

CHEMISTRY A European Journal

Accepted Article

Title: Reductive Coupling and Loss of N2 from Magnesium Diazomethane Derivatives

Authors: Jiliang Zhou, Leo Liu, Levy Cao, and Douglas Wade Stephan

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201802138

Link to VoR: http://dx.doi.org/10.1002/chem.201802138

Supported by ACES

Reductive Coupling and Loss of N₂ from Magnesium Diazomethane Derivatives

Jiliang Zhou, Liu Leo Liu, Levy L. Cao and Douglas W. Stephan*^[a]

Dedication ((optional))

Abstract: The reductive coupling of two diazomethanes is effected by reaction with $[(NacNac^{Mes})Mg]_2$ affording the species $[(NacNac^{Mes})Mg(N_2CPh_2)]_2$ **2** and $[(NacNac^{Mes})Mg(N_2C(C_6H_4)_2)]_2$ **3**. These species containing N₄ linkages readily evolve the central N₂ at 50 and 75 °C to give the Mg-imide products $[(NacNac^{Mes})Mg(NCPh_2)]_2$ **4** and $[(NacNac^{Mes})Mg(NC(C_6H_4)_2)]_2$ **5**, respectively. The mechanism for the loss of N₂ is considered computationally. Compounds **2** and **3** react with O₂ to liberate the tetrazene (Ph₂N₂)₂ **6** and the hydrazine $((C_6H_4)_2CN)_2$ **7** while reactions with Me₃SiOSO₂CF₃ or Me₃SiCl with **2** and **3** provide the related silyl imines **8** and **9**, respectively.

Introduction

Main group systems have garnered much attention in recent years, in part due to the growing body of evidence that these elements can in some instances behave in a fashion analogous to transition metals.^[1] While Power described early examples of the irreversible reactions of Ge-Ge multiple bonds with H₂,^[2] species of the form ArSn=SnAr were also shown to react reversibly with ethylene.^[3] Similarly, Bertrand demonstrated the irreversible reaction of singlet carbenes with H₂ and NH₃,^[4] while our group described frustrated Lewis pairs (FLPs), which react reversibly with H₂.^[5] In subsequent work, FLP chemistry has been exploited for metal-free reductions, other catalytic processes and the stoichiometric capture of a variety of other small molecules.^[5-6]

While the breadth of reactivity of main group systems has grown dramatically in the last decade, notably absent from the substrates under consideration is dinitrogen. While early matrix isolation work had implied the interaction of N_2 with boron-based species,^[7] it has only been very recently that the first main group system capable of binding N_2 was described by the Braunschweig group.^[8] Seeking to develop main group-N₂ chemistry, we note that main group systems that evolve N_2 are limited to reactions of azides. For example, the classic reaction^[9] exploits Staudinger azides to generate phosphinimines. In some cases, the intermediate phosphazide derivatives have been intercepted.^[10] Other main group azides^[11] are isolable and lose N2 to give element-nitride derivatives. Similarly, photochemical reactions of azide precursors have been used in the synthesis of heavier main group-N fragments and shown to often prompt substituent migration to N.^[12] Other main group species that evolve N2 are rare. The species Ph₃PNNPPh₃ is reported to lose N₂ at 215 °C.^[13] We and others have shown that reactions of diazomethanes with boranes effect

 [a] Dr. J. Zhou, Dr. L. L. Liu, L. L. Cao and Professor Dr. D.W. Stephan Department of Chemistry, University of Toronto,
 80 St. George St., Toronto, Ontario, Canada M5S3H6 E-mail: dstephan@chem.utoronto.ca

Supporting information for this article is given via a link at the end of the document. CCDC # 1832160-1832165.

carbene insertion into B-C bonds with loss of N₂.^[14] More recently, the use of a sterically demanding diazomethane has been used to intervene in such reactions allowing the interception of a diazomethane-borane adduct.^[15] Nonetheless, this adduct is thermally unstable, above -35 °C, evolving N₂ to give a product formulated as the carbene-borane adduct.

Figure 1 (a) Reductive couplings of organic substrates induced by 1; (b) current report.

In targeting new systems that might evolve N₂ we noted strong reducing ability of the dimeric magnesium(I) the β-diketiminates, first reported by Jones and Stasch.^[16] This reagent has proved highly reactive and affords unique reactivity (Figure 1a),^[17] including the coupling of azides to give N_{6} fragments,^[18] coupling of isocyanides^[18c], isocyanates^[19] or nitriles,^[18c] reversible 1,1-diphenylethylene,^[20] the activation of C-F bonds,^[21] and permits the construction of rare Mn-Mg bonds.^[22] In this paper, we apply the reactivity of the Mg(I) species [(NacNac^{Mes})Mg]₂ 1 ^[23] (NacNac^{Mes} = [(MesNCMe)₂CH]⁻) to effect the reductive coupling of diazomethanes (Figure 1b), affording tetrazene-dianion complexes of Mg via N-N bond formation. The reactivity of these species is probed. The products of oxidation and mild thermolysis are characterized. In the latter case, facile loss of N2 affords magnesium-imide dimers,

WILEY-VCH

providing a rare example of isolable main group species, not derived from azides, that cleanly evolve N_2 under mild conditions. The mechanism of this loss is considered.

