Generation of a Low-Valent Titanium Species from Titanatrane and its Catalytic Reactions: Radical Ring Opening of Oxetanes

Naoto Takekoshi,^a Kenji Miyashita,^a Noriaki Shoji,^a and Sentaro Okamoto^{a,*}

^a Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
 Fax: (+81)-45-413-9770; phone: (+81)-45-481-5661; e-mail: okamos10@kanagawa-u.ac.jp

1ax. (101) 45 415 7770, phone. (101) 45 401 5001, e man. okamostoe kanagawa u.ae.jp

Received: April 30, 2013; Revised: June 11, 2013; Published online: August 9, 2013

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201300368.

Abstract: Treatment of a titanatrane complex with trimethylsilyl chloride and magnesium powder in tetrahydrofuran generated a low-valent titanium species. This species catalyzed the radical ring opening of epoxides and oxetanes to produce the corresponding less substituted alcohols. The reagent also catalyzed the deallylation and depropargylation of allylic and propargylic ethers, respectively, to provide the parent alcohols.

Keywords: homogeneous catalysis; low-valent titanium; oxetanes; radical reactions; reduction; regioselectivity; tripodal ligands

Recently, amine triphenolate metal complexes [tripodal aminetris(aryloxide) complexes] have attracted significant attention for their synthesis, structure, and use in catalytic reactions.^[1] The titanium complexes (titanatranes), one of the most investigated classes of complexes, are characterized by a propeller-like arrangement of the ligand around the titanium when viewed along the titanium-nitrogen axis. These complexes have been used as Lewis acid catalysts for lactide polymerization^[2] and aza-Diels–Alder reactions^[3] and for oxidations of amines and sulfides.^[4] The C_3 chiral complexes have been used as a chiral shift agent for NMR analysis^[5] and as an asymmetric oxidation catalyst.^[6] Here we report the first examples of the use of a titanatrane complex as a precursor for a low-valent titanium (LVT) catalyst and its application in organic transformations.^[7]

Previously, we had developed a new, mild method for the generation of an LVT^[8,9] species by using Ti(O-*i*-Pr)₄, Me₃SiCl (or MgCl₂), and Mg powder in THF (Scheme 1).^[10] Thus, the LVT reagent catalyzed the deallylation and depropargylation of allylic and propargylic ethers, respectively, to the corresponding parent alcohols. The intermolecular and intramolecular [2+2+2] cycloaddition of alkynes to substituted benzenes could be also catalyzed by the reagent. The McMurry coupling (olefination) reaction of aryl aldehydes and imino-pinacol coupling under mild homogeneous conditions have also been mediated by an LVT. Recently, we found that the reagent cleaved the N–S or O–S bond of sulfonamides and sulfonyl esters to give the corresponding amines and alcohols, respectively. The reagent could regioselectively cleave the C–O bond of epoxides to provide less substituted alcohols.

Scheme 1. Postulated mechanism for the generation of an LVT from $Ti(O-i-Pr)_4/Me_3SiCl/Mg$ and a proposal for the selective formation of a Ti(III) species from titanium complex **1**.

Run	Ti complex (equiv.)	Substrate	Time [h]	Product(s)	Yield
1	Ti(O- <i>i</i> -Pr) ₄ (1.2)	$R_{3}(R = n - C_6 H_{13})$	12	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \begin{array}{c} \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\	76% (98:2:0) ^[10b]
2 3 4	Ti(O- <i>i</i> -Pr) ₄ (0.05) 1 (0.05) 1 (0.05)	3 3 3+CHD (10 equiv.) ^[b]	12 12 12	4a + 4b 4a + 4b + 4c 4a + 4b + 4c	24% (98:2:0) (64% recovered) 50% (76:10:14) 87% (75:20:5)
5	Ti(O- <i>i</i> -Pr) ₄ (0.05)	5a	12	OH 6	95% ^[10a]
6	1 (0.05)	5a	12	6	>99%
7	Ti(O- <i>i</i> -Pr) ₄ (0.05)	0 5b	12	6	95% ^[10a]
8	1 (0.05)	5b	12	6	>99%
9	1 (0.05)	Ph0 5c	12	PhOH 7	92%
10	Ti(O- <i>i</i> -Pr) ₄ (0.2)		24		60% (8 was not recovered) ^[10a]
11	1 (0.05)	8	24	9	5% (95% of 8 was recovered)
12	Ti(O- <i>i</i> -Pr) ₄ (1.2)	PhO 10a	12	PhOOH 11a	84%
13 14 15 16 ^[c]	$Ti(O-i-Pr)_4 (0.1) 1 (0.05) 1 (0.05) Cp2TiCl2 (2)+Mn (5)$	10a 10a 10a + CHD (10 equiv.) ^[b] 10a + CHD (10 equiv.) ^[b]	12 12 12 24	11a 11a 11a no reaction	78% 66% 91%

