl)benzo[d][1,3]dioxole (3ja)

S
O

O
O

O
According to GP 1 with 1j (38.4 mg, 0.200 mmol, 1.0 

equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ja as a colorless solid in 81% yield (48.9 mg, 
eluent: PE/EA = 5:1). 1H NMR (400 MHz, CDCl3, 300 K): δ 
(ppm) = 7.81 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 15.3 Hz, 1H), 
7.34 (d, J = 8.0 Hz, 2H), 7.03 – 6.91 (m, 2H), 6.82 (s, 1H), 
6.66 (d, J = 15.3 Hz, 1H), 6.00 (s, 2H), 2.43 (s, 3H). 13C{1H} 
NMR (100 MHz, CDCl3, 300 K): δ (ppm) = 150.3, 148.5, 
144.2, 141.7, 138.0, 129.9, 127.6, 126.7, 125.4, 125.2, 108.5, 
106.8, 101.7, 21.6. HRMS (ESI) exact mass calculated for 
C16H15O4S: 303.0686 ([M+H]+), found: 303.0689.

 (E)-1,3-dichloro-2-(2-tosylvinyl)benzene (3ka)

S
O

OCl

Cl
According to GP 1 with 1k (43.4 mg, 0.200 mmol, 1.0 

equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ka as a colorless solid in 61% yield (39.8 mg, 
eluent: PE/EA = 10:1). 1H NMR (400 MHz, CDCl3, 300 K): 
δ (ppm) = 7.78 – 7.75 (m, 3H), 7.29 (dd, J = 8.2, 4.9 Hz, 
4H), 7.15 (dd, J = 8.5, 7.6 Hz, 1H), 7.06 (d, J = 15.8 Hz, 
1H), 2.38 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 300 K): 
δ (ppm) = 143.6, 136.0, 134.7, 134.3, 134.2, 129.6, 128.9, 
128.8, 127.9, 126.9, 20.6. HRMS (ESI) exact mass 
calculated for C15H13Cl2O2S: 327.0008 ([M+H]+), found: 
327.0010.

(E)-1,2,3-trimethoxy-5-(2-tosylvinyl)benzene (3la)

S
O

O
MeO

MeO
OMe

According to GP 1 with 1l (47.6 mg, 0.200 mmol, 1.0 
equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3la as a colorless solid in 71% yield (49.4 mg, 
eluent: PE/EA = 5:1). 1H NMR (400 MHz, CDCl3, 300 K): δ 
(ppm) = 7.83 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 15.3 Hz, 1H), 
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7.35 (d, J = 8.1 Hz, 2H), 6.76 (d, J = 15.3 Hz, 1H), 6.70 (s, 
2H), 3.87 (d, J = 2.8 Hz, 9H), 2.44 (s, 3H). 13C{1H} NMR 
(100 MHz, CDCl3, 300 K): δ (ppm) = 153.5, 144.3, 142.0, 
140.7, 137.9, 129.9, 127.8, 127.7, 126.7, 105.8, 61.0, 56.2, 
21.6. HRMS (ESI) exact mass calculated for C18H21O5S: 
349.1104 ([M+H]+), found: 349.1101.

(E)-1-(2-tosylvinyl)naphthalene (3ma)

S
O

O

According to GP 1 with 1m (39.6 mg, 0.200 mmol, 1.0 
equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ma as a colorless solid in 62% yield (38.2 mg, 
eluent: PE/EA = 10:1). 1H NMR (400 MHz, CDCl3, 300 K): 
δ (ppm) = 8.42 (d, J = 15.2 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 
7.83 (dd, J = 12.1, 8.3 Hz, 4H), 7.69 – 7.46 (m, 3H), 7.41 – 
7.35 (m, 1H), 7.29 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 15.2 Hz, 
1H), 2.37 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 300 K): 
δ (ppm) = 144.4, 138.9, 137.6, 133.6, 131.3, 131.2, 130.1, 
130.0, 129.6, 128.82, 127.7, 127.2, 126.4, 125.6, 125.2, 
123.0, 21.9. HRMS (ESI) exact mass calculated for 
C19H17O2S: 309.0944 ([M+H]+), found: 309.0945. 

(2-tosylethene-1,1-diyl)dibenzene (3na)10j

S
O

O

According to GP 1 with 1n (44.9 mg, 0.200 mmol, 1.0 
equiv.), 2a (169.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3na as a colorless solid in 43% yield (28.7 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3na were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.40 (d, J = 8.3 
Hz, 2H), 7.32 – 7.27 (m, 2H), 7.26 – 7.19 (m, 5H), 7.14 – 
7.01 (m, 5H), 6.92 (s, 1H), 2.31 (s, 3H). 13C{1H} NMR (100 
MHz, CDCl3, 300 K): δ (ppm) = 154.7, 143.7, 139.3, 138.6, 
135.6, 130.2, 129.8, 129.3, 128.9, 128.8 128.5, 128.2, 127.7, 
127.6, 21.5. 