Results and Discussion

In an initial reaction compound 1 was combined with two equivalents of Ph₂CN₂ in toluene solution (Scheme 1). After 30 minutes, a dark purple solid 2 was isolated in 89% vield. The ¹H NMR data were consistent with the product being comprised of the reactants but gave little structural insight. Purple crystals of this product were grown by cooling a saturated pentane solution at -35 °C. A crystallographic study of 2 established the formulation as [(NacNacMes)Mg(N2CPh2)]2 (Figure 2a) in which electron transfer from Mg(I) to the diazomethane affords Mg(II) centers and a central [Ph₂CN₄CPh₂]²⁻ fragment. The pseudo tetrahedral Mg(II) centers are coordinated to the NacNac^{Mes} ligand and to alternating nitrogen atoms of the N₄ linkage. The Mg-N distances for the NacNac^{Mes} ligands were found to range from 2.006(3) Å to 2.025(3) Å, while the Mg-N to the reduced diazomethane are 2.178(4) Å, 2.010(4) Å, 2.139(4) and 2.024(5) Å. The corresponding N-Mg-N angles in the six and four member-rings were found to be 94.41(12)°, 96.54(12)° and 63.84(16)° and 64.51(16)°, respectively. The chelation in the MgN₃ rings give rise to transannular Mg-N distances of 2.588(5) Å and 2.551(4) Å. The exocycle Ph₂C fragments give rise to C-N distances of 1.351(6) Å and 1.335(5) Å, while the adjacent N-N distances were found to be 1.316(6) Å and 1.327(6) Å with a central N-N distance of 1.454(6) Å. It is noteworthy that the central CN₄C linkage is approximately coplanar suggestive of extended conjugation while the phenyl rings on either end are canted at angles of 27.7°, 52.5°, 33.2° and 43.6° with respective to the CN₄C plane.

The corresponding reaction of 1 reacted with 9-diazofluorene in toluene proceeds in a similar fashion after 30 minutes to give the dark golden solid 3 in 93% yield. Golden crystals of 3 were obtained by slow evaporation of a pentane solution at room temperature. The crystallographic study of 3 established the formulation as [(NacNac^{Mes})Mg(N₂C(C₆H₄)₂)]₂ (Figure 2b). The general structural features of 3 are analogous to 2, although 3 exhibits crystallographic C2 symmetry with Mg-N distances for the NacNac $^{\rm Mes}$ ligands of 2.0133(18) Å and 2.0070(17) Å, Mg-N distances to the reduced diazomethane of 2.1076(17) Å and 2.0979(18) Å and N-Mg-N angles of 95.86(7)° and 63.02(6)° for the in the six and four member-rings respectively. The C-N distances of the central CN₄C fragment in 3 was found to be 1.330(2) Å, with adjacent N-N distance of 1.328(2) Å and a central N-N distance of 1.418(3) Å. In contrast to 2, the central CN₄C linkage is almost coplanar with the fluorenyl fragments as the interplanar angle between the CN₄C fluorenyl group was found to be 7.17°. This further extends the conjugation in the central [((C₆H₄)₂CN₂)₂]²⁻ fragment accounts for the longer N-N distances adjacent the fluorenyl groups.

The formation of **2** and **3** is reminiscent of the N-N coupling of adamantly azides reported by Jones et al.^[24] which afforded the species, [(NacNac^{Mes})Mg(N₃Ad)]₂. Holland and co-workers

have also reported the reductive coupling of azides from the reaction of (NacNac^{Mes})Fe(I) species with AdN₃.^[25] Reductive coupling of diazofluorene has been studied electrochemically and shown from chronoamperometric and coulometric gas-pressure studies to generate the dianion with the empirical formula [N₂C(C₆H₄)₂]^{2-,[26]} however, the isolation of **2** and **3** represents the first isolation of derivatives of such N-N coupled diazomethanes to our knowledge.

Figure 2 POV-ray depictions of the structures of (a) 2 and (b) 3. Hydrogen atoms and solvent residue have been omitted for clarity. C: black, N: blue, Mg: brown.