Table 1. Ti(O-i-Pr)₄- or complex 1-catalyzed reactions of various substrates.^[a]

^[a] All reactions were performed with a Ti complex, Me₃SiCl and Mg powder (2–3 equiv.) in THF at 40–50 °C. For runs 1–4 and 12–16, 1.2 equiv. of Me₃SiCl were used, for runs 5–9, 0.15 equiv. was used, and for runs 10 and 11, 1.0 equiv. was used. For runs 1–15, the reactions did not proceed in the absence of a titanium compound.

^[b] 1,4-Cyclohexadiene.

^[c] We checked the reaction of a mixture of **10a** and 1,2-epoxyoctane with a Cp₂TiCl₂/Mn/CHD reagent in THF in another vessel and found that the epoxide was converted to 1-octanol (42% yield), but **10a** was recovered (98%).

For these reactions, we assume that the LVT can be generated from Ti(O-i-Pr)₄, Me₃SiCl and Mg by a mechanism illustrated in Scheme 1: Ti(O-i-Pr)₄ reacts with Me₃SiCl to yield $ClTi(O-i-Pr)_3$ (A), which can be reduced by the reaction with Mg powder to generate $Ti(O-i-Pr)_3$ (B) and/or its equivalents (the polymeric and/or solvated compounds). Repeating a similar process might give an LVT species such as Ti(II), Ti(I), and Ti(0). We anticipated that a Ti(III) trialkoxide (iii) could be selectively generated when titanium alkoxide (i) derived from an appropriate triol, such as a titanatrane complex 1,^[11] was used instead of Ti(O-i-Pr)₄. It can be expected that steric shielding by ortho-methyl substituents in titanatrane 1 may prevent over-reduction through further O-Cl exchange of 2.

With this idea in mind, reactions of complex 1 with various substrates in the presence of Me₃SiCl and Mg were investigated. We found that complex 1 reacted with Me₃SiCl/Mg to generate the corresponding LVT

species and catalyzed several reactions. In addition, during these studies, we found that LVT alkoxides catalyzed the radical ring-opening reaction of oxetanes.

Table 1 summarizes and compares the results of the reactions of various substrates with titanium complex $Ti(O-i-Pr)_4$ or **1** in the presence of Me₃SiCl and Mg powder in THF.

The reaction of epoxide **3** with a stoichiometric amount of Ti(O-*i*-Pr)₄ selectively gave less substituted alcohol **4a** in good yield (run 1);^[10b,12] however, the catalytic use of titanium (5 mol%) resulted in lower conversion (run 2). On the other hand, complex **1** (5 mol%) could catalyze the reduction of epoxide **3**, but in lower conversion and with lower selectivity, where the deoxygenation product **4c** was co-produced (run 3). In the Ti(O-*i*-Pr)₄-promoted reactions, we reported that the β -titanoxy radical intermediate **iv** intramolecularly abstracts a hydrogen from the *i*-Pr group of the titanium complex (Figure 1).^[10b] However, complex **1** has no hydrogen at the titanium β posi-

Figure 1. Hydrogen abstraction by β -titanoxy radicals.

tion; therefore, in the 1-catalyzed reaction, the titanoxy radical intermediate v intermolecularly abstracts a hydrogen from a solvent (THF) or undergoes deoxygenation through a β -titanoxy alkyltitanium intermediate. When excess of 1,4-cyclohexadiene (CHD) was used as a hydrogen source in the 1-catalyzed reaction, a higher yield of the alcohols **4a** and **4b** was attained (run 4).

