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Abstract: An asymmetric synthesis of tetra-substituted cy-

clobutanes involving an organocatalytic, stepwise [2++2]-
cycloaddition is described. The secondary-amine-catalyzed

method allows for the hetero-dimerization of two different
cinnamic-acid-derived sub-units, opening a novel one-step

assembly to densely functionalized, head-to-tail coupled

dimeric cyclobutanes in high enantiomeric excess. A series
of selective synthetic interconversions in these sensitive

cycloadducts is also described.

The synthesis of cyclobutane derivatives has risen in promi-

nence over the last few years in view of an increased recogni-
tion of their importance within bioactive natural products,

with well over 200 derivatives now known.[1] In addition, cyclo-
butanes are often used as synthetically useful, strained inter-

mediates. Classical alkylation and photochemical routes to
achiral cyclobutanes including solid-state photochemistry[2]

have been supplemented[3] with novel methods involving step-

wise, thermal [2++2]-cycloaddition reactions mediated by transi-
tion metals,[4] organocatalysis,[5] and one-electron oxidants.[6] In
addition to expanding the scope of alkene participants, these
methods often allow for regio-controlled cycloaddition leading

to non-symmetrical dimers and/or asymmetric entries to chiral
cyclobutane derivatives.

Although many dimeric and pseudo-dimeric (non-symmetri-

cal) naturally occurring cyclobutanes appear to be derived
from the dimerization of cinnamyl, coumaryl, or extended
diene amides, the precise enzyme responsible (“[2++2]-ase”),[7a]

and hence mechanism of the biological dimerization is un-
known. Nonetheless, for non-meso examples, such cyclobu-
tanes may be homo-chiral, indicating the involvement of an

enzymatic biosynthesis rather than a strictly abiotic photo-
chemical or oxidative dimerization process. In addition, these
cinnamic acid derivatives are known to dimerize through
either a head-to-head or a head-to-tail alignment leading to re-
gioisomeric cyclobutanes. Examples of head-to-head coupled

cyclobutanes include piperarborenine D (Figure 1)[7a] and the

iridoid argenteoside A,[7b] whereas head-to-tail derivatives are

exemplified by dipiperamide A,[7c] nigramide P,[7d] dipiperamide
E,[7e] and argenteoside B,[7b] among many others.[7] The argen-

teosides have recently been identified as potent inhibitors of
heat shock protein 90 (Hsp90), a high-value therapeutic target,

whereas dipiperamides A and B have potent activity against

cytochrome P450 (CYP) 3A4.

Despite the number of approaches developed to access

chiral cyclobutanes,[3] no process has been reported that per-
mits direct asymmetric heterodimerization of two different cin-

namyl-derived sub-units. The closest examples reported to
date involve remote dienamine-mediated couplings of 3-vinyl-

oxindoles,[5a] nitroolefins,[5c] and vinylpyrroles.[5f] The develop-
ment of a direct asymmetric heterodimerization process would
be of great utility given the valuable biological activities re-

ported for these and other related non-symmetrical dimers,
such as sceptrin,[8] and lignans that could be accessed through

cyclobutane fragmentation.[2a] In this communication, we
report the first examples of organocatalytic heterodimerization

of two different cinnamyl-derived olefins in a regioselective

and highly enantioselective fashion to yield tetra-substituted
cyclobutanes.

A retrosynthetic analysis detailing the potential iminium-ion-
mediated cascade to access cyclobutanes is shown in

Scheme 1. It was postulated that heterodimerization might be
achieved through reaction of a cinnamaldehyde derivative

Figure 1. Structures of selected biologically active natural product cyclobu-
tane-containing lignan-dimers including head-to-head (left) and head-to-tail
(right) coupled derivatives.
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with a cinnamyl alcohol as indicated. Activation of the olefin of
cinnamyl alcohol 1 with a 4-hydroxyl group, for example,

would direct the stepwise cycloaddition onto the iminium ion
derived from 2 in a regioselective fashion. It should be noted

that, although organocatalytic Friedel–Crafts reactions of phe-
nols,[9] vinylogous electron-rich anilines,[10] and pyrroles[5f] onto
Michael acceptors are known, in no case have two phenylpro-
panoid sub-units been converted to cyclobutanes through
such a method.