Natural bond orbital (NBO) analysis^[27] (M06-2X/TZVP//M06-2X/SVP)^[28] reveals that the reductive coupling of diazomethanes forming 2 and 3 significantly weakens the terminal N-N bonds, supported by the much smaller Wiberg bond indices (WBIs) (2: 1.28 and 1.29; 3: 1.33 and 1.33) compared to the corresponding diazomethanes (Ph₂CN₂: 2.38; (C₆H₄)₂CN₂: 2.41). The WBIs of the central N-N bonds in 2 and 3 are 1.03 and 1.08, respectively, while the Mg-N bonds show extremely small WBIs (maximum: 0.09). The C_2N_4 units carry negative charges (2: -1.56; 3: -1.36), while the Mg atoms are very positively charged (2: 1.78 each; 3: 1.76 each). Interestingly, an inspection of the NBOs corresponding to the central C2N4Mg2 fragments of 2 suggest no Mg-N σ -bonds. Instead, the core N atoms contain two lone pairs of electrons and form $\sigma\text{-bonds}$ with the adjacent N atoms (see SI). Collectively, the electronic structures of 2 and 3 feature is best described as being comprised of cationic [LMg]+ and anionic $[C_2N_4]^{2-}$ units.

Compound 2 does not exhibit prolonged stability in benzene solution at room temperature, rather it shows a half-life of about

Full Paper

WILEY-VCH

4 days under these conditions. Quantitative conversion of 2 to a new species 4 was achieved in 12 h at 50 °C (Scheme 1). This transformation was evident from the color change from purple to yellow. Again, while NMR data fails to provide definitive structural information, yellow crystals of 4 were obtained by slow evaporation of a pentane solution at room temperature. The crystallographic data affirmed the formulation of 4 as [(NacNac^{Mes})Mg(NCPh₂)]₂ (Figure 3a). This centrosymmetric dimer features two pseudo-tetrahedral Mg centers linked by two bridging Ph₂C=N ligands The Mg-N distances for the NacNac ligands were found to be 2.064(1) Å and 2.084(1) Å while the bridging imide ligands gave rise to Mg-N distances of 2.097(1) Å and 2.077(1) Å. The chelate bite angle for the NacNac^{Mes} ligand is 91.41(6)° while the N-Mg-N and Mg-N-Mg' angles for the N₂Mg₂ were found to be 87.70(5)° and 91.73(7)° and 92.87(7)°, respectively. The C-N distance in the imide ligand are 1.260(3) Å and 1.273(3) Å, consistent with the C=N double bonds.

Scheme 1 Reactions of **1** with diazomethanes and subsequent loss of N_2 , L = NacNac^{Mes}.

In contrast to **2**, compound **3** was stable in benzene solution at room temperature. However, on warming to 75 °C for 24 h (Scheme 1), the cyan color of **3** in toluene solution was replaced with pink. Pink crystals of a new species **5** were obtained by slow evaporation of a pentane solution at room temperature. Again, crystallographic data were acquired to confirm the formulation of **5** as $[(NacNac^{Mes})Mg(NC(C_6H_4)_2)]_2$ (Figure 3b), analogous to those in **4**. However, the poorer quality crystallographic data precludes a detailed comparison of the metric parameters.

The formation of **4** and **5** clearly proceeds via loss of N_2 from the precursors **2** and **3**, respectively. While the loss of N_2 from an N_4 species is perhaps not unexpected, this behaviour stands in contrast to conventional reactions of diazomethanes where loss of N_2 affords, the transient carbene fragment. In the present cases the reductive coupling of these diazomethanes appears to labilize the central N_2 unit. To probe the mechanism of this reaction, density functional theory (DFT) calculations were performed at the SMD-M06-2X/TZVP//M06-2X/SVP level of

theory^[28b] using **1** with Ph_2CN_2 (Figure 4). Initially, one-electron reduction of Ph₂CN₂ by 1 gives a radical intermediate IN1 (0.7 kcal mol⁻¹) that subsequently undergoes dimerization to provide 2 (-59.7 kcal mol⁻¹). The loss of N₂ from 2 is computed to yield 4 in a highly exothermic concerted reaction (-78.2 kcal mol⁻¹), proceeding via a transition state that represents an activation barrier of 33.1 kcal mol⁻¹. This relatively high barrier is in line with the experimental observation that the conversion of 2 to 4 is extremely slow at room temperature, allowing for the isolation of the room-temperature-stable magnesium diazomethane derivative 2. In the present calculation, the rate limiting step is found to involve cleavage of an N-N bond alpha to the C=N bond generating a Mg-imide fragment coordinated to the remaining N₃ unit on the other Mg center. The subsequent loss of N₂ and subsequent dimerization give the Mg-imide 4 in a highly exothermic reaction.