Both titanium complexes $Ti(O-i-Pr)_4$ and 1 smoothly catalyzed the deallylation of allylic ethers 5a and 5cand the depropargylation of propargylic ether 5b to quantitatively give the corresponding alcohol (runs 5– 9). By contrast, complex 1 exhibited marginal activity for the cyclotrimerization of triyne 8 (run 11), but $Ti(O-i-Pr)_4$ catalyzed the reaction (run 10). These results allow us to conclude that the reaction of complex 1 with Me₃SiCl and Mg generated the corresponding LVT species that have distinct reactivities from $Ti(O-i-Pr)_4$. To the best of our knowledge, these are the first examples of the use of complex 1 as a precursor for an LVT catalyst.

In addition to the aforementioned reactions, we found that LVT alkoxides could reduce oxetanes to the corresponding alcohols (runs 12–15). Thus, a stoichiometric or catalytic amount of Ti(O-*i*-Pr)₄ with Me₃SiCl and Mg reduced oxetane **10a** to primary alcohol **11a** in good yield (runs 12 and 13, respectively). Similarly, complex **1** catalyzed the reduction of **10a**, and a high yield was attained when excess CHD was used (runs 14 and 15). This high yield was attributed to a higher reagent potential for reduction compared with cyclopentadienyl (Cp)-based reagents such as Cp₂TiCl and its dimer because the Cp₂TiCl₂/Mn/CHD reagent did not react with oxetane **10a** (run 16).^[13]

Since oxetanes **10** are readily available from epoxides or carbonyl compounds by a one-step reaction with $Me_2S^+(=O)CH_2^-$ reagent,^[14] their reduction to alcohols **11** may be synthetically versatile as a formal one- or two-carbon homologation reaction (Scheme 2).

Scheme 2. Formal one- or two-carbon homologation.

However, when comparing with the ring opening of epoxides, the ring opening of oxetanes is much slower because of the reduced ring strain of their larger ring size.^[15] Nevertheless, several examples of oxetane cleavage have been demonstrated. Oxetane ringopening mediated by an organolithium species (4,4'di-tert-butylbiphenylide) has been developed by Cohen et al. where the regiochemistry of the C-O bond cleavage changes in the presence of a Lewis acid such as AlEt₃.^[16] Thus, in the absence of any Lewis acid the C–O bond cleavage occurs at the less substituted carbon for the alkyl-substituted oxetanes.^[16a] In contrast, in the presence of AlEt₃ C–O bond cleavage occurs at the more substituted carbon.^[16b] These reactions yield the corresponding y-lithioalkoxides, which can be utilized as nucleophiles and for transmetallation to cerium and chromium derivatives.^[17] Recently, Gansäuer, Grimme et al. reported the reductive opening of oxetanes promoted by a Cp₂TiCl reagent, the reaction of which proceeds by a radical reaction pathway. Calculation results suggested that non- or mono-substituted oxetanes at the 2 position might be barely cleaved under these conditions, thereby limiting the reaction to 2,2-disubstituted oxetanes.^[13]

The results shown in Table 1 prompted us to investigate the $Ti(O-i-Pr)_{4}$ and 1-catalyzed reductions of oxetanes (Scheme 3) because of their higher reducing

Scheme 3. Complex-1 catalyzed reduction of oxetanes 10 to alcohols 11.

potency than a Cp_2TiCl reagent. The results of the reaction of representative oxetanes **10b–10j** are summarized in Table 2.

As revealed from Table 2, the present method could indeed reduce non- and mono-substituted oxetanes at the 2 position; therefore, it is more general in terms of the substrate structure than the Cp₂TiCl-promoted reaction. In addition to **10a** (Table 1), 3,3-disubstituted oxetanes **10b** and **10c** were cleanly reduced to the corresponding alcohols **11b** and **11c**, respectively, without any loss of benzyloxy and silyloxy functionalities (runs 1 and 2 in Table 2). The ring opening reactions of 2-mono-aryl- and mono-alkylsubstituted oxetanes **10d**^[18] and **10e**^[19] occurred smoothly at the 2 position to give the corresponding primary alcohol (runs 3–8). 2,2-Disubstitued oxetanes **10f** and **10g** and spiro compounds **10h** and **10i** were also reduced to the corresponding primary alcohol

COMMUNICATIONS

Table 2. Reductive ring-opening reactions of oxetanes 10 catalyzed by a complex 1/Me₃SiCl/Mg reagent.

