DOI: 10.1002/ejic.201000283

# Reactions of the Disilane Me<sub>3</sub>SiSiCl<sub>3</sub> with *P*-Chlorophosphaalkenes: Transient and Persistent Per-Silylated Phosphaalkenes

Cristina Mitrofan,<sup>[a]</sup> Roxana M. Bîrzoi,<sup>[a]</sup> Delia R. Bugnariu,<sup>[a]</sup> Jens Mahnke,<sup>[a]</sup> Antje Riecke,<sup>[a]</sup> Emma Dürr (née Seppälä),<sup>[a]</sup> Wolf-W. du Mont,<sup>\*[a]</sup> Peter G. Jones,<sup>[a]</sup> and Heinrich Marsmann<sup>\*[b]</sup>

Keywords: Disilanes / Phosphaalkenes / Diphosphenes / Dichlorosilylene / <sup>29</sup>Si-NMR

Reactions of *P*-chlorophosphaalkenes (RMe<sub>2</sub>Si)<sub>2</sub>C=PCl (**1a**: R = Me; **1b**: R = Ph) with the disilane Me<sub>3</sub>SiSiCl<sub>3</sub> (**5**) furnish diphosphenes (Cl<sub>3</sub>Si)(RMe<sub>2</sub>Si)<sub>2</sub>C-P=P-C(SiCl<sub>3</sub>)(SiMe<sub>2</sub>R)<sub>2</sub> (**4a**: R = Me; **4b**: R = Ph) by Me<sub>3</sub>SiCl elimination. The structure of the new compound **4b** was confirmed by X-ray diffraction; it displays crystallographic inversion symmetry. Monitoring the reactions with <sup>31</sup>P- and <sup>29</sup>Si-NMR spectroscopy detected *P*-(trichlorosilyl)phosphaalkenes (RMe<sub>2</sub>Si)<sub>2</sub>C=PSiCl<sub>3</sub> (**2a**, R = Me; **2b**, R = Ph) as the primary intermediates from reductive *P*-silylation of **4a**, **4b**, and *P*-[(trichlorosilyl)phosphanyl]phosphaalkenes (RMe<sub>2</sub>Si)<sub>2</sub>C=P-P(SiCl<sub>3</sub>)(SiMe<sub>2</sub>R)<sub>2</sub> (**3a**: R = Me; **3b**: R = Ph) as unsymmetric dimerisation products that

# rearrange to provide **4a**, **4b** in step III of the reaction sequence. This step (the P $\rightarrow$ C 1,3-trichlorosilyl shift reaction) was mimicked by the synthesis of (Me<sub>3</sub>Si)<sub>2</sub>C=P–P(SiCl<sub>3</sub>)*t*Bu (**7**), which rearranges into an unsymmetric diphosphene *t*BuP=PC(SiMe<sub>3</sub>)<sub>2</sub>SiCl<sub>3</sub> (**8**). The bulkier *P*-chlorophosphaalk-ene (*i*PrMe<sub>2</sub>Si)<sub>2</sub>C=PCl (**1c**) reacts with **5**, eliminates Me<sub>3</sub>SiCl and thereby provides the first persistent acyclic per-silylated phosphaalkene (*i*PrMe<sub>2</sub>Si)<sub>2</sub>C=PSiCl<sub>3</sub> (**2c**) in an incomplete reaction. **2c** exhibits an exceptionally large NMR coupling <sup>1</sup>*J*(<sup>31</sup>P,<sup>29</sup>Si) = ±249 Hz. Within weeks, the mixtures of **1c** and **2c** undergo decomposition with loss of the P=C functions.

## Introduction

Most of the significant advances in the chemistry of stable carbenes and group 14 carbene analogues in the last three decades have been based on the use of sterically and electronically stabilising substituents.<sup>[1]</sup> In contrast, synthetic progress to simple *dihalogenosilylenes* has been very limited since Timms' high-temperature and matrix studies.<sup>[2,3]</sup> Oligomeric silanes of empirical formula SiCl<sub>2</sub> are synthetically available, but they do not behave as sources of monomeric SiCl<sub>2</sub>,<sup>[4]</sup> and the alternative use of Si<sub>2</sub>Cl<sub>6</sub><sup>[5]</sup> or HSiCl<sub>3</sub><sup>[6]</sup> as precursors is very limited. Only very recently,

complexes of nucleophilic carbenes with silicon dihalides were isolated,<sup>[7]</sup> and a carbene adduct of SiCl<sub>2</sub> was found to act as source of reactive SiCl<sub>2</sub> species.<sup>[7b]</sup> As a protonfree alternative to HSiCl<sub>3</sub>, we have reported the use of trichlorosilyltrimethylgermane (Me<sub>3</sub>GeSiCl<sub>3</sub>)<sup>[8]</sup> as a reagent for the transfer of SiCl<sub>2</sub> moieties to *P*-phosphanylphosphaalkenes that leads under very mild reaction conditions either to insertion of two equivalents of SiCl<sub>2</sub> into the P=C bond, or to a diphosphene with remote C–SiCl<sub>2</sub>–P*i*Pr<sub>2</sub> functions (Scheme 1).<sup>[9]</sup>



Scheme 1. Dichlorosilylene transfer from Me<sub>3</sub>GeSiCl<sub>3</sub> to a *P*-phosphanylphosphaalkene.<sup>[9]</sup>

[a] Institut für Anorganische und Analytische Chemie der Technischen Universität, Braunschweig, Postfach 3329, 38023 Braunschweig, Germany Fax: +49-531-3915387 E-mail: w.du-mont@tu-bs.de
[b] Anorganische und Analytische Chemie, Universität Paderb

Anorganische und Analytische Chemie, Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany

No intermediates of this reaction were observed spectroscopically. A related diphosphene with remote C–SiCl<sub>3</sub> functions, and also the corresponding germanium compound, were isolated by Zanin, Karnop, et al. in a previous study on reactions of the *P*-chlorophosphalkene (Me<sub>3</sub>Si)<sub>2</sub>-

View this journal online at wileyonlinelibrary.com

4462



Scheme 2. Expected reaction path of the reaction of 1a with a dichlorosilylene source.<sup>[10]</sup>

C=PCl (1a) with  $Si_2Cl_6$  and with the GeCl<sub>2</sub> dioxane complex.<sup>[10]</sup> In the course of these reactions in a heated solvent, very small <sup>31</sup>P-NMR AX patterns were observed, but after complete consumption of 1a, only the NMR signals of the diphosphene products remained. The intermediacy of a persilylated phosphaalkene (Me<sub>3</sub>Si)<sub>2</sub>C=PSiCl<sub>3</sub> (2a) in the case 1a/Si<sub>2</sub>Cl<sub>6</sub> was expected by analogy to the reductive trichlorosilylations of dialkylchlorophosphanes R2PCl and bulky alkyldichlorophosphanes RPCl<sub>2</sub> with Si<sub>2</sub>Cl<sub>6</sub>, providing silylphosphanes R<sub>2</sub>PSiCl<sub>3</sub> and RP(SiCl<sub>3</sub>)<sub>2</sub> by elimination of silicon tetrachloride,<sup>[11,8b]</sup> but the existence of 2a was not unambiguously demonstrated. The weak <sup>31</sup>P-NMR AX pattern was tentatively assigned to a transient dimeric species, the *P*-phosphanylphosphaalkene  $(Me_3Si)_2C=P-P (SiCl_3)C(SiCl_3)(SiMe_3)_2$  (3a), which was assumed to rearrange by a trichlorosilyl 1,3-P $\rightarrow$ C shift reaction (step III, Scheme 2) to  $(Cl_3Si)(Me_3Si)_2C-P=P-C(SiCl_3)(SiMe_3)_2$  (4a), an inversion-symmetric diphosphene. A similiar pathway presumably leads to the C-trichlorogermyl diphosphene  $(Cl_3Ge)(Me_3Si)_2C-P=P-C(GeCl_3)(SiMe_3)_2.$ 

