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Abstract Sodium dispersion promotes reductive ring opening of
arylcyclopropanes. The presence of a reduction-resistant electrophile,
such as methoxypinacolatoborane, epoxide, oxetane, paraformalde-
hyde, or chlorotrimethylsilane, during the reductive ring opening event
leads to the formation of 1,3-difunctionalized 1-arylalkanes by immedi-
ate trappings of the resulting two reactive carbanions. In particular, the
ring-opening 1,3-diborylations of arylcyclopropanes afford 1,3-diboryl-
alkanes with high syn selectivity.

Key words carbanions, cleavage, diastereoselectivity, electron trans-
fer, metalation, reduction, ring opening, sodium

Ring-opening reactions of cyclopropanes have been rec-

ognized as attractive transformations in organic synthesis

because the strained skeleton undergoes C–C bond cleavage

that leads to a variety of characteristic 1,3-difunctionaliza-

tions, even without recourse to transition-metal catalysts.1

A typical approach to such ring-opening 1,3-difunctional-

izations of cyclopropanes is the use of donor–acceptor cy-

clopropanes to facilitate the heterolytic C–C bond cleavage.2

Another useful strategy to achieve ring-opening functional-

izations of cyclopropanes, especially without the donor–ac-

ceptor trick, is the electrophilic ring opening with reactive

electrophiles3 or electron-deficient radical species,4 utiliz-

ing the known similarity between alkenes and cyclopro-

panes. Meanwhile, ring-opening 1,3-difunctionalizations

that begin with a reductive process have scarcely been re-

ported.5 In particular, Gómes, Yus, and co-worker reported

reductive ring opening of 1,1-diphenylcyclopropane using

lithium and 4,4′-di-tert-butylbiphenyl (DTBB) as an elec-

tron-transfer catalyst (Scheme 1a).5b Subsequent addition

of electrophiles such as chlorotrimethylsilane and carbonyl

compounds to a mixture of the resulting 1,3-dianion pro-

vided the corresponding 1,3-difunctionalized products.

However, the reactive and thus unstable 1,3-dianionic in-

termediates decomposed mainly via protonation by an

occurred (0 °C), and very low yields of difunctionalized

products were thus obtained. There are hence no reports

about the reductive ring opening of cyclopropanes that is

followed by efficient twofold trapping with electrophiles.

Scheme 1  Reductive transformations of cyclopropanes and styrenes 
with alkali metals

For the last few years, we have been interested in revis-

iting the use of alkali metals to develop new reductive

transformations of unsaturated compounds for modern or-

ganic synthesis.6 Very recently, we have developed sodium-

promoted reductive 1,2-difunctionalization of styrenes in

the presence of boron- and carbon-centered electrophiles

such as B(OMe)3, isobutylene oxide, and oxetane.6c The re-

duction-resistant nature of these alkoxy-substituted elec-

trophiles allows us to achieve preferential single-electron

injection to styrenes from sodium over that to the co-exist-

ing electrophiles (Scheme 1b, step 1) and to instantly trap

the resulting unstable anionic species with the electro-
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philes (Scheme 1b, step 2). With our strategy using reduc-

tion-resistant electrophiles, herein, we report sodium-met-

al-promoted reductive ring-opening 1,3-difunctionaliza-

tion of arylcyclopropanes (Scheme 1c).

Our investigations began by evaluating the ring-opening

diborylation of trans-1,2-diphenylcyclopropane (trans-1a)

using alkoxyboranes and alkali metals to afford synthetical-

ly versatile 1,3-diborylalkane7 2a (Table 1). After some ex-

perimentation, we found that the following procedure gave

the best result: sodium dispersion (4.0 equiv) that has a

large surface area (average particle size <10 m)6b–d,8 was

added to a solution of trans-1a with MeOBpin (6.0 equiv)