Run	Oxetane 10	10	Ti complex ^[a]	Time [h]	Product(s)	Yield
1	Ph_O_O_O	10b	1 +CHD ^[b]	12	PhOOHOHOH	76%
2	Me OSi [/] BuMe ₂ O	10c	$1 + CHD^{[b]}$	12	^{//BuMe} 2SiOOHOHOH	58%
3	Ph	10d	1	12	Ph OH 11d	62%
4 5	·	10d 10d	$\frac{1 + CHD^{[b]}}{Ti(O-i-Pr)_4^{[c]}}$	12 12	11d 11d	74% 72%
6	Ph	10e	1	12	Ph OH 11e	90%
7 8		10e 10e	$\frac{1 + \text{CHD}^{[b]}}{\text{Ti}(\text{O}-i-\text{Pr})_4^{[c]}}$	12 12	11e 11e	99% 61%
9	Ph	10f	1	12	Ph OH Ph OH	total 65% (11f:11f' =92:8)
10 11		10f 10f	$\frac{1 + CHD^{[b]}}{Ti(O-i-Pr)_4^{[c]}}$	12 12	11f 11f	80% 81%
12	Ph Ph	10g	1+CHD ^[b]	12	Ph OH	98%
13	t-Bu	10h ^[d]	1	24	<i>t</i> -Bu-OH 11h <i>t</i> -Bu-OH 11h'	total >99% ^[d] (11h:11h' =74:26)
14 15		10h 10h	$\frac{1 + \text{CHD}^{[b]}}{\text{Ti}(\text{O-}i\text{-}\text{Pr})_4^{[e]}}$	24 24	11h 11h	89% ^[d] 45% (80% conver- sion) ^[d]
16		10i	1	24	HO HO HO H H H H H H H H H H H H H H H	total 96% (11i:11i' =73:27), dr of 11i =>99:1
17		10i	$1 + CHD^{[b]}$	24	11i	96%, <i>dr</i> >99:1
18		10j	1	24		total 81% (11j:11j' =60:40)
19		10j	$1 + CHD^{[b]}$	24	11j+11j'	total 99%
20		10j	${\rm Ti}({\rm O}{\mathchar`le}{}^{[e]}_4$	24	11j + 11j′	(11j:11j = 70:30) total 19% ^[f] (11j:11j' = 61:30)
21		10j	$\mathrm{Ti}(\mathrm{O-}i\mathrm{-}\mathrm{Pr})_4^{[\mathrm{g}]}$	60	11j + 11j′	(11j:11j = 01.39) total 99 % (11j:11j' = 58:42)

^[a] Unless otherwise indicated, 5 mol% of a titanium complex, 1.2 equiv. of Me_3SiCl , and 3.0 equiv. of Mg powder were used. ^[b] 10 equiv. of 1,4-cyclohexadiene were used.

[c] 0.1 equiv. of $Ti(O-i-Pr)_4$ was used.

^[d] A mixture of diastereomers. Ratio of *cis:trans* was 70:30, 88:12, or 69:31 for run 13, 14, or 16, respectively.

^[e] 1.2 equiv. of $Ti(O-i-Pr)_4$ were used.

^[f] 78% of **10j** were recovered.

^[g] 1.2 equiv. of $Ti(O-i-Pr)_4$ and 3.0 equiv. of Me₃SiCl were used.

2154 asc.wiley-vch.de

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

(runs 9-17), where the presence of excess CHD as a hydrogen source prevented the formation of the alkene by-product. It is noteworthy that the product 11i was quantitatively obtained as a single diastereomer by the reduction of **10i**,^[20] due to the selective hydrogen abstraction from the less hindered face of the intermediate γ -titanoxy radical (run 17). As shown in runs 18 and 19, the 1-catalyzed reduction of bicyclic oxetane 10j^[21] derived from D- xylose smoothly proceeded and yielded 3-deoxyribose ketal 11j as a major product, but a large amount of 5-deoxyxylose ketal 11j' was co-produced. The presence of CHD led a better selectivity (run 19). Since the Ti(Oi-Pr)₄-based reaction was comparably slow, a stoichiometric amount of titanium with a longer reaction time was required for completion (runs 20 and 21). These results of regioselectivity were slightly disappointing, because we anticipated a higher selectivity considering the stability of the corresponding γ -titanoxy radical intermediates. The rationalization of the results must await further study.

In Scheme 4, we propose the reaction mechanism for the 1-catalyzed reduction of oxetanes. Complex 1 can be converted to its chloride E by reaction with silvl chloride, which may immediately be reduced by Mg powder to generate a Ti(III) complex F. Complex F forms G by the coordination of an oxetane oxygen, followed by a single electron transfer. The generated

Scheme 4. Proposed mechanism for 1-catalyzed reduction with oxetanes.