(E)-(2-(phenylsulfonyl)vinyl)benzene (3aj)30

S
O

O

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2j (161.2 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3aj as a colorless solid in 89% yield (43.4 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3aj were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.94 – 7.81 (m, 
2H), 7.62 (d, J = 15.4 Hz, 1H), 7.58 – 7.28 (m, 8H), 6.79 (d, 
J = 15.4 Hz, 1H). 13C{1H} NMR (100 MHz, CDCl3, 300 K): 
δ (ppm) = 142.4, 140.7, 133.3, 132.3, 131.2, 129.3, 129.0, 
128.5, 127.6, 127.3. 

(E)-1-(tert-butyl)-4-(styrylsulfonyl)benzene (3ak)13

S
O

O

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2k (194.5 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ak as a colorless solid in 92% yield (55.2 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3ak were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.87 (d, J = 8.6 
Hz, 2H), 7.67 (d, J = 15.4 Hz, 1H), 7.58 – 7.34 (m, 7H), 6.86 
(d, J = 15.4 Hz, 1H), 1.34 (s, 9H). 13C{1H} NMR (100 MHz, 
CDCl3, 300 K): δ (ppm) = 157.3, 141.9, 137.7, 132.5, 131.0, 
129.0, 128.5, 127.6, 127.5, 126.3, 35.2, 31.0. 

(E)-1-(styrylsulfonyl)-4-(trifluoromethyl)benzene (3al)32

S
O

O
CF3

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2l (202.0 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3al as a colorless solid in 85% yield (53.0 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3al were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 8.01 (d, J = 8.2 
Hz, 2H), 7.70 (dd, J = 28.1, 11.8 Hz, 3H), 7.41 – 7.31 (m, 
5H), 6.78 (d, J = 15.4 Hz, 1H). 13C{1H} NMR (100 MHz, 
CDCl3, 300 K): δ (ppm) = 144.3, 144.0, 135.01 (q, J = 33.1 
Hz), 131.9, 131.6, 129.1, 128.7, 128.2, 126.46 (q, J = 3.7 
Hz), 126.2, 123.12 (d, J = 273.0 Hz). 19F NMR (376 MHz, 
CDCl3) δ (ppm) = - 63.15.

(E)-1-chloro-4-(styrylsulfonyl)benzene1 (3am)30

S
O

O
Cl

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2m (181.9 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3am as a colorless solid in 77% yield (42.8 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3am were 
consistent with those in previously reported literature. 1H 
NMR c7.81 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 15.4 Hz, 1H), 
7.49 – 7.30 (m, 7H), 6.76 (d, J = 15.4 Hz, 1H). 13C{1H} 
NMR (100 MHz, CDCl3, 300 K): δ (ppm) = 143.0, 140.1, 
139.3, 132.2, 131.4, 129.6, 129.2, 129.1, 128.5, 126.9. 

(E)-1-bromo-4-(styrylsulfonyl)benzene (3an)32

S
O

O
Br

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2n (208.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3an as a colorless solid in 61% yield (39.3 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3an were 
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consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.74 (d, J = 8.7 
Hz, 2H), 7.64 – 7.60 (m, 3H), 7.45 – 7.29 (m, 5H), 6.76 (d, J 
= 15.4 Hz, 1H). 13C{1H} NMR (100 MHz, CDCl3, 300 K): δ 
(ppm) = 143.1, 139.8, 132.6, 132.2, 131.4, 129.2, 129.1, 
128.6, 126.8. 

(E)-1-iodo-4-(styrylsulfonyl)benzene (3ao)

S
O

O
I

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2o (236.7 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ao as a colorless solid in 52% yield (38.5 mg, 
eluent: PE/EA = 10:1). 1H NMR (400 MHz, CDCl3, 300 K): 
δ (ppm) = 7.88 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 15.4 Hz, 1H), 
7.58 – 7.53 (m, 1H), 7.51 – 7.46 (m, 2H), 7.44 – 7.39 (m, 
2H), 7.33 (dd, J = 4.7, 2.7 Hz, 2H), 6.79 (d, J = 15.4 Hz, 
1H). 13C{1H} NMR (100 MHz, CDCl3, 300 K): δ (ppm) = 
142.5, 140.7, 133.3, 132.4, 131.2, 129.3, 129.0, 128.5, 127.6, 
127.3. HRMS (ESI) exact mass calculated for C14H12IO2S: 
370.9597 ([M+H]+), found: 370.9595.