Figure 3 POV-ray depictions of the structures of (a) **4** and (b) **5**. Hydrogen atoms and solvent residue have been omitted for clarity. C: black, N: blue, Mg: brown.

Efforts to effect further reactivity of **2** and **3** were undertaken. Addition of H₂ led to no reaction at room temperature, while at elevated temperatures **2** and **3** underwent thermal conversions to **4** and **5** respectively. Exposure of **2** to atmospheric O₂ led to degradation and the formation of a mixture of products, although the tetrazene [Ph₂CN₄CPh₂] **6** was isolated in 88 % yield. (Figure 5). Interestingly, the reaction of **6** with **1** regenerated **2**. It is noteworthy that Herbranson et al.^[26] previously described the electrochemical oxidation of the dianion [((C₆H₄)₂CN₂)₂]² gave the fluorenyl analogue of **6** which subsequently lost N₂ to give

Full Paper

the hydrazine [((C_6H_4)₂CN)₂] **7**. The corresponding aerobic oxidation of **3** proceeded quickly to give **7** in 72% yield (Figure 5). The structures of **6** and **7** were confirmed crystallographically (Figure 6, 7). In addition, preliminary results showed that treatment of **2** with trimethylsilyl triflate (Me₃SiOSO₂CF₃) or **3** with trimethylsilyl chloride (Me₃SiCl) in C₆D₆ afforded the corresponding silyl imines **8** (86 %) or **9** (57 %), respectively, along with some unidentified magnesium by-products (Figure 5).

Figure 4 (a) Computed reaction profile for conversion of 1 to 2 to 4 with loss of N₂. (b) Optimized structures of key intermediate IN1 and transition state TS1.

Figure 6 POV-ray depictions of the structure of 6. Hydrogen atoms and solvent residue have been omitted for clarity. C: black, N: blue.

Figure 7 POV-ray depictions of the structure of 7. Hydrogen atoms have been omitted for clarity. C: black, N: blue.

In summary, the reactions of diazomethanes with the Mg(I) species 1 yield the formation of dianionic dimers of these diazomethane complexes of magnesium, 2 and 3. These systems represent the first unequivocal data demonstrating the reductive coupling of diazomethanes. Moreover, these species have shown to be precursors to Mg-imide species 4 and 5 via thermally induced loss of N2. The silyl imines 8 and 9 are derived from reactions of 4 and 5 with Me₃SiOSO₂CF₃ or Me₃SiCl, while in the presence of dry O2, 2 and 3 convert to a tetrazene 6 and a hydrazine 7, respectively. Apart from main group azide derivatives, these transformations provide rare examples of main group system that evolve N2. These findings suggest that new strategies to reversible main group N2-binding may emerge from sterically demanding systems that preclude dimeric products. Synthetic efforts to this end are on-going and will be reported in due course.

Experimental Section

General Remarks: All manipulations were performed in a MB Unilab glove box produced by MBraun or using standard Schlenk techniques under an inert atmosphere of anhydrous N2. All glassware was oven-dried and cooled under vacuum before use. Dry, oxygen-free solvents (toluene, n-hexane and npentane) were prepared using an Innovative Technologies solvent purification system. Benzene was degassed and stored over molecular sieves (4 Å) for at least overnight prior to use. Deuterated benzene (C₆D₆) and chloroform (CDCl₃) purchased from Cambridge Isotope Laboratories Inc. were degassed and stored over molecular sieves (4 Å) for at least two days prior to use. Commercial reagents were used without further purification otherwise. [(NacNacMes)Mg]₂ **1**^[18a], unless indicated diazodiphenylmethane and 9-diazofluorene^[29] were prepared according to literature procedures. NMR spectra were obtained on a Bruker AvanceIII-400 MHz spectrometer or an Agilent DD2 600 MHz spectrometer. ¹H, ¹³C{1H} NMR chemical shifts (δ/ppm) are referenced to the residual solvent resonance of the deuterated solvent. Elemental analyses were performed at the University of Toronto employing a Perkin Elmer 2400 Series II CHNS Analyzer. High-resolution mass spectra (HRMS) were obtained on an Agilent 6538 Q-TOF (ESI) or a JMS-T100LC JOEL (DART).