 γ -titanoxy radical **H** can abstract hydrogen from 1,4cyclohexadiene (or solvent THF). The reaction of the resulting titanium alkoxide I with silvl chloride transforms I to the titanium chloride complex E. The regioselectivity of the ring-opening reaction, which generally gives less substituted alcohols, can be explained by assuming the stability of the γ -titanoxy radical intermediate H against J. However, as can be seen in the reduction of 10j (runs 18-21 of Table 2) one may also be required to consider another factor such as a kinetic effect^[22] arising from the independent substrate structure. The mechanism for the formation of the alkene by-product observed in several reactions is unclear. It is most likely due to a hydrogen atom abstraction from a radical by a radical (radical disproportionation).^[23] Alternatively, it can be produced via a cationic intermediate K generated by activation with a Lewis acid such as titanium or a magnesium salt.

We have demonstrated that the treatment of a titanatrane complex 1 with Me₃SiCl and Mg powder in THF generated a low-valent titanium species. This species catalyzed the deallylation of allylic ethers, the depropargylation of propargylic ethers, and the radical ring-opening reaction of epoxides and oxetanes. The reductive ring-opening reaction of epoxides and oxetanes gave the corresponding less substituted alcohols as major product. The Ti-catalyzed C–O bond cleavage of non- or mono-substituted oxetanes at the 2 position was achieved for the first time by the present low-valent titanium alkoxides.

The LVT derived from titanatrane 1 is a stronger reductant and more reactive than a Cp₂TiCl reagent but, therefore, less chemoselective. As a result, both reagents may complementarily be used.

Experimental Section

General

NMR spectra were recorded in CDCl₃ at 500 MHz for ¹H and 125 MHz for ¹³C, respectively. Chemical shifts are reported in parts per million (ppm, δ) relative to Me₄Si (δ = 0.00), residual CHCl₃ ($\delta = 7.26$ for ¹H NMR), or a center peak of CDCl₃ ($\delta = 77.0$ for ¹³C NMR). IR spectra were recorded on an FT-IR spectrometer (JASCO FTIR-4100). High-resolution mass spectra (HR-MS) were measured on a JEOL Accu TOF T-100 system equipped with ESI ionization. All reactions sensitive to oxygen and/or moisture were performed under an argon atmosphere. Dry solvents were purchased from Kanto Chemical Co., Inc. and were used as received. Ti(O-*i*-Pr)₄ was distilled and stored under an argon atmosphere. Me₃SiCl was stored over CaH₂ to remove HCl. Room temperature refers to 20-25°C. Titanium complex $\mathbf{1}^{[11]}$ was synthesized according to the reported procedures. Oxetane substrates 10b,^[17] 10d,^[18] 10e,^[19] 10f,^[13] 10g,^[13] 10h,^[13] 10i,^[20] and 10j^[21] were respectively prepared according to the reported procedures. Oxetane 10a was a gift from Toagosei Co., Ltd.

tert-Butyldimethyl[(3-methyloxetan-3-yl)methoxy]silane (10c)

Silane 10c (907 mg) was prepared from (3-methyloxetan-3yl)methanol (510 mg, 5.0 mmol) by the reaction with imidazole (748 mg, 11 mmol) and t-BuMe₂SiCl (904 mg, 6.0 mmol) in DMF (10 mL) at room temperature for 12 h; yield: 84%. ¹H NMR: $\delta = 4.49$ (d, J = 5.2 Hz, 2H) 4.32 (d, J = 5.8 Hz, 2 H 3.63 (s, 2 H) 1.27 (s, 3 H) 0.90 (s, 9 H) 0.06 (s, 6H); ¹³C NMR: $\delta = 9.6$, 68.1, 40.9, 25.8, 18.3, -5.5; IR (neat): $\nu = 2950$, 2930, 2986, 1472, 1464, 1387, 1256 cm⁻¹; HR-MS: m/z = 255.1185, calcd. for $C_{11}H_{24}KO_2Si [M+K]^+$: 255.1183.