(E)-1-chloro-3-(styrylsulfonyl)benzene (3ap)

S
O

O
Cl

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2p (180.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ap as a colorless solid in 72% yield (40.0 mg, 
eluent: PE/EA = 10:1). 1H NMR (400 MHz, CDCl3) δ 8.22 
(dd, J = 7.8, 1.5 Hz, 1H), 7.77 (d, J = 15.4 Hz, 1H), 7.57 – 
7.39 (m, 8H), 7.08 (d, J = 15.4 Hz, 1H). 13C NMR (101 
MHz, CDCl3) δ 145.3, 138.2, 134.5, 132.8, 132.3, 131.9, 
131.4, 130.7, 129.1, 128.7, 127.4, 125.2. HRMS (ESI) exact 
mass calculated for C14H12ClO2S: 279.0241 ([M+H]+), 
found: 279.0241.

(E)-1-chloro-2-(styrylsulfonyl)benzene (3aq)

S
O

O

Cl

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2q (180.6 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3aq as a colorless solid in 75% yield (41.7 mg, 
eluent: PE/EA = 10:1). 1H NMR (400 MHz, CDCl3) δ 7.94 
(t, J = 1.9 Hz, 1H), 7.88 – 7.80 (m, 1H), 7.71 (d, J = 15.4 Hz, 
1H), 7.60 – 7.57 (m, 1H), 7.52 – 7.38 (m, 6H), 6.85 (d, J = 
15.4 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 142.5, 141.5, 
134.5, 132.5, 131.0, 130.4, 129.6, 128.1, 127.6, 126.7, 125.5, 
124.7. HRMS (ESI) exact mass calculated for C14H12ClO2S: 
279.0241 ([M+H]+), found: 279.0241.

(E)-2-(styrylsulfonyl)naphthalene (3ar)32

S
O

O

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2r (191.2 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3ar as a colorless solid in 82% yield (48.2 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3ar were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 8.48 (s, 1H), 
7.94 – 7.91 (m, 2H), 7.87 – 7.79 (m, 2H), 7.68 (d, J = 15.4 
Hz, 1H), 7.62 – 7.53 (m, 2H), 7.47 – 7.39 (m, 2H), 7.38 – 
7.26 (m, 3H), 6.85 (d, J = 15.4 Hz, 1H). 13C{1H} NMR (100 
MHz, CDCl3, 300 K): δ (ppm) = 142.5, 137.5, 135.1, 132.4, 
132.3, 131.2, 129.6, 129.3, 129.2, 129.1, 129.0, 128.5, 127.9, 
127.6, 127.3, 122.5. 

(E)-8-(styrylsulfonyl)quinoline (3as)

S
O

O

N

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2s (191.8 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3as as a colorless solid in 88% yield (51.9 mg, 
eluent: PE/EA = 10:1). 1H NMR (400 MHz, CDCl3, 300 K): 
δ (ppm) = 9.17 (s, 1H), 8.58 (d, J = 7.1 Hz, 1H), 8.27 (d, J = 
8.1 Hz, 1H), 8.08 (d, J = 18.6 Hz, 1H), 7.84 (dd, J = 41.3, 
15.6 Hz, 2H), 7.69 (t, J = 7.7 Hz, 1H), 7.59 – 7.46 (m, 3H), 
7.37 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 300 K): δ 
(ppm) = 151.4, 144.0, 143.2, 138.3, 136.7, 134.1, 132.9, 
130.9, 130.6, 128.9, 128.8, 128.5, 128.4, 125.7, 122.2. 
HRMS (ESI) exact mass calculated for C17H14NO2S: 
296.0740 ([M+H]+), found: 296.0743.

(E)-2-(styrylsulfonyl)thiophene (3at)13

S
O

O
S

According to GP 1 with 1a (29.6 mg, 0.200 mmol, 1.0 
equiv.), 2t (164.8 mg, 0.600 mmol, 3.0 equiv.), Cs2CO3 
(195.5 mg, 0.600 mmol, 3.0 equiv.) in 2.0 mL DMA. 
Purification by silica gel chromatography afforded the 
desired 3at as a colorless solid in 45% yield (22.5 mg, 
eluent: PE/EA = 10:1). The spectroscopic data of 3at were 
consistent with those in previously reported literature. 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.77 – 7.61 (m, 
3H), 7.43 – 7.37 (m, 5H), 7.17 – 7.11 (m, 1H), 6.96 (d, J = 
15.4 Hz, 1H). 13C{1H} NMR (100 MHz, CDCl3, 300 K): δ 
(ppm) = 142.3, 142.2, 133.8, 133.4, 132.2, 131.2, 129.0, 
128.6, 127.9, 127.8.