and DTBB (0.2 equiv) in THF at –78 °C (entry 1).9 The start-

ing cyclopropane 1a was fully consumed within 1.5 h to

provide 1,3-diborylated product 2a in 97% NMR yield (81%

isolated yield) with high syn selectivity (syn/anti = 89:11).10

When the reaction was performed at 0 ℃, both the yield

and diastereoselectivity decreased (entry 2). The use of

cheaper B(OMe)3 instead of MeOBpin followed by treat-

ment with pinacol (6.0 equiv) also diminished both yield

and diastereoselectivity (entry 3). This result suggests that

the ligand exchange between the two methoxy and pinacol

groups would not be perfect in efficiency and that the steric

hindrance of the Bpin group plays a role in controlling the

selectivity of the reaction. While the reaction proceeded

without DTBB, a longer reaction time (4 h) was required for

full conversion of 1a (entry 4). When lithium powder (par-

ticle size: 120–250 m)6d was employed instead of sodium

dispersion, only a 30% yield of 2a was obtained along with

the formation of monoborylated product 2a′ in 51% yield

(entry 5) and 17% recovery of starting 1a. This method was

applicable to the gram-scale synthesis of 2a starting from

5.0 mmol of trans-1a (entry 6).

We next surveyed the scope with respect to arylcyclo-

propanes under the optimized reaction conditions (Table

2). Interestingly, the reaction of cis-1a also provided 2a

with the same syn selectivity (syn/anti = 89:11, entry 1),

which shows the stereoconvergence of this protocol. A sub-

strate having an electron-withdrawing fluoro or electron-

donating methoxy group at the para position reacted to fur-

nish a comparable yield of diborylated product 2b or 2c

with similar diastereoselectivity (entries 2 and 3). In the

case of p-methylsulfanyl-substituted 1d, 2.8 equiv of Na

dispersion was employed because overreduction of the

methylsulfanyl group was observed under the optimized

reaction conditions (entry 4). An electron-rich p-dimethyl-

amino-substituted cyclopropane 1e was unreactive at –78

℃, and a higher temperature of 0 ℃ promoted the reductive

diborylation (entry 5). Because the corresponding 1,3-dibo-

rylated product 2e was found to be unstable, an initial dibo-

rylated product was converted into the corresponding 1,3-

diol after oxidation by H2O2. Cyclopropane 1f underwent

the ring-opening borylation irrespective of the ortho sub-

stituent with comparable efficiency and diastereoselectivi-

ty (entry 6). 2-Thienyl-substituted cyclopropane 1g was

converted into the corresponding product 2g in 40% yield

(entry 7). The ring opening of pinacolatoboryl-substituted

cyclopropane 1h took place at 0 ℃ to give triborylalkane 2h

in 65% yield. Unfortunately, the reaction of 1,1-diphenylcy-

clopropane5b under the optimal reaction conditions result-

ed in no conversion.

Table 1  Optimization for Reductive Ring-Opening Diborylation of trans-1a

Entry Deviations from the above conditions NMR yield (%) syn/antib

1 none 97 (81)a 89:11

2 0 °C 87 75:25

3 B(OMe)3 instead of MeOBpin, then 6.0 equiv pinacol, 0 °C to rt 71 86:14

4 without DTBB, 4 h 90 90:10

5 Li powder instead of Na dispersion 30 88:12

6 fivefold-larger scale (74)a 91:9

a Isolated yield.
b Determined by NMR analysis of an isolated mixture of syn and anti isomers.
c Monoborylated product 2a′ was observed in a crude reaction mixture in <5% yield.

Ph Ph
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Bpin Bpin
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Table 2  Substrate Scope with Respect to Cyclopropanes 1

We propose a reaction mechanism as shown in Scheme

2. Firstly, a single-electron transfer from sodium metal to

cyclopropane 1a would occur to generate radical anion A.5

Subsequent carbon–carbon bond cleavage of A would gen-

erate benzylic anion B bearing a benzylic radical with the

loss of the stereochemistry of starting cyclopropane 1a.