General Procedure for Reductive Cleavage of Oxetanes Catalyzed by Complex 1 with Me₃SiCl and Mg powder (Table 2)

Under an argon atmosphere, to a mixture of an oxetane 10 (1.00 mmol), Mg powder (73 mg, 3.0 mmol), complex 1 (26.9 mg, 0.05 mmol), and 1,4-cyclohexadiene (0 or 10 mmol) in THF (5 mL) was added Me₃SiCl (0.15 mL, 1.2 mmol) at room temperature. The resulting mixture was stirred for 12-24 h (confirming the completion of the reaction by thin layer chromatography) at 40-50 °C. After addition of saturated aqueous NaHCO₃ (5 mL), the mixture was extracted with ethyl acetate. The organic layer(s) was washed with aqueous 0.1 M HCl and then saturated aqueous NaHCO₃, dried over MgSO₄, filtered, concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with appropriate solvents (hexane/ ether or hexane/ethyl acetate) to yield the ring-opening product 11.

The structures of the products 9,^[24] 11b,^[25] 11c,^[26] 11d,^[27] 11e,^[28] 11f,^[29] 11g,^[13] 11h,^[30] 11j,^[31] and 11j'^[32] were confirmed by the comparison of their spectroscopic data with those reported.

2-Methyl-2-(phenoxymethyl)butan-1-ol (11a): ¹H NMR: $\delta = 7.28$ (t, J = 6.6 Hz, 2 H), 6.95 (t J = 6 Hz, 1 H), 6.91 (d, J =6.3 Hz, 2H), 3.82 (d, J=7.5 Hz, 1H), 3.78 (d, J=7.5 Hz, 1 H), 3.60 (dd, J = 5.2, 9.2 Hz, 1 H), 3.57 (d, J = 5.2, 9.2 Hz, 1 H), 1.96 (t, J = 4.9 Hz, 1 H), 1.49 (q, J = 6.3 Hz, 2 H), 0.95 (s, 3H), 0.90 (t, J = 6.3 Hz, 3H); ¹³C NMR: $\delta = 158.9$, 129.4, 120.9, 114.5, 73.6, 68.6, 38.8, 26.6, 18.3, 7.6; IR (neat): $\nu =$ 3353, 2961, 2930, 1600, 1496, 1471, 1248, 1300 cm⁻¹; HR-MS: m/z = 217.1204, calcd. for C₁₂H₁₈NaO₂ [M+Na]⁺: 217.1199.

2-[(8S,9S,13R,14S,17R)-3-Methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-17-yl]ethanol (11i): ¹H NMR: $\delta = 7.25$ (s, 1 H), 7.21 (d, J = 8.6 Hz, 1 H), 6.71 (dd, J = 2.9, 8.6 Hz, 1 H) 6.63 (d, J =2.9 Hz, 1H), 3.78 (s, 3H), 3.75-3.60 (m, 4H), 2.92-2.79 (m, 2H), 2.35–2.15 (m, 2H), 1.95–1.75 (m, 5H), 1.49–1.21 (m, 9H), 0.63 (s, 3H); ¹³C NMR: δ =157.4, 138.1, 132.9, 126.3, 113.8, 111.4, 62.6, 55.2, 54.7, 47.3, 44.1, 42.5, 38.8, 37.7, 33.7, 29.9, 28.4, 27.8, 26.4, 24.4, 12.6; IR (KBr): v=3568, 2926, 2866, 2846, 2806, 1607, 1454, 1314 1287,1250 cm⁻¹; HR-MS: m/z = 315.2314, calcd. for C₂₁H₃₁O₂ [M+H]⁺: 315.2319.

The stereochemistry of resulting 11i was confirmed by its conversion to the known compound 3-methoxy-13-methyl17-vinyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a] phenanthrene (12)^[33] by bromination of the alcohol with subsequent dehydrohalogenation and the comparison of the spectral data with reported data.^[33]

Acknowledgements

We thank the Scientific Frontier Research Project from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for financial support.