benzyl(1-phenyl-2-tosylethyl)sulfane (4)

S
O

O S

Synthesis of 4: An oven-dried vial equipped with stirring 
bar was charged with vinyl sulfone 3aa (0.2 mmol, 1.0 
equiv.), benzyl mercaptan (1.0 mmol, 5.0 equiv.), 
triethylamine (0.3 mmol, 1.5 equiv), dry MeOH (1.0 mL) 
and stirred for 6 h at room temperature. After completion, 
the reaction mixture was concentrated under vacuo, purified 
by flash column chromatography on silica gel with a mixture 
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of petroleum ether and ethyl acetate (10:1) as eluent, 
affording the final product 4 in 92% yield (70.3 mg). 1H 
NMR (400 MHz, CDCl3, 300 K): δ (ppm) = 7.39 (d, J = 8.3 
Hz, 2H), 7.22 – 7.17 (m, 3H), 7.14 – 7.00 (m, 9H), 4.08 (dd, 
J = 9.2, 4.8 Hz, 1H), 3.62 (dd, J = 14.6, 9.2 Hz, 1H), 3.63 – 
3.37 (m, 3H), 2.30 (s, 3H); 13C{1H} NMR (100 MHz, 
CDCl3, 300 K): δ (ppm) = 144.3, 138.8, 137.1, 136.4, 129.5, 
128.9, 128.7, 128.6, 127.9, 127.8, 127.7, 127.2, 61.5, 43.0, 
36.0, 21.5; HRMS (ESI) exact mass calculated for 
C21H21S2O2: 369.0977 ([M+H]+), found: 369.0979.

1-(1-phenyl-2-(phenylsulfonyl)ethyl)piperidine (5)

S
O

ON

Synthesis of 5: An oven-dried vial equipped with stirring 
bar was charged with vinyl sulfone 3aj (0.2 mmol, 1.0 
equiv.), piperidine (2.0 mmol, 10 equiv.) and stirred at 80 ℃ 
for 6 h. After completion, the reaction mixture was 
concentrated under vacuo, purified by flash column 
chromatography on silica gel with a mixture of petroleum 
ether and ethyl acetate (10:1) as eluent, affording the final 
product 5 in 95% yield (62.5 mg). 1H NMR (400 MHz, 
CDCl3, 300 K): δ (ppm) = 7.85 (d, J = 8.6 Hz, 2H), 7.57 (t, J 
= 8.5 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 11.3, 
3.2 Hz, 3H), 7.11 – 6.93 (m, 2H), 4.19 (dd, J = 8.1, 5.6 Hz, 
1H), 4.04 – 3.88 (m, 1H), 3.50 (dd, J = 14.6, 5.4 Hz, 1H), 
2.32 – 2.00 (m, 4H), 1.35 – 1.07 (m, 6H); 13C{1H} NMR 
(100 MHz, CDCl3, 300 K): δ (ppm) = 140.5, 134.8, 133.1, 
128.7, 128.6, 128.2, 128.1, 127.7, 64.7, 57.9, 50.1 25.5, 24.0; 
HRMS (ESI) exact mass calculated for C19H24NO2S: 
330.1522 ([M+H]+), found: 330.1525.

(E)-1,1,1,3,3,3-hexamethyl-2-styryl-2-
(trimethylsilyl)trisilane (6)17

Si
Si

Si
Si

Synthesis of 6: An oven-dried 2-neck round-bottom-flask 
equipped with stirring bar was charged under argon 
atmosphere with vinyl sulfone 3aa (0.2 mmol, 1.0 equiv.), 
tris(trimethylsilyl)silane (0.6 mmol, 3.0 equiv.), AIBN (0.5 
mmol, 2.5 equiv.), dry benzene (2.0 mL) and stirred under 
reflux for 12 h. After completion, the reaction mixture was 
concentrated under vacuo, purified by flash column 
chromatography on silica gel with a mixture of petroleum 
ether and ethyl acetate (10:1) as eluent, affording the final 
product 6 in 81% yield (56.7 mg). 1H NMR (400 MHz, 
CDCl3, 300 K): δ (ppm) = 7.44 – 7.39 (m, 2H), 7.38 – 7.33 
(m, 2H), 7.28 – 7.20 (m, 1H), 6.93 (d, J = 18.8 Hz, 1H), 6.47 
(d, J = 18.8 Hz, 1H), 0.27 – 0.23 (m, 27H); 13C{1H} NMR 
(100 MHz, CDCl3, 300 K): δ (ppm) = 145.4, 139.0, 128.4, 
127.4, 125.9,) 122.7, 0.9.
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