We began this investigation with attempts to engage isoeu-

genol 1 a in reaction with cinnamaldehyde 2 a in the presence
of the achiral secondary amine pyrrolidine 3 a at room temper-

ature in THF (Table 1, entry 1). We identified that a [2++2]-cyclo-
adduct was being formed slowly, and isolated rac-4 a in 14 %

yield. A solvent screen (Table 1, entries 1–7) demonstrated
a strong preference for polar protic solvents, with methanol

being identified as the ideal solvent in a process that pro-

vided the cyclobutane rac-4 a as a single diastereomer in
80 % isolated yield. We next explored asymmetric induction

using l-proline 3 b and several versions of the common dia-
rylsilylprolinol (Jørgensen-type) catalysts (3 c–e). Interesting-

ly, no product was detected using l-proline (Table 1,
entry 8) and only trace amounts of the cyclobutane were

detected using the free diphenylprolinol 3 c or the second

generation Jørgensen catalyst 3 e, even on extended reac-
tion times (Table 1, entries 9 and 10).

Nonetheless, to our delight, the (2S)-diarylsilylprolinol cat-
alyst 3 d proved to be highly efficient, giving the desired
product in 77 % isolated yield and with 82 % ee (Table 1,
entry 11). The enantioselectivity of the reaction was also sig-
nificantly improved by cooling to 8 8C (refrigerator) for the

duration of the reaction. This process yielded essentially
a single enantiomer without any decrease in the isolated
yield (Table 1, entry 12). The ee of the cyclobutane 4 a was
determined using chiral HPLC analysis of the alcohol 5 a in
direct comparison to rac-5 a prepared using pyrrolidine as
catalyst.

The structure of the isolated cyclobutane 4 a was initially

deduced through 1- and 2-D 1H NMR analysis, through
which the stereochemistry appeared to be all-trans. We

hoped to confirm this result as well as to ascertain the ab-
solute stereochemistry of the reaction mediated by secon-

dary amine 3 d through X-ray analysis of a suitable deriva-
tive. The reaction of isoeugenol 1 a was repeated using 4-

bromocinnamaldehyde, and the resulting cycloadduct 4 c con-
verted to its crystalline semicarbazone 6 (Figure 2). Single-crys-

tal X-ray diffraction analysis confirmed the structure, the crys-
tals proved to be homochiral, and the absolute stereochemis-

try 6 was defined as shown (Figure 2).

While optimizing the conditions for the asymmetric catalysis,
we discovered that the [2++2] cycloaddition is in fact thermally

reversible and subject to an interesting dynamic kinetic resolu-
tion. When purified racemic 4 a was stirred with catalyst 3 d in

methanol at room temperature for several days, partial refor-

mation of starting materials was noted. Re-isolation and analy-
sis of 4 a showed enantioenrichment of the product in favor of

the opposite enantiomer ent-4 a (23 % ee), produced using cat-
alyst 3 d. This result is readily explained by the process of mi-

Scheme 1. Retrosynthetic analysis of a heterodimeric cyclobutane derivative
potentially available from dimerization of a cinnamaldehyde derivative 2
and cinnamyl alcohol 1 precursors.

Table 1. Catalyst and solvent screening for the organocatalytic [2++2] cycload-
dition[a]

Entry Catalyst (x mol %) Solvent Time Yield[b] [%] ee[c] [%]

1 3 a (20) THF 48 h 14 –
2 3 a (20) DMSO 48 h 26 –
3 3 a (20) CH2Cl2 48 h 30 –
4 3 a (20) Toluene 48 h 31 –
5 3 a (20) iPrOH 48 h 46 –
6 3 a (20) EtOH 48 h 53 –
7 3 a (20) MeOH 48 h 80 –
8 3 b (20) MeOH 48 h n.r. –
9 3 c (10) MeOH 4 d Trace n.d.

10 3 e (10) MeOH 4 d Trace n.d.
11 3 d (10) MeOH 5 d 77 82
12[d] 3 d (10) MeOH 5 d 78 97

[a] Unless otherwise noted, reactions were performed with 1 a (0.66 mmol),
2 a (1.00 mmol), and catalyst in 1.33 mL of solvent. Reactions using catalysts
3 b–e were performed on half scale. [b] Isolated yield of the cyclobutane alde-
hyde; n.r. = no reaction. [c] Enantiomeric excess (ee) was determined on the
reduced cyclobutanol employing chiral HPLC analysis; n.d. = not determined.
[d] Reaction performed at 8 8C without stirring.

Figure 2. Structure and absolute stereochemistry of the cyclobutane adduct
from the [2++2] cycloaddition of 4-bromocinnamaldehyde and isoeugenol as
determined via the semicarbazone (CCDC 1456076; see ref. [14]).
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croscopic reversibility, with catalyst 3 d favoring the lower
energy retro-cycloaddition pathway available. The cycloaddi-

tion is therefore forward-driven under kinetic conditions by en-
thalpic considerations (formation of two sigma bonds) but re-

versible thermodynamically at higher temperatures. The cyclo-
butane aldehyde 4 a can readily be isolated and handled under

normal conditions, but should be prevented from re-establish-
ing an iminium ion mediated cycloreversion.

The scope of the reaction was next investigated using isoeu-

genol 1 a in reaction with a variety of aromatic a,b-unsaturated
aldehydes 2 (Table 2 A). The desired alkenals were readily pre-

pared using our recently described two-carbon homologation
reagent.[11] To avoid cycloreversion, the aldehydes were imme-

diately reduced after the cycloaddition reaction was complete.
The cyclobutane adducts were obtained in good yields (66–

80 %) and very high ee values (91–98 %) with either electron-

donating or electron withdrawing substituents on the alkenal
2, which was also successful with ortho, meta, or para substitu-

ents.
We next explored the reaction of cinnamaldehyde 2 a with

several different electron rich alkenes to probe the donor re-
quirements of the reaction (Table 2 B). Whereas isoeugenol 1 a
was used successfully in many examples, its corresponding

methyl ether methylisoeugenol 1 b did not produce a cycload-
duct, demonstrating that a free phenol is required for the

donor to enter into the organocatalytic [2++2] cascade. Most
importantly, in view of access to the natural cinnamyl-derived

cyclobutanes, the reaction of cinnamaldehyde proved highly
successful with coniferyl alcohol 1 c, giving rise to the cyclobu-

tane 4 g in 77 % isolated yield as essentially a single enantio-

mer. Hence, the method allows for the catalytic asymmetric
head-to-tail dimerization of a cinnamaldehyde derivative with

a cinnamyl alcohol permitting access to heterodimeric cyclobu-
tane carboxaldehydes (vide infra). The reaction was also suc-

cessful employing (E)-1-(4’-hydroxyphenyl)-1-butene 1 d, yield-
ing the corresponding cycloadduct 5 h (after reduction).

Overall, the results show that a conjugated free-phenolic sub-

stituent is required to activate the electron-rich donor olefin
for successful engagement in the reaction, and that the reac-

tion works well with a wide variety of cinnamaldehyde deriva-
tives 2.

A selection of transformations were developed to investigate
applications while retaining chirality on the heterodimeric cy-
clobutane 4 g (Scheme 2). Direct reduction of 4 g would lead

to a meso-triol (not shown), however 4 g could be converted
to the bis-benzoate 7, allowing reduction of the aldehyde to
yield the cyclobutamethanol 8. Chiral HPLC analysis of 8 dem-
onstrated that homochirality was maintained through this
tightrope of reactions (Scheme 2, ii and iii).

