ARTICLE IN PRESS

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy xxx (xxxx) xxx

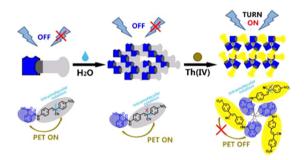
Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

"Turn-on" fluorescent sensor for Th⁴⁺ in aqueous media based on a combination of PET-AIE effect

Shibing Chen^a, Shengjie Jiang^a, Hongyu Guo^{a,b}, Fafu Yang^{a,b,c,*}


- ^a College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
- ^b Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China
- ^c Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China

HIGHLIGHTS

- The first turn-on fluorescence probe for Th⁴⁺ in aqueous media was reported.
- The detection limit for Th⁴⁺ was as low as 0.074 μ M.
- It was applied to detect Th⁴⁺ on TLC plates and in real water samples.
- It displayed excellent living-cell imaging property for tracing Th⁴⁺.
- The detecting mechanism of AIE-PET effect was confirmed.

GRAPHICAL ABSTRACT

The first "turn-on" fluorescent sensor for Th⁴⁺ in aqueous media was achieved.

ARTICLE INFO

Article history:
Received 5 September 2020
Received in revised form 17 October 2020
Accepted 3 November 2020
Available online xxxx

Keywords: Turn-on Th⁴⁺ Sensor Fluorescence Aqueous media

ABSTRACT

Previously reported fluorescent sensors for Th^{4+} experienced emission quenching or generated false positive signal upon aggregate formation in aqueous media. Herein, a simple and novel thorium sensor (**CDB-BA**) based on cyanodistyrene structure was designed and synthesized, which integrated the highly emitting characteristic of AIE effect and off-on response of PET modulation for the first time to construct the "turn-on" fluorescent probe for Th^{4+} . Besides excellent selectivity, **CDB-BA** exhibited remarkable fluorescent enhancement which was linearly related to the concentration of Th^{4+} in the range of 0.25–8 μ M. The detection limit was attained 0.074 μ M, which was lower than that of most previously reported sensors. The mechanism of tris-chelate complex of **CDB-BA** with Th^{4+} was confirmed by mass spectra, IR spectra and DFT calculation. The excellent Th^{4+} sensing ability of **CDB-BA** was successfully applied to detecting Th^{4+} on TLC plates, in real water samples and living-cell imaging. This work suggested that the combination of AIE and PET photophysical mechanism could offer the merits of minimized background and enhanced signal fidelity to develop novel "turn-on" fluorescent probe in complicated aqueous environment and biological research.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Thorium, a long-lived radionuclide, is very hazardous to human health and environment due to both its radiological and chemical toxicity [1-5]. Used as a X-ray contrast agent in the 1930s–1950s, ThO₂ was initially believed to have no side effects but was

https://doi.org/10.1016/j.saa.2020.119191

1386-1425/© 2020 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail address: yangfafu@fjnu.edu.cn (F. Yang).