References

- [1] G. Licini, M. Mba, C. Zonta, Dalton Trans. 2009, 5265-5277.
- [2] Y. Kim, J. G. Verkade, Macromolecules 2002, 35, 2395-2399; Y. Kim, G. K. Jnaneshwara, J. G. Verkade, Inorg. Chem. 2003, 42, 1437-1447; S. Gendler, S. Segal, I. Goldberg, Z. Goldschmidt, M. Kol, Inorg. Chem. 2006, 45, 4783-4790.
- [3] S. T. Bull, M. G. Davidson, A. L. Johnson, M. F. Mahon, D. E. J. E. Robinson, Chem. Asian J. 2010, 5, 612-620.
- [4] M. Mba, L. J. Prins, G. Licini, Org. Lett. 2007, 9, 21-24; C. Zonta, E. Cazzola, M. Mba, G. Licini, Adv. Synth. Catal. 2008, 350, 2503-2506; M. Mba, L. J. Prins, C. Zonta, M. Cametti, A. Valkonen, K. Rissanen, G. Licini, Dalton Trans. 2010, 39, 7384-7392.
- [5] C. Zonta, A. Kolarovic, M. Mba, M. Pontini, E. P. Kündig, G. Licini, Chirality 2011, 23, 796-800.
- [6] P. Axe, S. D. Bull, M. G. Davidson, M. D. Jones, D. E. J. E. Robinson, W. L. Mitchell, J. E. Warren, Dalton Trans. 2009, 10169-10171.
- [7] For the redox behaviour of amine triphenolate titanium complexes, see: D. Lionetti, A. J. Medvecz, V. Ugrinova, M. Quiroz-Guzman, B. C. Noll, S. N. Brown, Inorg. Chem. 2010, 49, 4687–4697. Dimer of 2 was synthesized by the reaction of 1 with BH₃ and PMe₃ and characterized by single crystal X-ray diffraction: A. L. Johnson, M. G. Davidson, M. F. Mahon, Dalton Trans. 2007, 5405-5411.
- [8] a) J. E. McMurry, Acc. Chem. Res. 1974, 7, 281–286; b) J. E. McMurry, Acc. Chem. Res. 1983, 16, 405-411; c) J. E. McMurry, Chem. Rev. 1989, 89, 1513-1524; d) D. Lenoir, Synthesis 1989, 883-897; e) B. E. Kahn, R. D. Rieke, Chem. Rev. 1988, 88, 733-745; f) M. Ephritikhine, Chem. Commun. 1998, 2549-2554; g) A. Fürstner, B. Bogdanovi, Angew. Chem. 1996, 108, 2582-2609; Angew. Chem. Int. Ed. Engl. 1996, 35, 2442-2469; h) W. A. Nugent, T. V. RajanBabu, J. Am. Chem. Soc. 1988, 110, 8561-8562; i) T. V. RajanBabu, W. A. Nugent, J. Am. Chem. Soc. 1989, 111, 4525-4527;

j) A. Gansäuer, H. Bluhm, *Chem. Rev.* 2000, 100, 2771–2788; k) A. Gansäuer, S. Narayan, *Adv. Synth. Catal.* 2002, 344, 465–475; l) J. M. Cuerva, J. Justicia, J. L. Oller-López, J. E. Oltra, *Top. Curr. Chem.* 2006, 264, 63–92; m) X. Zheng, X.-J. Dai, H.-Q. Yuan, C.-X. Ye, J. Ma, P.-Q. Huang, *Angew. Chem. Int. Ed.* 2013, 52, 3494–3498, and references cited therein.

- [9] For low-valent titanium alkoxides, see: F. Sato, H. Urabe, S. Okamoto, *Chem. Rev.* 2000, 100, 2835–2886;
 O. G. Kulinkovich, A. de Meijere, *Chem. Rev.* 2000, 100, 2789–2834; J. J. Eisch, *J. Organomet. Chem.* 2001, 617–618, 148–157; F. Sato, S. Okamoto, *Adv. Synth. Catal.* 2001, 343, 759–784; F. Sato, H. Urabe, S. Okamoto, *Synlett* 2000, 753–775; F. Sato, H. Urabe, in: *Titanium and Zirconium in Organic Synthesis*, (Eds.: I, Marek), Wiley-VCH, Weinheim, Germany, 2002, pp 319–354.
- [10] a) M. Ohkubo, S. Mochizuki, T. Sano, Y. Kawagichi, S. Okamoto, *Org. Lett.* 2007, *9*, 773–776; b) T. Kawaji, N. Shohji, K. Miyashita, S. Okamoto, *Chem. Commun.* 2011, *47*, 7857–7859; c) N. Shohji, T. Kawaji, S. Okamoto, *Org. Lett.* 2011, *13*, 2626–2629, and references cited therein.
- [11] S. D. Bull, M. G. Davidson, A. L. Johnson, M. F. Mahon, D. E. J. E. Robinson, *Chem. Asian J.* 2010, *5*, 612–620; S. D. Bull, M. G. Davidson, A. L. Johnson, D. E. J. E. Robinson, M. F. Mahon, *Chem. Commun.* 2003, 1750–1751.
- [12] Cp₂TiCl-mediated or -catalyzed ring opening of epoxides: T. V. RajanBabu, W. A. Nugent, J. Am. Chem. Soc. 1994, 116, 986–997; A. Gansäuer, H. Bluhm, M. Pierobon, J. Am. Chem. Soc. 1998, 120, 12849–12859; A. F. Barrero, A. Rosales, J. M. Cuerva, J. E. Oltra, Org. Lett. 2003, 5, 1935–1938. A recent review: A. Gansäuer, C.-A. Fan, J. Justicia, D. Worgull, Top. Curr. Chem. 2007, 279, 25–52.
- [13] A. Gansäuer, N. Ndene, T. Lauterbach, J. Justicia, I. Winkler, C. Mück-Lichtenfeld, S. Grimme, *Tetrahedron* 2008, 64, 11839–11845.
- [14] K. Okuma, Y. Tanaka, S. Kaji, H. Ohta, J. Org. Chem. 1983, 48, 5133–5134.
- [15] A. Gansäuer, T. Lauterbach, S. Narayan, Angew. Chem. 2003, 115, 5714–5731; Angew. Chem. Int. Ed. 2003, 42, 5556–5573.