Syntheses of 2: Toluene solution (1 mL) of Ph_2CN_2 (40 mg, 0.21 mmol) was added to toluene solution (1 mL) of $[(NacNacMes)Mg]_2$ 1 (72 mg, 0.20 mmol), and the mixture was

stirred at room temperature for 30 minutes. The volatiles of the solution were removed under vacuum. The residue was added by 2 mL of n-pentane and the mixture was stored at -35 °C overnight. Dark purple solid separated out and was collected by removing the supernatant. The solid was washed with 2 mL of cold n-pentane and dried under vacuum to give 2 as a dark purple solid (90 mg). n-Pentane solutions were combined together and reduced to 0.5 mL. Crystallization from the npentane solution at -35 °C gave another crop of 2 (8 mg). Total yield of 2 is 89%. Single crystals of 2 were obtained by cooling a saturated n-pentane solution at -35 °C. ¹H NMR (600 MHz, C₆D₆): 7.27 (br, 4H, Ar-H), 7.06 (m, 8H, Ar-H), 6.97 (t, ⁴J_{H-H} = 7.2 Hz, 2H, Ar-H), (t, ⁴J_{H-H} = 7.2 Hz, 2H, Ar-H), 6.84 (br, 4H, Ar-H), 6.77 (s, 4H, Ar-H), 6.76 (s, 4H, Ar-H), 4.95 (s, 2H, MeC(N)CH), 2.19 (s, 12H, CH₃), 1.91 (s, 12H, CH₃), 1.83 (s, 12H, CH₃), 1.60 (s, 12H, CH₃). ¹³C NMR (151 MHz, C₆D₆): 168.8 (MeC(N)CH), 145.0, 142.4, 137.9, 133.1, 131.9, 131.8, 129.4, 129.2, 128.8, 128.7, 128.3, 126.8, 125.8, 124.4 (Ar-C and Ph₂CN), 96.3 (MeC(N)CH), 23.1, 20.9, 19.7, 18.9 (CH₃), 34.5, 22.7, 14.3 (npentane-C). Anal. Calcd for C₇₂H₇₈N₈Mg₂: C, 78.33; H, 7.12; N, 10.15. Found: C, 79.17; H, 6.93; N, 9.35.

Syntheses of 3: Toluene solution (1 mL) of 9-diazofluorene (40 mg, 0.21 mmol) was added to toluene solution (1 mL) of [(NacNacMes)Mg]₂ 1 (72 mg, 0.20 mmol), and the mixture was stirred at room temperature for 30 minutes. The volatiles of the solution were removed under vacuum. The residue was added by 2 mL of n-pentane and the mixture was stored at -35 °C overnight. A dark golden solid separated out and was collected by removing the supernatant. The solid was washed with 2 mL of cold n-pentane and dried under vacuum to give 3 as a dark golden solid (58 mg). n-Pentane solutions were combined together and reduced to 0.5 mL. Crystallization from evaporation of the n-pentane solution at room temperature gave another crop of 3 (44 mg). Total yield of 3 is 93%. Single crystals of 3 were obtained by slow evaporation of a n-pentane solution at room temperature. ¹H NMR (400 MHz, C6D6): 7.76 (dd, ³J_{H-H} = 11.6 Hz, ³J_{H-H} = 7.6 Hz, 4H, Ar-H), 7.39-7.18 (m, 10H, Ar-H), 7.15 (m, overlapped with C₆D₆, 2H, Ar-H), 6.50 (d, 4JH-H = 4.4 Hz, 8H, Ar-H), 5.15 (s, 2H, MeC(N)CH), 1.97 (s, 24H, CH₃), 1.94 (s, 12H, CH₃), 1.70 (s, 12H, CH₃). ¹³C NMR (100 MHz, C₆D₆, 25 °C): 169.6 (MeC(N)CH), 143.6, 137.5, 136.6, 135.4, 133.6, 131.5, 131.2, 131.1, 129.6, 129.3, 127.1, 126.4, 125.0, 124.1, 122.9, 120.3, 120.1, 117.4 (Ar-C and Fluorene-9C), 95.7 (MeC(N)CH), 22.9, 20.8, 19.6, 18.7 (CH₃). Anal. Calcd for C₇₂H₇₄N₈Mg₂: C, 78.61; H, 6.78; N, 10.19. Found: C, 78.27; H, 6.88; N, 10.15.

Syntheses of 4: Toluene solution (1 mL) of **2** (16.6 mg, 0.015 mmol) stood at 50 °C for 12 hours. The volatiles of the solution were removed under vacuum to give **4** as a yellow solid (16.0 mg, 99%) without further purification. Single crystals of **4** were obtained by slow evaporation of a n-pentane solution at room temperature. ¹H NMR (400 MHz, C₆D₆): 8.27-5.75 (m/br, overlapped with C₆D₆, 28H, Ar-H), 4.88 (s, 2H, MeC(N)CH), 2.31 (s, 12H, CH₃), 1.66 (br, 24H, CH₃), 1.40 (s, 12H, CH₃). ¹³C NMR (100 MHz, C₆D₆): 167.7 (MeC(N)CH), 147.3, 132.4 (br), 132.2, 129.7 (br), 128.2 (Ar-C and Ph₂CN), 97.3 (MeC(N)CH), 23.5,

21.2, 19.8 (br) (CH_3). Anal. Calcd for $C_{72}H_{78}N_6Mg_2$: C, 80.37; H, 7.31; N, 7.81. Found: C, 79.19; H, 7.36; N, 7.56.