In addition, rac-4 a was readily converted to the diacetate 9,
reduction of which led quickly to the diacetoxy alcohol 10. We

also discovered that reaction of 9 or 10 with excess sodium
borohydride led to the reductive cleavage of the ortho-me-
thoxy acetate, most likely through a chelation-assisted path-
way. This reaction yields the free phenol derivative 11, an inter-
mediate that appears suitable for one-electron oxidative frag-
mentation reactions.[2a] Finally, reaction of rac-4 g with the

ylide derived from (ethoxycarbonylmethyl)triisobutylphospho-
nium bromide, gave the two-carbon extended ester 12, analo-

gous to natural products such as nigramide P (Figure 1).
It is important to note that the two-step sequence of i fol-

lowed by vii (Scheme 2) opens a controlled access to vinyl-cy-
clobutanes, avoiding possible [4++2]-type adducts[7d] that often

co-occur with the natural cyclobutanes.

From a mechanistic perspective, we were able to successful-
ly conduct the stepwise [2++2]-reaction of 1 a with 2 a using

pyrrolidine 3 a catalysis either in the dark or in the presence of
5 mol % 4-tertbutylcatechol indicating that neither photochem-

ical nor oxidative processes are involved. In conjunction with
the very high ee values observed, the evidence indicates that

Table 2. Scope and selectivity of the organocatalytic [2++2] cycloaddition
reaction (isolated yield, ee).

A) Reaction of 1 a with acceptor a,b-unsaturated aldehydes.

B) Reaction of cinnamaldehyde with other donor alkenes.

Unless otherwise noted, reactions were performed with 1 (0.33 mmol), 2
(0.50 mmol), and catalyst 3 d (0.1 equiv) in 0.66 mL of MeOH, over 5 days
at 8 8C. Yields of the cyclobutane aldehyde are reported; ee was deter-
mined by HPLC analysis of the reduced cyclobutanes; 4 g was benzoylat-
ed prior to reduction to avoid production of a meso diol ; n.r = no reac-
tion.
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the reaction proceeds through a stepwise formal [2++2] using
tandem iminium-enamine catalysis (Figure 3).

The stereochemistry of the reaction is rationalized through
the transition-state assembly depicted in Figure 4 using cata-

lyst 3 d. The donor substituent (most likely the phenoxide
anion) attacks the least hindered Si-face of the iminium ion

(Figure 4, (I)) with the diarylprolinol substituent placed distal

allowing an overall anti-periplanar HOMO–LUMO alignment for
the first step of the cascade. The model shows that a strong

possibility exists for stabilizing face or edge-on p–p secondary
orbital interactions in this assembly. The enamine (II) now

closes the cyclobutane ring by adding on to the p-quinome-
thide intermediate, with iminium hydrolysis completing the

cascade.

In conclusion, we report the discovery of novel organocata-
lytic methodology for the asymmetric synthesis of highly func-

tionalized chiral cyclobutanes in a regiospecific manner from

a,b-unsaturated aldehydes and alkenylphenols. The process
yields heterodimeric head-to-tail coupled cyclobutanes in

good yield and with excellent enantioselectivity.
A selection of transformations on the cyclobutane carboxal-

dehyde 4 g have been developed to showcase the potential of
this method to access chiral synthetic intermediates and ad-

ducts suitable for fragmentation reactions or conversion to

natural product-containing cyclobutanes and analogs. Finally,
the ease with which these strained tetrasubstituted cyclobu-

tanes are formed under iminium-ion catalysis opens another
consideration regarding the nature of the [2++2]-ase,[7a] which

could lead to such natural products under non-oxidative and
non-photoinduced conditions. As novel methods for the syn-
thesis of cyclobutanes are actively sought,[3] the present dis-

covery highlights a widening gap in comparison to classic ap-
proaches to “tetramethylene” carboxylates[12] and cyclobutane

itself,[13] in terms of reaction yield, regio-control, and now one-
step asymmetric entry to these intermediates. Our group is ac-

tively exploring umpoled variations of the chemistry to access
head-to-head dimers as well as applications in total synthesis.
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