- [16] a) B. Mudryk, T. Cohen, J. Org. Chem. 1989, 54, 5657–5659; b) B. Mudryk, T. Cohen, J. Org. Chem. 1991, 56, 5760–5761.
- [17] E. Licandro, S. Maiorana, A. Papagni, A. Zanotti-Gerosa, J. Chem. Soc. Chem. Commun. 1992, 1623–1624; B. Mudryk, C. A. Shook, T. Cohen, J. Am. Chem. Soc. 1990, 112, 6389–6391.
- [18] D. Darensboug, A. Moncada, S.-H. Wei, *Macromolecules* **2011**, *44*, 2568–2576.
- [19] D. W. Kwon, Y. H. Kim, J. Org. Chem. 2002, 67, 9488– 9491.
- [20] S. C. Welch, A. S. C. Prakasa, J. T. Lyon, J.-M. Assercq, J. Am. Chem. Soc. 1983, 105, 252–257.
- [21] O. Muraoka, K. Yoshikai, H. Takahashi, T. Minematsu, G. Lu, G. Tanabe, T. Wang, H. Matsuda, M. Yoshikawa, *Bioorg. Med. Chem.* 2006, 14, 500–509.
- [22] A. Gansäuer, A. Barchuk, F. Keller, M. Schmitt, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, K. Daasbjerg, H. Svith, J. Am. Chem. Soc. 2007, 129, 1359–1371.
- [23] J. Justicia, T. Jimenez, S. P. Morcillo, J. M. Cuerva, J. E. Oltra, *Tetrahedron* 2009, 65, 10837–10841.
- [24] N. Saino, D. Kogure, S. Okamoto, Org. Lett. 2005, 7, 3065–3067.
- [25] Y. Yang, J. Wang, M. Kayser, *Tetrahedron: Asymmetry* 2007, 18, 2021–2029.
- [26] S. Brandau, D. Hoppe, *Tetrahedron* 2005, 61, 12244– 12255.
- [27] G. Chen, C. Fu, S. Ma, Tetrahedron 2006, 62, 4444– 4452.
- [28] F. Tancini, T. Gottschalk, W. R. Schweizer, F. Diederich, E. Dalcanale, *Chem. Eur. J.* 2010, *16*, 7813–7819.
- [29] R. Bussas, H. Münsterer, G. Kreaze, J. Org. Chem. 1983, 48, 2828–2832.
- [30] G. Eadon, J. Am. Chem. Soc. 1976, 98, 7313-7319.
- [31] K. Jacobson, S. M. Siddiqi, M. Olah, X. Ji, N. Melman, K. Bellamkonda, Y. Mesgulam, G. Stiles, H. O. Kim, *J. Med. Chem.* **1995**, *38*, 1720–1735.
- [32] P. M. Vadhadiya, V. G. Puranik, C. V. Ramana, J. Org. Chem. 2012, 77, 2169–2175.
- [33] Y. Tomono, H. Hirota, Y. Imahara, N. Fusetani, J. Nat. Prod. 1999, 62, 1538–1541.