Radical anion B would be immediately trapped with MeOB-

pin to form borate C. The second single-electron reduction

of C would afford putative six-membered carbanions D and

D′, which are stabilized by the intramolecular coordination

of the methoxy group on the boron atom to the sodium cat-

ion. Carbanion D that has two equatorial phenyl groups is

considered to be more favorable than D′ having one axial

and one equatorial phenyl group. Finally, the preferential

reaction of conformationally fixed D with MeOBpin would

form the second C–B bond with retention of the stereo-

chemistry,6c,11 affording syn-2a as the major isomer. DTBB

would promote the overall single-electron-transfer pro-

cess.5b

Scheme 2  Plausible reaction mechanism

Besides MeOBpin, we also attempted trapping with oth-

er electrophiles (Table 3). When isobutylene oxide and oxe-

tane were used as electrophiles for the reaction of trans-1a

(entries 1 and 2), the corresponding diols 3 and 4 were ob-

tained in 77% and 85% yields, respectively. Gratifyingly,

paraformaldehyde was found to serve as a reduction-resis-

tant hydroxymethyl cation equivalent and to yield 1,5-pen-

tanediol 5 albeit in moderate yield. Attempts to improve the

efficiency of the trapping with paraformaldehyde at a high-

er temperature of 0 °C result in no conversion of 1a, which

indicates the preferential degradation of paraformaldehyde

at the higher temperature. Surprisingly, chlorotrimethylsi-

lane, which can undergo facile reductive dimerization into

hexamethyldisilane,12 also served as a reduction-resistant

electrophile under the conditions to yield 6 in high yield.

Again, the use of chlorotrimethylsilane at 0 °C inhibited the

reductive ring opening, probably due to the preferential di-

merization prior to the reduction of 1a. In all these cases in

Table 3, diastereoselectivity was not observed. The negligi-

ble diastereoselectivity highlights the characteristic advan-

tage of the versatile alkoxyborane electrophiles (Table 1 and

2 and Scheme 2).

To validate the synthetic utility of this protocol, several

transformations of diborylation product 2 were conducted

(Scheme 3). The reductive diborylation of trans-1a with

B(OMe)3
13 followed by oxidation with H2O2 in the same pot

afforded 1,3-diol 7 in good yield with high diastereoselec-

tivity (Scheme 3a). According to the stereoretentive aryla-

tion of alkylboronates with aryllithiums reported by Aggar-

wal,14 sequential treatment of 2a (syn/anti = 91:9) with 4.0

equiv of 2-thienyllithium and of NBS provided doubly thie-

Entry 1 (cis/trans) cis/trans ratio 2, Isolated yield (%) syn/anti ratioa

1 cis-1a 99:1 2a 85 89:11

2 1b R = F 38:62 2b 84 92:8

3 1c R = OMe 3:97 2c 76 90:10

4b 1d R = SMe 38:62 2d 72 96:4

5c 1e R = NMe2 2:98 2e 28d 67:33

6 1f 2:98 2f 83 87:13

7e 1g 0.5:99.5 2g 40 77:23

8c trans-1h 2h 65

a Determined by NMR analysis of an isolated mixture of syn and anti iso-
mers. The relative stereochemistries of 2b–g, except for 2e, were tentative-
ly assigned according to the comparisons of their NMR spectra with those 
of 2a. For 2e, the stereochemistry was unambiguously determined similarly 
as described in ref. 10.
b 2.8 equiv of Na dispersion for 1.0 h.
c At 0 °C.
d Isolated as the corresponding 1,3-diol after oxidation with H2O2. For de-
tails, see the Supporting Information.
e 3.0 equiv of Na dispersion.
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nylated product 8 in 52% yield without a significant change

of diastereoselectivity (Scheme 3b). When the amounts of

2-thienyllithium and NBS were decreased to 1.2 equiv,

monothienylated product 9 was isolated in 47% yield as a

single isomer,15 along with a 10% yield of 8 (syn/anti =

75:25) (Scheme 3c).