Using bulkier persistent germylenes and stannylenes, primary products from carbene-like insertions into the P–Cl bond of **1a** were identified spectroscopically,<sup>[12]</sup> but the detailed pathway of the *Zanin/Karnop* silylation and germylation reaction is still an unsolved problem.<sup>[10]</sup>

Open questions concerning the surprising formation of **4a** from **1a** are: is **2a** really an intermediate of the reaction (step I in Scheme 2), *and*, assuming that the role of **2a** were confirmed experimentally: is **2a** formed by Cl<sup>-</sup>/SiCl<sub>3</sub><sup>-</sup> exchange or by SiCl<sub>2</sub> transfer ?<sup>[13]</sup> Finally, the proposed constitution of **2a** and **3a** has yet to be subjected to experimental evidence by <sup>29</sup>Si-NMR including analysis of NMR couplings  $J(^{31}P,^{29}Si)$ . To obtain access to compounds related to the elusive intermediates **2a** and **3a** from the (Me<sub>3</sub>Si)<sub>2</sub>C=P-Cl/Si<sub>2</sub>Cl<sub>6</sub> reaction, we chose the following experimental variations of the system:

1. Replacement of  $Si_2Cl_6$  by the unsymmetric disilane  $Me_3SiSiCl_3$  (5) [analogous to the above-mentioned  $Me_3Ge-SiCl_3$  (6)] as a more reactive silvlating agent,<sup>[8]</sup> to allow milder reaction conditions for the generation of the short-lived intermediate 2a.

2. (i) Replacement of Me<sub>3</sub>Si groups in  $(Me_3Si)_2C=P-Cl$  (1a) by bulkier *i*PrMe<sub>2</sub>Si groups,<sup>[14]</sup> which are expected to affect the rates of steps II (dimerisation) and III (P $\rightarrow$ C 1,3-silyl shift reaction), leading to enhanced lifetimes of intermediates related to 2a and 3a. (ii) Use of PhMe<sub>2</sub>Si groups, which are known to be less efficient than Me<sub>3</sub>Si in the "hierarchy" of silyl groups as protecting agents, in order to vary the

rates of steps I-III and especially to enhance the rate of step I.

3. Independent efficient access to, and unambiguous characterisation of, a P-[(trichlorosilyl)phosphanyl]phosphaalkene related to **3a**, which may rearrange to another diphosphene by the postulated 1,3-trichlorosilyl shift reaction (step III).

#### **Results and Discussion**

#### NMR-Study of an Alternative Route to a *P*-[(Trichlorosilyl)phosphanyl]phosphaalkene Related to 3a

In a variation of McDiarmid's trichlorosilylation of  $Me_4P_2$  with  $Si_2Cl_6$  furnishing two equivalents of  $Me_2P$ -SiCl<sub>3</sub>,<sup>[15]</sup> Si<sub>2</sub>Cl<sub>6</sub> was found to act as a reductive silylating agent towards dialkylchlorophosphanes  $R_2PCl$  and bulky alkyldichlorophosphanes RPCl<sub>2</sub>, providing silylphosphanes  $R_2PSiCl_3$  and RP(SiCl<sub>3</sub>)<sub>2</sub>.<sup>[10]</sup> This facile conversion of P–Cl to P–SiCl<sub>3</sub> functions had prompted the attempt to convert *P*-chlorophosphaalkene (Me<sub>3</sub>Si)<sub>2</sub>C=PCl (**1a**)<sup>[16]</sup> into the unknown (Me<sub>3</sub>Si)<sub>2</sub>C=PSiCl<sub>3</sub> (**2a**); this led, however, experimentally via postulated **3a** to isolated **4a**.<sup>[10]</sup>

In our search for an alternative access to P-[(trichlorosilyl)phosphanyl]phosphaalkenes related to the intermediate **3a**, we considered exploiting the (trichlorosilyl)phosphane method, which is known to convert the chlorophosphaalkene 1a into P-phosphanylphosphaalkenes  $(Me_3Si)_2C=$ P-PR<sub>2</sub> by reactions with (trichlorosilyl)phosphanes R<sub>2</sub>PSiCl<sub>3</sub>;<sup>[17]</sup> the selective 1:1 reaction of a bis(trichlorosilyl)phosphane RP(SiCl<sub>3</sub>)<sub>2</sub> with 1a should provide the cor-P-[(trichlorosilyl)phosphanyl]phosphaalkene responding  $(Me_3Si)_2C=P-P(R)SiCl_3$ . The availability of tBuP(Si-Cl<sub>3</sub>)<sub>2</sub>,<sup>[11]</sup> either from the Si<sub>2</sub>Cl<sub>6</sub> method or the HSiCl<sub>3</sub>/NEt<sub>3</sub> pathway,[11c] prompted us to choose its the 1:1 reaction with 1a, which indeed led straightforwardly by elimination of SiCl<sub>4</sub> to the desired [*tert*-butyl(trichlorosilyl)phosphanyl] phosphaalkene 7. This compound exhibits in <sup>31</sup>P-NMR a characteristic AX pattern and a large coupling constant  ${}^{1}J({}^{31}P,{}^{29}Si)$  [ $\delta^{31}P = 389.3$ , P=C; -24.9, P-Si,  ${}^{1}J(P,Si) =$  $\pm 112.6$ , <sup>1</sup>J(P,P)  $\pm 232.4$  Hz]. Compound 7 is persistent at room temperature, but upon attempted distillation, heating furnishes the unsymmetric diphosphene tBuP=PC(SiMe<sub>3</sub>)<sub>2</sub>-SiCl<sub>3</sub> (8), which is unambiguously characterized by its <sup>31</sup>P-NMR pattern [ $\delta$  = 604.0 and 531.3 ppm, <sup>1</sup>J(<sup>31</sup>P,<sup>31</sup>P) =  $\pm 629.9$  Hz]. This result supports the proposed rearrangement  $3a \rightarrow 4a$  (step III, Scheme 2), establishing a pathway to unsymmetric diphosphenes (Scheme 3).<sup>[18]</sup>

# FULL PAPER



Scheme 3. Formation and rearrangement of a P-[(trichlorosilyl)phosphanyl]phosphaalkene.

#### Reductive Trichlorosilylation Reactions of Modified *P*-Chlorophosphaalkenes

The reaction of chlorophosphaalkene 1a with (tri-

chlorosilyl)germane 6 at room temperature can be followed

by <sup>31</sup>P NMR, exhibiting an AX pattern assigned to inter-

mediate 3a and the singlet signal of the diphosphene 4a, which slowly increases in intensity. The use of excess 6 leads

to the appearance of further (very weak) AX-patterns in <sup>31</sup>P NMR, which are tentatively assigned to products from

SiCl<sub>2</sub> addition to the P=C bond of **3b**.<sup>[9]</sup> Compound **2a** can

be observed in <sup>31</sup>P-NMR at an early stage of the reaction by its very weak singlet signal, which is just strong enough

to allow the resolution of <sup>29</sup>Si satellites, and exhibits a very

large coupling constant  ${}^{1}J({}^{31}P, {}^{29}Si) = \pm 243.4 \text{ Hz}$ , even

larger in magnitude than couplings found in species with

P=Si double bonds.<sup>[19]</sup> This observation correlates well with

the exceptionally large coupling constants  ${}^{1}J({}^{31}P,{}^{117,119}Sn)$ 

in Niecke's related stannylene insertion product Ph(Me<sub>3</sub>Si)-

C=PSn(Cl)( $\mu$ -NtBu)<sub>2</sub>SiMe<sub>2</sub>, which in <sup>31</sup>P-NMR exhibits

 ${}^{1}J({}^{31}P,{}^{117,119}Sn)$  of  $\pm 1884.9$  Hz and  $\pm 1972.5$  Hz. ${}^{[12]}$  i.e., in

a similar range to compounds with Sn=P  $\pi$ -bonds and to

tin tetrahalide-trialkylphosphane complexes.<sup>[20]</sup>

Silvlation of 1a with  $Me_3GeSiCl_3$  (6)

### Silylation of 1a with Me<sub>3</sub>SiSiCl<sub>3</sub> (5)

The reaction of 1a with 5 at room temperature proceeds significantly faster than with 6, allowing the observation in <sup>31</sup>P-NMR of small amounts of transient 2a (Scheme 4) and large amounts of 3a (the main product at room temperature), accompanied by the diphosphene 4a. After the initial appearance of some 4a at an early stage of the reaction, its amount does not increase significantly at room temperature. Isolation of pure 3a, clearly a persistent species at room temperature, from such reaction mixtures was not achieved, but it was spectroscopically analysed by <sup>31</sup>P and <sup>29</sup>Si NMR spectroscopy. The high concentration of 3a in the mixture allowed the first determination of its full set of <sup>29</sup>Si-NMR parameters (see below).

The complete conversion of the *P*-[(trichlorosilyl)phosphanyl]phosphaalkene **3a** into the known diphosphene **4a** requires heating of the reaction mixture. In this respect intermediate **3a** resembles the model compound **7**. The observation that a considerable amount of **4a** accompanies **3a** at an early stage of the overall reaction, whereas the complete conversion of **3a** into **4a** requires heating (i.e., involving a higher energy of activation for the step III rearrangement) needs an explanation. The source of "early" **4a** may be the



Scheme 4. Products from the reactions of P-chlorophosphaalkenes 1a-c with Me<sub>3</sub>SiSiCl<sub>3</sub> (5).



Scheme 5. Possible reaction paths from P-(trichlorosilyl)phosphaalkenes to diphosphenes.

direct dimerisation of 2a to (symmetric) 4a, competing with the dimerisation delivering (unsymmetric) 3a. This means that the proposed mechanism  $2a \rightarrow 3a \rightarrow 4a$  involves a bifurcated pathway with the additional "shortcut"  $2a \rightarrow 4a$ . When the supply of 2a is exhausted, 3a remains the only source of 4a. The point of bifurcation might be a transient phosphanylidene-like species that can dimerise either by phosphorus insertion into a P–Si bond of 2a delivering 3a, or by direct P=P bond formation delivering the diphosphene 4a (Scheme 5).

#### Reaction of 1b with Me<sub>3</sub>SiSiCl<sub>3</sub> (5)

This reaction basically follows the reaction sequence corresponding to the Zanin–Karnop mechanism<sup>[10,13]</sup> (Schemes 2 and 4) when we consider the formation of **2b** and **3b** as intermediate products, but it is faster than the reaction of **1a** with **5**. High concentrations of intermediate **2b** at an early stage of the reaction indicate that step I particularly is accelerated when **1b** is used as starting material. However, in this case there is also evidence for a competing second reaction pathway leading initially to an asymmetric diphosphene that finally delivers the symmetric diphosphene **4b**, the final product and the only isolated and completely characterized compound from the reaction of **1b** with **5**.

In the case of 1b + 5 we observed in the reaction mixture by <sup>31</sup>P NMR, apart from **2b**, **3b**, and **4b**, also the AXpattern of a further transient species [ $\delta^{31}P = 401.9 \text{ ppm}$  (d), 332.3 ppm (d),  ${}^{1}J(P,P) = \pm 597$  Hz]. Both  ${}^{31}P$ -NMR shifts are in the "phosphaalkene range", but the magnitude of  ${}^{1}J(P,P)$  would fit to a P=P double bond. This species of unknown structure is apparently a precursor to an asymmetric diphosphene  $[\delta^{31}P = 561.9 \text{ (d)}, 502.5 \text{ (d)}, {}^{1}J(P,P) =$ 620.5 Hz]. The appearance of these transient species with <sup>31</sup>P-NMR AX patterns suggests the existence of a further reaction path (independent of the Zanin-Karnop mechanism)<sup>[10,13]</sup> to final **4b**. The aspect of an intermediate asymmetric diphosphene has been neglected so far; traces of an asymmetric diphosphene were also noticed after the silylation of **1a** [ $\delta^{31}$ P = 569.1 ppm (d), 504.7 ppm (d), <sup>1</sup>*J*(P,P)  $= \pm 616 \text{ Hz} (P=P)$ ].

The chemical composition of compound 4b has been confirmed by a correct elemental analysis and by mass spectrometry. The mass spectrum shows a characteristic isotopic distribution for the molecular ion  $\{[M]^+, m/z = 895.9\},\$  $\{[M - CH_3]^+, m/z = 880.9\}, \{[(M - SiCl_3)^+], m/z = 761\}.$ The base peak at m/z = 135 corresponds to the (SiMe<sub>2</sub>-Ph)<sup>+</sup> ion according to the isotopic distribution. 4b shows in <sup>31</sup>P-NMR a singlet at  $\delta$  = 573.6 ppm. The <sup>29</sup>Si-NMR chemical shifts have been assigned according to an INEPT measurement that allowed a correct calculation of the integrals for the two distinct <sup>29</sup>Si nuclei  $\delta = -4.3$  ppm (SiMe<sub>2</sub>Ph, integral 2Si) and -7.1 ppm (SiCl<sub>3</sub>, integral 1Si). Both resonances (expected to be X-parts of AA'X pattern) appear as broad signals, ruling out the determination of coupling constants with <sup>31</sup>P. The <sup>13</sup>C-NMR signals appear as broadened multiplets, also providing little information about the coupling constants with <sup>31</sup>P. The two types of chemically



equivalent, but magnetically inequivalent CH<sub>3</sub> groups (diastereomers) appear as X parts of AA'X systems,  $\delta =$ 0.88 ppm ("t", CH<sub>3</sub>), 2.86 ppm ("t", CH<sub>3</sub>). Their protons also exhibit diastereomeric behavior, i.e. <sup>1</sup>H-NMR presents two singlets in the SiCH<sub>3</sub> region,  $\delta = 0.7$  ppm (s, CH<sub>3</sub>, 6 H) and 0.35 ppm (s, CH<sub>3</sub>, 6 H). The quaternary carbon atom at  $\delta = 40.9$  ppm was assigned according to the data offered by H,C-HMBC correlation [<sup>2</sup>J(H,C) with methyl protons]. An H,C-HSQC correlated spectrum also allowed the assignment of the NMR resonances corresponding to phenyl protons, as follows: 7.45 (d, t, *ortho*, 2 H), 7.23–7.29 (m, *para*, 1 H), 7.15–7.22 (m, *meta*, 2 H).

Solid **4b** is a inversion-symmetric diphosphene with a central P=P bond length of 2.0347(4) Å and C–P=P angles of 106.83(3)°. (Figure 1). Searches of the Cambridge Database (Version 1.12)<sup>[21]</sup> revealed the following results: (i) The fragment C–P=P–C with two-coordinate phosphorus, no coordination to metals and no annelation appears 23 times with P=P 1.985–2.050, av. 2.024 Å. (ii) There are only three other structures with Si<sub>3</sub>C substituents at phosphorus, namely Zanin's compound **4a**,<sup>[10]</sup> our derivative with remote C–SiCl<sub>2</sub>–P*i*Pr<sub>2</sub> functions<sup>[9]</sup> (Scheme 1), and the bis[tris(trimethylsilyl)methyl]diphosphene investigated independently by two groups;<sup>[22]</sup> all these molecules display inversion symmetry and the C–P=P angles are 106.0–108.3, av. 107.4°.



Figure 1. Molecular structure of **4b** (H atoms omitted). Thermal ellipsoids are set at 50% probability. Selected bond lengths [Å]: P–P#1 2.0347(4), P–C(9) 1.8863(8), C(9)–Si(3) 1.9663(8), C(9)–Si(1) 1.8522(9), C(10)–Si(3) 1.8762(9), C(16)–Si(3) 1.8656(9), Cl(1)–Si(1) 2.0553(3). Selected bond angles [°]:C(9)–P–P#1 106.83(3), P–C(9)–Si(2) 109.26(4), P–C(9)–Si(3) 101.91(4), Si(1)–C(9)–P 112.13(4), C(9)–Si(1)–Cl(2) 114.73(3), Cl(2)–Si(1)–Cl(3) 105.178(14).

Compound **4b** also displays two short contacts: intramolecular P····Cl1#1 3.469 Å and intramolecular H14····Cl1 2.94 Å, connecting the molecules by translation parallel to the *a* axis.

#### Reactions of Phosphaalkene 1c with 5 and with 6

This variation of the system – a starting material with bulkier C-silyl substituents – was intended to inhibit the dimerisation process  $2 \rightarrow 3$ , allowing the enrichment and isolation of compound 2c.

However, addition of germylsilane **6** to **1c** leads to the formation of only traces of the new species **2c**. Enrichment of **2c** from such mixtures was not achieved. The <sup>31</sup>P-NMR signals of starting material **1c** and product **2c** (traces) are accompanied by those of another *P*-trichlorosilyl species [ $\delta = -93$  ppm, <sup>1</sup>*J*(P,Si) = ±128.8, <sup>1</sup>*J*(P,H) = ±220 Hz] that can be assigned the structure (*i*PrMe<sub>2</sub>Si)<sub>2</sub>C(SiCl<sub>3</sub>)–PH(SiCl<sub>3</sub>). The amount of this species (<sup>31</sup>P-NMR intensity < 5% relative to that **1c**) does not increase further, even after three weeks.

Addition of disilane **5** to **1c** leads to the formation of considerable amounts of the new species **2c**, and with excess of **5** the approximate content of **2c** in the mixture (from <sup>31</sup>P-NMR intensities) can reach 35–45%. Further enrichment of **2c** from such mixtures was not achieved. The above-mentioned species  $(iPrMe_2Si)_2C(SiCl_3)$ –PH(SiCl\_3) also appears in the reaction mixture from **1c** and **5**, but in even smaller amounts than in the previous case.

A careful analysis of the <sup>29</sup>Si-satellite pattern in the <sup>31</sup>P-NMR of **2c** spectrum allowed us to identify only two of the Si,P coupling constants, <sup>1</sup>*J*(P,Si) = ±249.2 Hz and <sup>2</sup>*J*(P,Si) = ±32.3 Hz. The exceptional magnitudes of <sup>1</sup>*J*(P,Si) in **2a**– **2c** gave rise to a quantum chemical consideration of compounds related to **2a**. For reasons of simplicity, *P*-(trichlorosilyl)phosphaalkenes with less bulky *C*-silyl substituents were studied. The calculations were performed with Gaussian on B3LYP/6-31G\* geometry with GIAO/ BHandHLYP/B2. The calculated coupling constants of compound (H<sub>3</sub>Si)<sub>2</sub>C=PSiCl<sub>3</sub> are <sup>1</sup>*J*(<sup>31</sup>P, <sup>29</sup>Si) = -368, <sup>2</sup>*J*(<sup>31</sup>P, <sup>29</sup>Si) [*cis*-silyl groups] = -28, <sup>2</sup>*J*(<sup>31</sup>P, <sup>29</sup>Si) [*trans*-silyl groups] = +32 Hz.<sup>[24]</sup>

The <sup>31</sup>P-NMR signal of **2c** ( $\delta^{31}P = 377.2 \text{ ppm}$ ) appears about 33 ppm downfield shifted from the starting material 1c. The high concentration of 2c in the mixture allowed for the first time the determination of the full set of <sup>29</sup>Si-NMR parameters of a "per-silylated" P-(trichlorosilyl)phosphaalkene. The three <sup>29</sup>Si nuclei appear as doublets as a consequence of the coupling with <sup>31</sup>P. The two C-silyl groups cisand trans-oriented relative to the P-bonded SiCl<sub>3</sub> group at the C=P double bond in P-trichlorosilyl[bis(isopropyldimethylsilyl)methylene]phosphane (2c) give separate doublet signals in the <sup>29</sup>Si-NMR spectrum. In C-bis(trimethylsilyl)phosphaalkenes the silyl group with the larger (by magnitude) coupling constant  ${}^{2}J({}^{31}P, {}^{29}Si)$  is generally assigned to be oriented *cis* to the phosphorus lone pair, i.e. *trans* to the substituent at phosphorus.<sup>[23]</sup> In 2c the most deshielded <sup>29</sup>Si-NMR doublet signal at  $\delta$  = 7.9 ppm exhibiting <sup>2</sup>J(P,Si) =  $\pm 32.3$  Hz is assigned to the *i*PrMe<sub>2</sub>Si group *trans* to the SiCl<sub>3</sub> group (*cis* to the phosphorus lone pair), the resonance at 1.9 ppm [<sup>2</sup>J(P, Si) =  $\pm$ 11.4 Hz] corresponds to the other *i*PrMe<sub>2</sub>Si group. Compared with the starting material 1c [ $\delta$ =  ${}^{29}$ Si 2.6 ppm,  ${}^{2}J(P, Si) = \pm 39.9$  Hz, *trans* to Cl and 1.9 ppm,  ${}^{2}J(P, Si) = \pm 4.3$  Hz, *cis* to Cl], the *trans-i*PrMe<sub>2</sub>Si group in 2c appears less deshielded and with a smaller coupling constant. In contrast, the <sup>29</sup>Si chemical shifts of the cis-iPrMe<sub>2</sub>Si groups of 1c and 2c are very similar, but in 2c the coupling constant is larger than that of 1c (in magnitude). This virtual "confusion" correlates with the opposite signs of the two coupling constants <sup>2</sup>*J*(P,Si) suggested by DFT calculations (see above). The <sup>29</sup>Si nucleus of the trichlorosilyl group in **2c** appears at  $\delta = -0.1$  ppm as the center of a doublet [<sup>1</sup>*J*(P,Si) = ±248.4 Hz] (see below).

In mixtures containing 1c, 2c, and 5 almost 60% of the starting material 1c remains unconsumed for more than two weeks, before detectable amounts of a further product start to appear in solution, indicated by an AX pattern in the <sup>31</sup>P-NMR upfield region [<sup>31</sup>P NMR at 81 MHz,  $C_6D_6$ :  $\delta$  $= -117.0 \text{ ppm (d)}, -129 \text{ ppm (d)}, {}^{1}J(P,P) = \pm 189 \text{ Hz}$ ]. This pattern is consistent with a diphosphabicyclobutane structure, which can be explained by a reaction between 1c and 2c from the reaction mixture with elimination of SiCl<sub>4</sub>. Related bicyclobutanes were detected by Niecke et al., when P-chlorophosphaalkenes were reduced by insertion of 1,3di-*tert*-butyl-2,2-dimethyl-1,3,2,4 $\lambda^2$ -diazasilastannetidine, a cyclic aminostannylene, into the P-Cl bonds.<sup>[12]</sup> Keeping the bicyclic product from 1c/2c in solution leads within two months to the appearance of another species with three inequivalent phosphorus atoms (see Exp. Section).

#### <sup>31</sup>P- and <sup>29</sup>Si-NMR Spectroscopic Data of Compounds 2–7

In the three known *P*-(trichlorosilyl)phosphaalkenes **2ac**, coupling constants  ${}^{1}J(P,Si)$  are generally significantly larger that those of (trichlorosilyl)phosphane functions<sup>[8]</sup> (as in **3a–b**); they are influenced by the substitution pattern of neighbouring *C*-silyl groups in the range *i*PrMe<sub>2</sub>Si > Me<sub>3</sub>Si > PhMe<sub>2</sub>Si; i.e. bulkier alkyl substituents correlate with larger  ${}^{1}J(P,Si)$  couplings. An overview of the NMR spectroscopic data is given in Table 1.

Table 1. Selected <sup>31</sup>P- and <sup>29</sup>Si-NMR spectroscopic data of phosphaalkenes with P–SiCl<sub>3</sub> moieties.

|    | $\delta = {}^{31}P$<br>( $\sigma^2, \lambda^3$ )<br>[ppm] | $\delta = {}^{31}P$ ( $\sigma^3, \lambda^3$ ) [ppm] | <sup>1</sup> <i>J</i> (P,P)<br>[Hz] | $\delta = {}^{29}\text{Si}(S - i\text{Cl}_3) \text{ [ppm]}$ | <sup>1</sup> <i>J</i> (P,Si)<br>[Hz] |
|----|-----------------------------------------------------------|-----------------------------------------------------|-------------------------------------|-------------------------------------------------------------|--------------------------------------|
| 2a | 371.6                                                     | _                                                   | _                                   | *[a]                                                        | 243.4                                |
| 2b | 389.2                                                     | _                                                   | _                                   | *                                                           | 236.0                                |
| 2c | 377.4                                                     | _                                                   | _                                   | -0.1                                                        | 249.2**                              |
| 3a | 394.1                                                     | -26.1                                               | 254.6                               | 2.9                                                         | 172.0                                |
| 3b | 417.5                                                     | -21.3                                               | 260.0                               | *                                                           | 169.8                                |
| 7  | 389.3                                                     | -24.9                                               | 232.4                               | *                                                           | 112.6                                |
|    |                                                           |                                                     |                                     |                                                             |                                      |

[a] (\* = not observed; \*\* value from the  ${}^{31}$ P-NMR spectrum).

For the transient compound **3a**, the proposed assignment for the <sup>29</sup>Si-NMR signals (for the numbering see Scheme 6) is as follows:  $\delta_1 = 5.1$  ppm (d,d), <sup>2</sup>*J*(P,Si) = ±47.9, <sup>3</sup>*J*(P,Si) = ±9.5 Hz;  $\delta_2 = 2.4$  ppm (d,d), <sup>2</sup>*J*(P,Si) = ±12, <sup>3</sup>*J*(P,Si) =





 $\pm 8.7$  Hz;  $\delta_3 = 2.9$  ppm (d,d),  ${}^{1}J(P,Si) = \pm 172$ ,  ${}^{2}J(P,Si) = \pm 10.1$  Hz;  $\delta_4 = -0.6$  ppm (d,d),  ${}^{2}J(P,Si) = \pm 40.9$ ,  ${}^{3}J(P,Si) = \pm 24.1$  Hz;  $\delta_5 = 0.9$  ppm (d),  ${}^{2}J(P,Si) = \pm 4.7$  Hz [ ${}^{3}J(P,Si) < 1$  Hz].

## Conclusions

Reactions of P-chlorophosphaalkenes (RMe<sub>2</sub>Si)<sub>2</sub>C=PCl (1a-c; R = Me, Ph, iPr) with the disilane Me<sub>3</sub>SiSiCl<sub>3</sub> (5) furnish by Me<sub>3</sub>SiCl elimination the new per-silvlated phosphaalkenes (RMe<sub>2</sub>Si)<sub>2</sub>C=PCSiCl<sub>3</sub> (2a-c) as the first spectroscopically detectable products (step I). The subsequent step (II) of the reaction is the dimerisation of 2a, 2b providing isomeric *P*-[(trichlorosilyl)phosphanyl]phosphaalkenes  $(RMe_2Si)_2C=P-P(SiCl_3)C(SiCl_3)(SiMe_2R)_2$  (3a: R = Me; **3b**: R = Ph) and diphosphenes  $(Cl_3Si)(RMe_2Si)_2C-P=P C(SiCl_3)(SiMe_2R)_2$  (4a: R = Me; 4b: R = Ph). Heating of these mixtures or the reference compound (Me<sub>3</sub>Si)<sub>2</sub>C=P- $P(SiCl_3)tBu$  (7) leads by 1,3(P $\rightarrow$ C) SiCl<sub>3</sub> group shift reactions (step III) to the corresponding diphosphenes 4a, 4b and 8. The structure of the new diphosphene 4b was determined crystallographically. The rates of reaction steps I-III can be influenced by variation of the C-silyl groups in the parent chlorophosphaalkenes 1a-c. With the bulkier *i*PrMe<sub>2</sub>Si group, the dimerisation of 2c (step III) is precluded and solutions containing approximately equivalent amounts of 2c and 1c can be generated. The remarkable resistance of 2c to dimerisation allowed for the first time the <sup>31</sup>P- and <sup>29</sup>Si-NMR spectroscopic characterisation of a per-silvlated P-(trichlorosilvl)phosphaalkene. On the agenda of open questions in this context are still the mechanisms of (i) the formation of compounds 2a-c [SiCl<sub>2</sub> insertion into the P-Cl bonds vs. S<sub>N</sub>-like Cl/SiCl<sub>3</sub> group exchange at  $P(\sigma^2 \lambda^3)$ ] and (ii) the dimerisation step II (possible role of phosphanylidene species).

## **Experimental Section**

**General Methods:** All experiments were carried out under oxygenfree nitrogen by using standard Schlenk techniques. NMR spectra were recorded using Bruker spectrometers AC 200, Avance 200, Avance 400 and AMX 300, with 85% H<sub>3</sub>PO<sub>4</sub>, and SiMe<sub>4</sub> as external or internal standards.

**4a:** A mixture of (224 mg, 1.0 mmol) **1a** and (414 mg, 2.0 mmol) **5** in 2 mL of toluene was stirred at room temperature. The new species **2a** [ $\delta$  = +371.6 ppm C=*P*, <sup>1</sup>*J*(P,Si) = ±43.4 Hz] was observed about 20 min after the reaction began. This is consumed to give **3a** [ $\delta$  = +394.1 ppm (d) C=*P*-P, <sup>1</sup>*J*(P,P) = ±254.6 Hz, -26.1 ppm (d) C=P-*P*, <sup>1</sup>*J*(P,P) = ±254.6 Hz]. The reaction is very slow. After 5 d the reaction shows three products in <sup>31</sup>P NMR: **3a** as major product, **4a** beginning to be formed, and traces of an asymmetric diphosphene [ $\delta$  = 569.1 ppm, <sup>1</sup>*J*(P,P) = ±616 Hz, 504.7 ppm, <sup>1</sup>*J*(P,P) = ±616 Hz (P=P)]. The concentration of **3a** in this case is sufficient for <sup>29</sup>Si NMR spectroscopy (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 5.1 pm [dd, <sup>2</sup>*J*(Si,P) = ±47.9, <sup>3</sup>*J*(Si,P) = ±9.5 Hz, P=CS*i*Me<sub>3</sub>], 2.4 ppm [dd, <sup>2</sup>*J*(Si,P) = ±172, <sup>3</sup>*J*(Si,P) = ±10.1 Hz, C–P–S*i*Cl<sub>3</sub>], -0.6 ppm [dd, <sup>2</sup>*J*(Si,P) = ±40.9, <sup>3</sup>*J*(Si,P) = ±24.1 Hz, P–C–S*i*Cl<sub>3</sub>], 0.9 ppm, [d, <sup>2</sup>*J*(Si,P) =  $\pm$ 4.7, <sup>3</sup>*J*(Si,P) < 1 Hz, C(*Si*Me<sub>3</sub>)<sub>2</sub>]. The mixture was converted to **4a** after 10 d reflux in toluene. The asymmetric diphosphene is also consumed to give **4a**.

**4b:** A mixture of **1b** (1.6 g, 4.58 mmol) in 3 mL of  $C_6D_6$  and **5** (1.04 mg, 5.0 mmol) was stirred at room temperature and <sup>31</sup>P-NMR spectroscopically analyzed. The reaction was spontaneous: first the compound **2b**  $[\delta^{31}P = 389.2 \text{ ppm (s)}, C=P, {}^{1}J(P,Si) =$ ±236 Hz] was formed, which after 1 d was consumed in favor of **3b**  $[\delta^{31}P = 417.5 \text{ ppm (d)}, C=P-P, {}^{1}J(P,P) = \pm 260 \text{ Hz}], -21.3 \text{ ppm}$ [d, C=P-P,  ${}^{1}J(P,P) = \pm 260$ ,  ${}^{1}J(P,Si) = \pm 169.8$  Hz] and finally of **4b**. A competing reaction takes place, leading to small amounts of an asymmetric diphosphene  $\delta^{31}P = 561.9 \text{ ppm}$  [d, <sup>1</sup>J (P,P) =  $\pm 620.5$  Hz], 502.5 ppm [d, <sup>1</sup>J (P,P) =  $\pm 620.5$  Hz]. A transient precursor of this compound was observed 30 min after the reaction started:  $\delta = {}^{31}P = 401.9 \text{ [d, } {}^{1}J(P,P) = \pm 597 \text{ Hz}\text{]}, 332.3 \text{ [d, } {}^{1}J(P,P) =$  $\pm$ 597 Hz]. The asymmetric diphosphene was consumed after about 10-14 d. After 30 d NMR spectra of the reaction mixture showed compounds 4b and 3b in the ratio 95:5 (high crude yield). All volatiles were removed in vacuo and 0.5 mL of CDCl<sub>3</sub> was added to the residual brown oil. At 0 °C a few colorless crystals of 4b, appropriate for X-ray analysis, were obtained.

**4b:** <sup>1</sup>H-NMR:  $\delta = 0.7$  (s, *CH*<sub>3</sub>, 6 H), 0.35 (s, *CH*<sub>3</sub>, 6 H) diastereotopes (Me<sub>2</sub>Si), 7.45 (d,"t", *ortho*, 2 H), 7.23–7.29 (m, *para*, 1 H), 7.15–7.22 (m, *meta*, 2 H). <sup>13</sup>C-NMR:  $\delta = 0.88$  ("t", *CH*<sub>3</sub>), 2.86 ("t", *CH*<sub>3</sub>), 40.9 [m, *C*(SiCl<sub>3</sub>)(SiMe<sub>2</sub>Ph)<sub>2</sub>], 127.7 (s, *m*-C), 129.9 (s, *p*-C), 135.6 (s, *o*-C), 136.7 (s, *ipso*-C); <sup>29</sup>Si-NMR:  $\delta = -4.3$  (br. s, *Si*Me<sub>2</sub>Ph, Integr. 2Si), –7.1 (br. s, *Si*Cl<sub>3</sub>, integr. 1 Si); <sup>31</sup>P-NMR:  $\delta = 573.6$  (s, *P=P*). MS(EI): *m/z* (%) = 895.9 [M<sup>+</sup>, 4], 880.9 [(M – CH<sub>3</sub>)<sup>+</sup>, 1], 761 [(M – SiCl<sub>3</sub>)<sup>+</sup>, 1], 743.8 [(M – SiCl<sub>3</sub>–CH<sub>3</sub>)<sup>+</sup>, 1], 723.9 [(M – SiCl<sub>4</sub>)<sup>+</sup>, 4], 478.9 [M – (C(SiCl<sub>3</sub>)(SiMe<sub>2</sub>Ph)<sub>2</sub>)<sup>+</sup>, 3], 135 [(Si-Me<sub>2</sub>Ph)<sup>+</sup>, 100], 62.9 [(P=P)<sup>+</sup>, 22]. Elemental analysis (%): C<sub>34</sub>H<sub>44</sub>Cl<sub>6</sub>P<sub>2</sub>Si<sub>6</sub> (895.89) calcd.: C 45.58, H 4.95; found C 43.55, H 5.02.

**Reaction of 1c with 6:** 153 mg (0.6 mmol) **6** were added in one portion to a solution of 170 mg (0.6 mmol) **1c** and 0.5 mL of C<sub>6</sub>D<sub>6</sub>. After 10 min, a small peak corresponding to the short-lived species **2c** was observed with <sup>31</sup>P NMR spectroscopy;  $\delta = 377.4$  ppm, <sup>1</sup>*J*(P,Si) = 248.4 Hz. After 5 d, another compound is identified as  $[(Me_2iPr)Si]_2C(SiCl_3)-P(H)SiCl_3 [\delta = -93.4 ppm, s, <sup>1</sup>J(P,H) = 220, <sup>1</sup>J(P,Si) = 127.1 Hz]. Even 27 d later the reaction does not proceed further, and the two reaction products mentioned so far are still clearly distinguished in <sup>31</sup>P NMR spectrum together with$ **1c**.

**Reaction of 1c with 5:** To (0.5 g, 1.78 mmol) of **1c** in 0.3 mL of  $C_6D_6$ , 2 equiv. of **5** (0.70 g, 3.5 mmol) was added at room temperature. From the mixture, an NMR sample was prepared and sealed by melting. The signals assigned to **2c** are stable for several weeks, but their intensity shows a conversion of only 35–40%, while **1c** remains unconsumed.

**2c:** <sup>29</sup>Si NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 7.9 ppm <sup>2</sup>*J*(P,Si) = 32.3 Hz [d, *Si*-(CH<sub>3</sub>)<sub>2</sub>*i*Pr]; 1.9 ppm <sup>2</sup>*J*(P,Si) = 11.4 Hz [d, *Si*(CH<sub>3</sub>)<sub>2</sub>*i*Pr]; -0.1 ppm, <sup>1</sup>*J*(P,Si) = 248.4 Hz (d, *Si*Cl<sub>3</sub>). <sup>31</sup>P NMR (81 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = +377.2 ppm, <sup>1</sup>*J*(P,Si) = 249.2, <sup>2</sup>*J*(P,Si) = 32.3 Hz.

After 2–3 weeks, in <sup>31</sup>P-NMR an AX pattern and subsequently (2 months) also an AMX-pattern appear in at the expense of both **1c** and **2c**. AX pattern: <sup>31</sup>P NMR (81 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = -117.0$  ppm (d), -129 ppm (d), <sup>1</sup>*J*(P,P) = 189 Hz. AMX pattern:  $\delta_A = 184.7$  ppm (dd), <sup>1</sup>*J*(P<sub>A</sub>,P<sub>M</sub>) = ±149, <sup>2</sup>*J*(P<sub>A</sub>,P<sub>X</sub>) = ±111.9, <sup>1</sup>*J*(P<sub>A</sub>,H) = ±14.7 Hz,  $\delta_M = 28.3$  ppm (dd), <sup>1</sup>*J*(P<sub>A</sub>,P<sub>M</sub>) = ±149, *J*(P<sub>M</sub>,P<sub>X</sub>) = ±141.5 Hz,  $\delta_X = -55.9$  ppm (dd), <sup>2</sup>*J*(P<sub>A</sub>,P<sub>X</sub>) = ±111.9, *J*(P<sub>M</sub>,P<sub>X</sub>) = ±141.5 Hz.

# **FULL PAPER**

Reaction of 1a with tBuP(SiCl<sub>3</sub>)<sub>2</sub>: A mixture of 2.33 g (10.4 mmol) of **1a** and 3.7 g (10.4 mmol) *tert*-butylbis(trichlorsilyl)phosphane was refluxed for 5 h in 20 mL of dichloromethane. The consumption of 1a and  $tBuP(SiCl_3)_2$  in favour of compound 7 was confirmed by <sup>31</sup>P-NMR spectroscopy. The solvent and silicon tetrachloride were removed in vacuo; attempts to distil the orange reside led to thermal decomposition. In the residue from the attempted distillation, compounds 7 and 8 could be identified by <sup>31</sup>P NMR spectroscopy. Separation of 8 from this mixture was not achieved.

7: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 0.2 ppm [d, 9 H, <sup>4</sup>J(H,P) = 2.4 Hz Si- $(CH_3)_3$ , 0.4 ppm [s, 9 H, Si $(CH_3)_3$ ], 1.3 ppm [d, 9 H,  ${}^3J(H,P) =$ 13.1 Hz C(CH<sub>3</sub>)<sub>3</sub>]. <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 2.0 ppm [d, <sup>3</sup>J(C,P) = 14.7 Hz, Si(CH<sub>3</sub>)<sub>3</sub>], 4.3 ppm [dd,  ${}^{3}J(C,P) = 7.8$ ,  ${}^{4}J(C,P) = 2.9$  Hz, Si(CH<sub>3</sub>)<sub>3</sub>], 32.2 ppm [dd,  ${}^{2}J(C,P) = 12.4$ ,  ${}^{3}J(C,P) = 3.6$  Hz,  $C(CH_3)_3$ ], 35.5 ppm [dd,  ${}^1J(C,P) = 23.7$ ,  ${}^2J(C,P) = 3.8$  Hz,  $C(CH_3)_3$ ], 236.5 ppm [dd,  ${}^1J(C,P) = 99.7$ ,  ${}^2J(C,P) = 11.2$  Hz, C=P], <sup>29</sup>Si NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = -4.1 ppm [dd, <sup>2</sup>J(Si,P) = 11.7, <sup>3</sup>J(Si,P) = 12.8 Hz,  $Si(CH_3)_3$ ], 0.1 ppm [dd,  ${}^2J(Si,P) = 39.2$ ,  ${}^3J(Si,P) =$ 22.1 Hz, Si(CH<sub>3</sub>)<sub>3</sub>], <sup>31</sup>P NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = -24.9$  ppm [d, <sup>1</sup>J(P,P) = 232.4 Hz, <sup>29</sup>Si satellites:  ${}^{1}J(Si,P) = 112.6$ ,  ${}^{3}J(Si,P) = 22.1$ ,  ${}^{3}J(Si,P)$ = 12.8 Hz,  $P(SiCl_3)tBu$ ], 389.3 ppm [d,  ${}^{1}J(P,P)$  = 232.4 Hz,  ${}^{29}Si$  satellites:  ${}^{2}J(Si,P) = 39.2$ ,  ${}^{2}J(Si,P) = 11.7$  Hz, C=P]. MS(EI) m/z (%) = 444 (1) [not assigned], 412 (2)  $[M]^+$ , 387 (2)  $[?]^+$ , 355 (3) [M tBu]<sup>+</sup>, 325 (4) [M – SiMe<sub>3</sub>–CH<sub>2</sub>]<sup>+</sup>, 209 (14) [P(SiCl<sub>3</sub>) Bu]<sup>+</sup>, 147 (40) [Me<sub>3</sub>SiCPP]<sup>+</sup>, 93(100) [tBuH+Cl]<sup>+</sup>, 73 (82) [Me<sub>3</sub>Si]<sup>+</sup>, 57(56) [tBu]<sup>+</sup>.

8: <sup>31</sup>P NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 531.3 ppm [d, <sup>1</sup>J(P,P) = 628.9 Hz, P=PtBu], 604.0 [d,  ${}^{1}J(P,P) = 628.9$  Hz, P=PtBu].

X-ray Structure Determination of Compound 4b: Crystal data:  $C_{34}H_{44}Cl_6P_2Si_6$ ,  $M_r = 895.87$ , triclinic, space group  $P\overline{1}$ , a =9.4125(4), b = 10.9299(4), c = 11.8668(4) Å, a = 66.618(3),  $\beta =$ 71.536(3),  $\gamma = 88.715(3)^{\circ}$ ,  $V = 1055.4 \text{ Å}^3$ , Z = 1,  $\rho_{\text{calc}} = 1.410 \text{ Mg/}$  $m^3$ ,  $\mu$ (Mo- $K_a$ ) = 0.68 mm<sup>-1</sup>, F(000) = 464, T = 100 K; yellow block  $0.45 \times 0.3 \times 0.2$  mm<sup>3</sup>. Of 37527 reflections collected to  $2\theta$  63°, 6912 were independent ( $R_{\text{int}} = 0.021$ ). Final  $R1 = 0.0209 [I > 2\sigma(I)]$ , wR2 = 0.0601 (all data) for 221 parameters; S = 1.05, max.  $\Delta \rho 0.5 \text{ e} \text{ Å}^{-3}$ .

Data were recorded using Mo- $K_{\alpha}$  radiation ( $\lambda = 0.71073$  Å) on an Oxford Diffraction Xcalibur S diffractometer. An absorption correction was based on multi-scans. The structure was refined using the program SHELXL-97<sup>[25]</sup>. Hydrogen atoms were included using rigid methyl groups or a riding model.

CCDC-777799 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data\_request/cif.

#### Acknowledgments

We thank Dr. Alk Dransfeld and Prof. Dr. Manuela Flock (TU Graz, Austria) for their help with orienting DFT calculations on compounds 2, and we acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) at an early stage of this work.

W.-W. du Mont, H. Marsmann et al.

- [2] Stable dihalides of the heavier elements Ge, Sn, Pb are accessible as starting materials, and the chemistry of transient dihalogenocarbenes is well established: W. Kirmse, Carbene, Carbenoide und Carbenanaloge, Verlag Chemie, Weinheim 1969.
- [3] P. L. Timms, Inorg. Chem. 1968, 7, 387-389; W. H. Atwell, D. R. Weyenberg, Angew. Chem. 1969, 81, 485-493; Angew. Chem. Int. Ed. Engl. 1969, 8, 469; O. M. Nefedov, M. N. Manakov, Angew. Chem. 1966, 78, 1039-1056; Angew. Chem. Int. Ed. Engl. 1966, 5, 1021; O. M. Nefedov, S. P. Kolesnikov, A. I. Ioffe, Organomet. Chem. Rev. 1977, 5, 181-219.
- E. Hengge, D. Kovar, Z. Anorg. Allg. Chem. 1979, 458, 163; H. [4] Stüger, E. Hengge, Monatsh. Chem. 1988, 119, 873; J. R. Koe, D. R. Powell, J. J. Buffy, S. Hayase, R. West, Angew. Chem. 1998, 110, 1514–1515; Angew. Chem. Int. Ed. 1998, 37, 1441– 1442.
- [5] D. Kummer, H. Köster, M. Speck, Angew. Chem. 1969, 81, 574-575; Angew. Chem. Int. Ed. Engl. 1969, 8, 599; D. Kummer, H. Köster, Angew. Chem. 1969, 81, 897; Angew. Chem. Int. Ed. Engl. 1969, 8, 878.
- [6] H. H. Karsch, F. Bienlein, A. Sladek, M. Heckel, K. Burger, J. Am. Chem. Soc. 1995, 117, 5160-5161.
- [7] a) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. 2009, 121, 5793-5796; b) A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. 2009, 121, 5797-5800.
- [8] a) L. Müller, W.-W. du Mont, F. Ruthe, P. G. Jones, H. C. Marsmann, J. Organomet. Chem. 1999, 579, 156-163; b) W.-W. du Mont, L. Müller, R. Martens, P. M. Papathomas, B. A. Smart, H. E. Robertson, D. W. H. Rankin, Eur. J. Inorg. Chem. 1999, 1381-1392; c) S. L. Hinchley, L. J. McLachlan, H. E. Robertson, D. W. H. Rankin, E. Seppälä, W.-W. du Mont, Inorg. Chim. Acta 2007, 360, 1323-1331
- [9] W. W. du Mont, T. Gust, E. Seppälä, C. Wismach, P. G. Jones, L. Ernst, J. Grunenberg, H. C. Marsmann, Angew. Chem. 2002, 114, 3977-3979; Angew. Chem. Int. Ed. 2002, 41, 3829-3832.
- [10] A. Zanin, M. Karnop, J. Jeske, P. G. Jones, W.-W. du Mont, J. Organomet. Chem. 1994, 475, 95.
- [11] a) R. Martens, W.-W. du Mont, L. Lange, Z. Naturforsch., Teil B 1991, 46, 1609; b) R. Martens, W.-W. du Mont, Chem. Ber. 1992, 125, 657; c) L.-P. Müller, A. Zanin, W.-W. du Mont, J. Jeske, R. Martens, P. G. Jones, Chem. Ber./Recueil 1997, 130, 377; d) L. Müller, W. W. du Mont, F. Ruthe, P. G. Jones, H. C. Marsmann, J. Organomet. Chem. 1999, 579, 156-163.
- [12] E. Niecke, H. J. Metternich, R. Streubel, Chem. Ber. 1990, 123, 67-69.
- [13] E. Seppälä, W.-W. du Mont, T. Gust, C. Wismach, J. Organomet. Chem. 2004, 689, 1331.
- [14] D. Bugnariu, Dissertation, Technical University of Braunschweig, 2007.
- [15] T. A. Banford, A. G. Mc Diarmid, Inorg. Nucl. Chem. Lett. 1972, 8, 733.
- [16] R. Appel, W. Westerhaus, Angew. Chem. 1980, 92, 578; Angew. Chem. Int. Ed. Engl. 1980, 19, 556.
- [17] J. Mahnke, A. Zanin, W.-W. du Mont, F. Ruthe, P. G. Jones, Z. Anorg. Allg. Chem. 1998, 624, 1447-1454.
- [18] M. Yoshifuji, in: M. Regitz, O. J. Scherer, Multiple Bonds and Low Coordination in Phosphorus Chemistry, Georg-Thieme Verlag, Stuttgart, 1990, chapter D9, p. 321-337.
- [19] Coupling constants for Si-P *π*-Bonds: C. N. Smit, F. Bickelhaupt, Organometallics 1987, 6, 1156.
- [20] a) Coupling constants for Sn–P  $\pi$ -bonds: C. Couret, J. Escudie, J. Satgé, J. Am. Chem. Soc. 1985, 107, 8280; b) For Sn-P coupling constants for phosphane SnCl<sub>4</sub> complexes, see: J. F. Malone, B. E. Mann, Inorg. Nucl. Chem. Lett. 1972, 8, 819; A. Yamasaki, F. Fluck, Z. Anorg. Allg. Chem. 1973, 396, 819.
- [21] F. H. Allen, Acta Crystallogr., Sect. B 2002, 58, 380-388.
- [22] a) J. Escudié, C. Couret, H. Ranaivonjatavo, J. Satgé, J. Jaud, Phosphorus Sulfur 1983, 17, 221; b) A. H. Cowley, J. E. Kilduff,

<sup>[1]</sup> A. J. Arduengo III, Acc. Chem. Res. 1999, 32, 913-921; D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev. 2000, 100, 39-91; M. Driess, H. Grützmacher, Angew. Chem. 1996, 108, 900-929; Angew. Chem. Int. Ed. Engl. 1996, 35, 828-856; N. Tokitoh, R. Okazaki, Coord. Chem. Rev. 2000, 210, 251-272; R. West, Acc. Chem. Res. 2000, 33, 704.



J. G. Lasch, S. K. Mehrotra, N. C. Norman, M. Palulski, B. R. Whittlesey, J. L. Atwood, W. E. Hunter, *Inorg. Chem.* **1984**, *23*, 2582–2593.

- [23] a) G. Becker, G. Gresser, W. Uhl, Z. Anorg. Allg. Chem. 1980, 463, 144–148; b) K. Issleib, H. Schmidt, C. Wirkner, Z. Anorg. Allg. Chem. 1981, 473, 86–90.
- [24] C. Mitrofan, R. M. Bîrzoi, E. Seppälä, D. Bugnariu, T. Gust, W.-W. du Mont, H. Marsmann, A. Dransfeld, M. Flock, 4th European Silicon Days (Abstract), Bath (England), 2007.
- [25] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122. