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Ureas with histamine H3-antagonist receptor activity—A new
scaffold discovered by lead-hopping from cinnamic acid amides
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Abstract—A group of tri and tetrasubstituted urea derivatives have been found to be hH3-antagonists. The most potent compounds
were found in the class of (piperazine-1-yl)-(piperidine-1-yl)-methanones which in addition showed negligible hERG inhibition.
� 2006 Elsevier Ltd. All rights reserved.
During the past few years, a plethora of novel structures
with histamine H3-interactions have been published.1 In
contrast to early generations of H3-ligands which are de-
rived from histamine itself and still contain an imidazole
moiety, these new compounds are much more drug-like
and hold some promise to also be of use in a clinical
setting, for indications such as obesity and cognitive
disorders.2

However, while the H3-receptor is a target, for which
selective and in vitro potent ligands have been detected
quite readily, overcoming ADMET-issues is still a chal-
lenge for many of these substances,3 and only a few can-
didates have yet reached clinical phases of development.

An earlier detected structural class of H3-antagonists,
the cinnamic acid amides, exemplified by NNC 0038-
0000-1202,4 bears the potential risk of chemical and
metabolic instability due to the reactivity of the double
bond. Moreover, many of these compounds have shown
substantial hERG-channel inhibition.
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In an attempt to overcome the hERG-channel inhibi-
tion related to the cinnamic acid amides, we decided
to explore the possibilities of scaffold-hopping from
this series. Information about the SAR from the old
series provided a good basis for the design of new
compounds. Since hERG inhibition is known to corre-
late with lipophilicity5,6 we proposed the replacement
of the C@C in the cinnamic acid amide with an
N–C fragment leading to a more polar scaffold
possessing a urea moiety.

Previously, urea containing H3-antagonists were report-
ed. However, the presence of the imidazole moiety was
crucial for H3-activity.7 During the preparation of this
manuscript two patent applications describing imidaz-
ole-free urea derivatives as H3-antagonists were
published.8

To facilitate high throughput chemistry, a solid-phase
parallel synthesis protocol was developed to generate li-
braries of trisubstituted ureas, bearing similar substitu-
tion as the original cinnamic acid amides.9

Commercially available 2-(3,5-dimethoxy-4-formyl-
phenoxy)ethoxymethyl polystyrene was treated with a
variety of amines under standard reductive amination
conditions10 to give the resin bound secondary amine
1 (Scheme 1). Subsequent treatment with triphosgene
and base followed by reaction with a secondary amine
yielded the resin bound urea 2. The products were
cleaved from the resin using trifluoroacetic acid, to give
the crude urea derivatives 3 in an average purity of
92%.11 The crude products were purified by preparative
HPLC to give the final products as their respective triflu-
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Scheme 1. Reagents and conditions: (i) 10 equiv R1NH2, 15 equiv

NaBH3CN, NMP/MeOH, 10% AcOH; (ii) a—3 equiv CO(OCCl3)2,

DIPEA, DCM; b—10 equiv HNR2R3, NMP (iii) TFA/DCM (1:1).
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oroacetic acid salts in overall yields typically between 35
and 75%.

Already in the first library, compounds with moderate
H3-potency12 were found. Early indications after com-
parison of the ureas and cinnamic acid amides data
showed the generally poorer potency of the ureas.
Hence, the most potent urea derivative 3d (Ki = 87 nM)
is 24 times less potent than the corresponding cinnamic
amide analog 9 (Ki = 3.7 nM) (Table 1).

We were however encouraged by the relative low
hERG-channel inhibition of the 4-trifluoromethyl
substituted urea derivative 3a (20%)13 compared to the
respective cinnamic acid amide analog NNC-0038-
0000-1202 (73%), therefore it was decided to further
explore this new series of H3-antagonists.

More than 300 trisubstituted urea derivatives were made
but only minor improvement in H3-potency was ob-
tained. The SAR suggests a slight preference of 3- versus
4-substituted benzyl groups as exemplified by the 3-
methoxy-, 3-aminomethyl-, and 3-trifluoromethylbenzyl
derivatives that are all slightly more potent than the cor-
responding 4-substituted analogs (Table 2).

The presence of the aromatic ring is essential in this
series, as most of the H3-potency is lost when benzyl
is replaced by a cyclohexyl methyl group in 3m. Replac-
ing the benzyl (3e, 196 nM) with a 2-phenylethyl
Table 1. Comparison of hH3-potency and hERG inhibition of cinnamic aci

N

ON

R

;

R Entry Ki (nM) ± SEMa hERG-inhibit

–CF3 NNC 0038-0000-1201 4.7 (±0.4) 73

–Cl 7 11.2 (±1.4) n.d.

–OCF3 8 13.4 (±1.9) n.d.

–Ph 9 3.7 (±1.3) n.d.

a hH3-[35S]GTPc[S] binding assay (n = 3).
b Astemizol binding, % inhibition (mean, n = 3) at 10 lM.
substituent (3n, 226 nM) did not change the H3-potency
significantly, but constraining the phenylethyl group as
in the indanyl analog 3o gives rise to a more potent
compound (Ki = 52 nM). The most potent ureas of
pyrrolidinylmethylpyrrolidines were compounds 3k
and 3l with Ki of 34 and 47 nM, respectively. Unfortu-
nately, both showed unacceptable high inhibition of
the hERG-channel, which was assessed to be 62 and
40%, respectively.