Syntheses of 5: Toluene solution (1 mL) of **3** (16.5 mg, 0.015 mmol) stood at 75 °C for 24 hours. The volatiles of the solution were removed under vacuum to give **5** as a pale pink solid (15.9 mg, 99%) without further purification. Single crystals of **5** were obtained by slow evaporation of a n-pentane solution with drops of toluene at room temperature. ¹H NMR (400 MHz, C6D6): 7.45 (d, ${}^{3}J_{H+H} = 7.2$ Hz, 4H, Ar-H), 7.26 (t, ${}^{3}J_{H+H} = 7.2$ Hz, 4H, Ar-H), 7.16 (m, overlapped with C₆D₆, Ar-H), 6.46 (s, 8H, Ar-H), 5.17 (s, 2H, MeC(N)CH), 2.18 (s, 12H, CH₃), 1.79 (br, 24H, CH3), 1.52 (s, 12H, CH₃). ¹³C NMR (100 MHz, C₆D₆): 168.3 (MeC(N)CH), 146.5, 143.4, 137.3 (br), 132.4, 131.6, 131.0 (br), 129.5, 123.3 (br), 119.1 (br) (Ar-C and Fluorene-9C), 95.2 (MeC(N)CH), 23.3, 21.3, 19.4 (CH₃), 34.5, 22.7, 14.3 (n-pentane-C). Anal. Calcd for C₇₂H₇₄N₆Mg₂: C, 80.67; H, 6.96; N, 7.84. Found: C, 78.88; H, 7.27; N, 7.53.

Syntheses of 6: Toluene solution (0.6 mL) of 2 (16.6 mg, 0.015 mmol) was sealed in a J-Young NMR tube and frozen in liquid nitrogen. The N₂ atmosphere was removed under vacuum and and replaced with 2.0 atm O₂and the solution was warmed to room temperature. The volatiles of the solution were removed under vacuum. The residue was washed by n-pentane (2 mL x 2) and dried under vacuum to give **6** as a pale yellow solid (5.1 mg, 88%). Single crystals of **6** were obtained by slow evaporation of a bzenzene solution at room temperature. ¹H NMR (400 MHz, CDCl₃): 7.73 (m, 4H, Ph-H), 7.50-7.32 (m, 12H, Ph-H), 7.23 (m, 4H, Ph-H). ¹³C NMR (100 MHz, CDCl₃): 169.8 (C=N), 137.2, 134.8, 131.6, 130.3, 130.1, 129.9, 128.4, 128.1 (Ph-C).

Syntheses of 7: Benzene solution (0.6 mL) of 3 (16.5 mg, 0.015 mmol) was sealed in a J-Young NMR tube and frozen by liquid nitrogen. The N₂ atmosphere was removed under vacuum and and replaced with 2.0 atm O₂ and the solution warmed to room temperature. The volatiles of the solution were removed under vacuum. The residue was added by a few drops of toluene and washed by n-hexane (2 mL x 2) and dried under vacuum to give 7 as a pale orange solid (3.8 mg, 72%). Single crystals of 7 were obtained by slow evaporation of a bzenzene solution at room temperature. ¹H NMR (400 MHz, CDCl₃): 8.20 (d, ³J_{H-H} = 7.6 Hz, 2H, Ar-H), 8.07 (d, ³J_{H-H} = 7.6 Hz, 2H, Ar-H), 7.59 (d, ³J_{H-H} = 7.2 Hz, 4H, Ar-H), 7.48 (t, ³J_{H-H} = 7.6 Hz, 2H, Ar-H), 7.43 (t, ³J_{H-H} = 7.6 Hz, 2H, Ar-H), 7.36 (t, ${}^{3}J_{H-H}$ = 7.6 Hz, 2H, Ar-H), 7.24 (t, ${}^{3}J_{H-H}$ = 7.6 Hz, 2H, Ar-H). ¹³C NMR (100 MHz, CDCl₃): 165.5 (C=N), 143.4, 142.6, 136.3, 133.1, 133.0, 132.7, 131.6, 128.8, 128.7, 124.9, 120.4, 120.3 (Ar-C). MS (DART) [M+1] C₂₆H₁₇N₂⁺ calc. 357.13917 m/z, found 357.14016 m/z.

Syntheses of 8: A C₆D₆ solution (0.6 mL) of **2** (16.6 mg, 0.015 mmol), Me₃SiOSO₂CF₃ (8.0 mg, 0.036 mmol) and diphenylmethane (22.7 mg, 0.135 mmol) was sealed in a NMR tube and the solution stood at room temperature for 1 hour. The ¹H NMR spectrum of the reaction solution was recorded and the yield of **8** (86%) was referenced to diphenylmethane. The generation of **8** was confirmed by HRMS: (DART) [M+1] $C_{16}H_{20}NSi^+$ calc. 254.13650 m/z, found 254.13738 m/z.

Syntheses of 9: A C_6D_6 solution (0.6 mL) of **3** (16.5 mg, 0.015 mmol), Me₃SiCl (6.5 mg, 0.06 mmol) and diphenylmethane (22.7 mg, 0.135 mmol) was sealed in a NMR tube and the solution stood at 50 °C for 36 hour. The ¹H NMR spectrum of the reaction solution was recorded and the yield of **9** (57%) was referenced to diphenylmethane. The generation of **9** was confirmed by HRMS: (DART) [M+1] $C_{16}H_{18}NSi^+$ calc. 252.12085 m/z, found 252.12089 m/z.

Crystallographic Details Single crystals were coated with Paratone-N oil, mounted using a glass fibre pin and frozen in the cold nitrogen stream of the goniometer. Data sets were collected on a Siemens Smart System CCD diffractometer which was equipped with a rotation anode using graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). Data reduction was performed using the Bruker SMART software package. Data sets were corrected for absorption effects using SADABS routine (empirical multi-scan method). The structures were solved by direct methods and refined on F² by full-matrix least-squares techniques with anisotropic thermal parameters for nonhydrogen atoms. Hydrogen atoms were placed at calculated positions and were included in the structure calculation. Calculations were carried out using the SHELXL-97, SHELXL-2014 or Olex2 program.[S3]

Computational Details Calculations were carried out with the Gaussian 09 package.^[28b] Geometry optimizations were performed with the M06-2X functional.^[30] The SVP basis set was used for all the atoms. Frequency calculations at the same level of theory were performed to identify the number of imaginary frequencies (zero for local minimum and one for transition states) and provide the thermal corrections of Gibbs free energy. Transition states were submitted to intrinsic reaction coordinate (IRC) calculations to determine two corresponding minima.

The single-point energy calculations were performed at the M06-2X/TZVP level of theory for solution-phase. The gas-phase geometry was used for all the solution phase calculations. The SMD method was used with toluene, while Bondi radii^[31] were chosen as the atomic radii to define the molecular cavity. The Gibbs energy corrections from frequency calculations were added to the single-point energies to obtain the Gibbs free energies in solution. All the solution-phase free energies reported in the paper correspond to the reference state of 1 mol/L, 298K. Natural bond orbital (NBO) calculations were carried out using NBO 6.0 program^[27] at the M06-2X/TZVP//M06-2X/SVP level of theory. Optimized structures were visualized by the CYLview program.^[32]

Acknowledgements

D.W.S. gratefully acknowledges the financial support from NSERC Canada and the award of Canada Research Chair. D.W.S. is also grateful for the award of an Einstein Visiting Fellowship at TU Berlin.

Keywords: Mg(I) \bullet diazomethanes \bullet reductive coupling \bullet N_2 evolution \bullet