Scheme 3  Derivatizations of diborylated products

In conclusion, we have developed a method for alkali-

metal-promoted reductive ring-opening 1,3-difunctional-

ization of arylcyclopropanes, utilizing sodium dispersion as

a reducing agent and reduction-resistant electrophiles. We

succeeded in synthesizing 1,3-diborylalkanes with high syn

selectivity and verifying their synthetic utility. Additionally,

paraformaldehyde and chlorotrimethylsilane have proved

to be available as reduction-resistant electrophiles at a low

temperature. Further exploration on the reductive ring-

opening functionalizations of small-ring compounds is cur-

rently in progress.
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extracted with EtOAc (4 × 10 mL). The combined organic layer

was dried over Na2SO4, filtered, and concentrated under

reduced pressure. The residue was purified by column chroma-

tography (hexane to hexane/EtOAc = 30:1) on silica gel to

provide 2a as a white solid (81% yield, 359 mg, 0.801 mmol,

syn/anti = 89:11); mp 120–130 °C. 1H NMR (600 MHz, CDCl3):

 = 7.21 (dd, J = 7.5, 7.5 Hz, 0.89 × 4 H + m, 0.11 × 4 H), 7.13 (d,

J = 7.5 Hz, 0.89 × 4 H + m, 0.11 × 4 H), 7.10 (t, J = 7.5 Hz, 0.89 × 2 H +

m, 0.11 × 2 H), 2.36 (ddd, J = 14.4, 7.8, 7.8 Hz, 0.89 × 1 H), 2.30 (t,

J = 7.8 Hz, 0.89 × 2 H), 2.25 (dd, J = 9.6, 6.6 Hz, 0.11 × 2 H), 2.21

(t, J = 6.6 Hz, 0.11 × 2 H), 2.02 (ddd, J = 14.4, 7.8, 7.8 Hz, 0.89 ×

1 H), 1.20 (s, 0.89 × 12 H), 1.18 (s, 0.89 × 12 H), 1.15 (s, 0.11 ×

12 H), 1.14 (s, 0.11 × 12 H). 13C NMR (151 MHz, CDCl3):  (syn

isomer) = 143.3, 128.6, 128.4, 125.3, 83.3, 35.2, 31.3 (br), 24.8.
11B NMR (192 MHz, CDCl3):  = 33.1 (br). HRMS (APCI-MS, posi-

tive): m/z = 448.2957. Anal. Calcd for C27H38B2O4: 448.2960 [M]+.

(10) The relative stereochemistry of 2a was unambiguously assigned

after oxidation to the corresponding diol with retention of the

stereochemistry.

(11) Organolithium compounds can react with electrophiles with

either retention or inversion of the stereochemistry of the

nucleophilic carbon center, which depends on the electrophiles

used. See: (a) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl.

1997, 36, 2282. (b) Gawley, R. E. Tetrahedron Lett. 1999, 40,

4297. (c) Basu, A.; Thayumanavan, S. Angew. Chem. Int. Ed. 2002,

41, 716. (d) The Chemistry of Organolithium Compounds;

Rappoport, Z.; Marek, I., Ed.; Wiley: New York, 2003.

(12) (a) Brown, M. P.; Fowles, G. W. A. J. Chem. Soc. 1958, 2811.

(b) Kumada, M.; Ishikawa, M. J. Organomet. Chem. 1963, 1, 153.

(c) Seitz, D. E.; Ferreira, L. Synth. Commun. 1979, 9, 451. (d) Hwu,

J. R.; Ethiraj, K. S. Science of Synthesis, Vol. 4; Fleming, I., Ed.;

Thieme: Stuttgart, 2002, 187.

(13) B(OMe)3 was used as an electrophile instead of MeOBpin

because diol 7 was difficult to separate chromatographically on

silica gel from pinacol generated from hydrolysis of the Bpin

group.

(14) Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K.

Nat. Chem. 2014, 6, 584.

(15) Although the anti-isomer of 8 is likely to be formed in less than

5% yield, we could not isolate the isomer.
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