We have previously been working on a series of piper-
azine amides14 represented by 0038-0000-1049. This
prompted us to incorporate an alkylpiperazine moiety
instead of the pyrrolidinylmethylpyrrolidine building
block. Representative examples of the second series
of ureas, bearing alkylpiperazine instead of pyrrolidi-
nylmethylpyrrolidine, are shown in Table 3. A com-
parison of these two series shows that the
alkylpiperazines generally are slightly more potent
than their equally substituted counterparts. Hence,
the two 3,4-dichlorobenzyl substituted cyclopentyl-
and isopropylpiperazine derivatives 3x and 3y (15
and 20 nM, respectively) are more potent than the pyr-
rolidinylmethylpyrrolidine bearing the same 3,4-dichlo-
ro-benzyl group (47 nM). Another observation was
that in all the piperazine ureas investigated, the poten-
cy is only minimally affected by various alkyl substitu-
tions on the piperazine ring.

To further explore the scope of urea derivatives as
H3-antagonists, a parallel protocol for the synthesis of
tetrasubstituted ureas was established (Scheme 2). A
secondary amine was treated with CDI in DCM to give
the carbamoylimidazole 4.15 Methylation using methyl-
iodide gave the reactive intermediate 5 that subsequently
was treated with a secondary amine to give the tetrasub-
stituted urea derivative 6. Purification by HPLC yielded
the final products as their trifluoroacetate salts in yields
typically between 70 and 75%.16

The simple introduction of an N-methyl group gave less
potent compounds, as exemplified by entry 6a (281 nM)
(Table 4) versus the non-methylated analog 3d (87 nM).
However, incorporation of both urea nitrogens in rings
showed promising results, especially in the piperazine
series. Consequently, efforts were concentrated around
d amides and the corresponding urea analogs20

N N
H

ON

R

ionb (%) Entry Ki (nM) ± SEMa hERG-inhibitionb (%)

3a 162 (±14) 20

3b 165 (±24) n.d.

3c 121 (±17) n.d.

3d 87 (±15) n.d.
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Scheme 2. Reagents and conditions: (i) 1.1 equiv CDI, DCM; (ii)

10 equiv MeI, MeCN, (iii) 1 equiv HNR3R4, DIPEA, DCM.

Table 3. hH3-potency of alkylpiperazine-ureas20

Entry Ki
a (nM)

3p N N
H

O

N
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N
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O
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N N

H

O

N

44 (±10)

3t N N
H

O

N

40 (±9)

3u

N N
H

O

N
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20 (±2)

a hH3-[35S]GTPc[S] binding assay.

Table 2. hH3-potency of pyrrolidinylmethylpyrrolidine-ureas20

N N
H

ON

R

Entry R Ki
a (nM)

3a
CF3

162 (±14)

3e 196 (±29)

3f
O

295 (±19)

3g

O

188 (±31)

3h
CF3

117 (±11)

3i
NH2 78 (±9)

3j
NH2

109 (±10)

3k

O
34 (±4)

3l

Cl

Cl
47 (±7)

3m 458 (±23)

3n 226 (±8)

3o 52 (±10)

a hH3-[35S]GTPc[S] binding assay.
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this scaffold. A small series of compounds bearing a
dihydroindole moiety, entries 6d, 6e, and 6f, showed
notable increase in potency when incorporating the
alkylpiperazine moiety. H3-potency is highest with the
more lipophilic cyclopentyl substituted derivative 6f,
but much more important is the finding, that the cyclo-
propyl group causes 6e to be the one with the lowest
hERG-channel inhibition (16% inhibition). Since hERG
inhibition is also known to decrease with decreasing
basicity the observed effect is probably caused by the
lower basicity of the N-cyclopropylpiperazine.17,18

A group of quite potent ureas were the (piperazine-1-yl)-
(piperidine-1-yl)-methanones. Surprisingly some of these
show potent H3-activity despite the lack of an aromatic
group, as exemplified in entries 6h and 6i (Ki = 17 and



Table 4. hH3-potency and hERG inhibition of tetrasubstituted ureas20

Entry Ki
a (nM) hERG % inhibitionb

6a N N

ON

281 (±49) 66

6b

N N
N

N N

ON

37 (±8) 55

6c 94 (±14) 26

6d N N

O

N
59 (±11) 34

6e N N

O

N
45 (±5) 16

6f N N

O

N
23 (±5) 45

6h N N
N

N
H

O

O

17 (±3) 6

6i
N N

O

N

O

N
14 (±3) 8

6j
N N

O

N

O

O
25 (±5) 9

6k N N

O

N
14 (±3) 21

6l N N

O

N
47 (±10) 13

6m N N

O

N
73 (±18) 8

6n N N

O

N

O

O

16 (±3) 8

6o
N N

O

N
86 (±16) 16

6p
N N

O

N
27 (±7) 31

a hH3-[35S]GTPc[S] binding assay (n = 3).
b Astemizol binding, % inhibition (mean, n = 3) at 10 lM.
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14 nM, respectively). Moreover, all aliphatic derivatives
had a low propensity of hERG- as well as CYP-inhibi-
tion. Hence the aliphatic derivatives 6h, 6i, 6j, and 6l
show 6, 8, 9, and 13% hERG-channel inhibition, respec-
tively, at 10 lM. The same compounds all gave IC50 val-
ues >25 lM on CYP1A2, CYP3A4, and CYP2D6.19

The only exceptions were 6h and 6l that gave IC50 values
of 17 and 7 lM, respectively, on CYP2D6.

In conclusion, we have developed a new series of urea
H3-antagonists. The most potent compounds are found
in the class of (piperazine-1-yl)-(piperidine-1-yl)-metha-
nones which in addition give negligible hERG
interaction.
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