- [1] P. P. Power, *Nature* **2010**, *463*, 171-177.
- [2] G. H. Spikes, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2005, 127, 12232-12233.
- [3] P. J. Davidson, M. F. S. Lappert, Chem. Commun. 1973, 317
- [4] G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller, G. Bertrand, *Science* 2007, 316, 439-441.
- [5] (a) D. W. Stephan, Science 2016, 354, aaf7229; (b) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441; (c) D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018-10032; (d) D. W. Stephan, Acc. Chem. Res. 2015, 48, 306-316.
- [6] (a) D. W. Stephan, G. Erker, *Chem. Sci.* 2014, *5*, 2625-2641; (b) D. W. Stephan, G. Erker, *Angew. Chem. Int. Ed.* 2010, *49*, 46-76.
- [7] K. C. Janda, L. S. Bernstein, J. M. Steed, S. E. Novick, W. Klemperer, J. Am. Chem. Soc. 1978, 100, 8074.
- [8] M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, *Science* 2018, 359, 896-900.
- [9] H. Staudinger, J. Meyer, *Helv. Chim. Acta* **1919**, *2*, 635.
- [10] (a) L. LePichon, D. W. Stephan, *Inorg. Chem.* 2001, 40, 3827-3829;
 (b) M. D. Velasco, P. Molina, P. M. Fresneda, M. A. Sanz, *Tetrahedron* 2000, 56, 4079-4084; (c) V. P. Kukhar, L. F. Kasukhin, M. P. Ponomarchuk, A. N. Chernega, M. Y. Antipin, Y. T. Struchkov, *Phosphorus, Sulfur Silicon Relat. Elem.* 1989, 44, 149-153; (d) J. L. Zhou, L. L. Cao, L. Liu, D. W. Stephan, *Dalton Trans.* 2017, 46, 9334-9338.
- [11] W. Fraenk, T. M. Klapoetke, *Inorganic Chemistry Highlights* 2002, 259-278.
- [12] (a) G. Bertrand, J. P. Majoral, A. Baceiredo, Acc. Chem. Res. 1986, 19, 17-23; (b) P. Portius, M. Davis, Coord. Chem. Rev. 2013, 257, 1011-1025.
- [13] N. Holzmann, D. Dange, C. Jones, G. Frenking, Angew. Chem. Int . Ed. 2013, 52, 3004-3008.
- [14] (a) R. C. Neu, C. Jiang, D. W. Stephan, *Dalton Trans.* 2013, 42, 726-736; (b) R. C. Neu, D. W. Stephan, *Organometallics* 2012, 31, 46-49.
- [15] C. N. Tang, Q. M. Liang, A. R. Jupp, T. C. Johnstone, R. C. Neu, D. T. Song, S. Grimme, D. W. Stephan, *Angew. Chem. Int. Ed.* 2017, 56, 16588-16592.
- [16] S. P. Green, C. Jones, A. Stasch, Science 2007, 318, 1754-1757.
- [17] C. Jones, Nature Reviews Chemistry 2017, 1, 0059.
- [18] (a) S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. J. Edwards, G. J. McIntyre, *Chem. Eur. J.* 2010, *16*, 938-955; (b) S. J. Bonyhady, S. P. Green, C. Jones, S. Nembenna, A. Stasch, *Angew. Chem., Int. Ed.* 2009, *48*, 2973-2977; (c) M. Ma, A. Stasch, C. Jones, *Chem. Eur. J.* 2012, *18*, 10669-10676.
- [19] R. Lalrempuia, A. Stasch, C. Jones, Chem. Sci. 2013, 4.
- [20] A. J. Boutland, A. Carroll, C. A. Lamsfus, A. Stasch, L. Maron, C. Jones, J. Am. Chem. Soc. 2017, 139, 18190-18193.
- [21] C. Bakewell, A. J. P. White, M. R. Crimmin, J. Am. Chem. Soc. 2016, 138, 12763-12766.
- [22] J. Hicks, C. E. Hoyer, B. Moubaraki, G. L. Manni, E. Carter, D. M. Murphy, K. S. Murray, L. Gagliardi, C. Jones, J. Am. Chem. Soc. 2014 136, 5283-5286.
- [23] S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones, A. Stasch, Nat. Chem. 2010, 2, 865-869.
- [24] S. J. Bonyhady, S. P. Green, C. Jones, S. Nembenna, A. Stasch, Angew. Chem. Int. Ed. 2009, 48, 2973-2977.
- [25] R. E. Cowley, J. Elhaik, N. A. Eckert, W. W. Brennessel, E. Bill, P. L. Holland, *J Am Chem Soc* 2008, 130, 6074-6075.
- [26] D. E. Herbranson, F. J. Theisen, M. D. Hawley, R. N. McDonald, J. Am. Chem. Soc. 1983, 105, 2544-2549.
- [27] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, Madison, WI, 2013.
- [28] (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, H. P. H. X. Li, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. M. Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.

Full Paper

WILEY-VCH

E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox in Wallingford CT, Gaussian, Inc., 2009; (b) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, M. C. X. Li, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian Inc., , Wallingford CT, 2016.

- [29] M. Hu, C. Ni, L. Li, Y. Han, J. Hu, J. Am. Chem. Soc. 2015, 137, 14496.
- [30] Y. Zhao, D. Truhlar, Theo. Chem. Accts 2008, 120, 215-241.
- [31] A. Bondi, J. Phys. Chem. 1964, 68, 41.
- [32] C. Y. Legault, Université de Sherbrooke, Sherbrooke, Quebec, Canada, 2009, pp. CYLview, 1.0b; <u>www.cylview.org</u>.

WILEY-VCH

Entry for the Table of Contents

FULL PAPER

Reductive Coupling and Loss of N₂ from Magnesium Diazomethane Derivatives

Reactions of diazomethanes with $[(NacNac^{Mes})Mg]_2$ effects reductive coupling to give the complexes $[(NacNac^{Mes})Mg)$ $(N_2CR_2)]_2$. On warming these species cleanly evolve N₂ to give Mg-imide products.

Jiliang Zhou, Liu Leo Liu, Levy L. Cao and Douglas W. Stephan*

Page No. – Page No.

Reductive Coupling and Loss of N₂ from Magnesium Diazomethane Derivatives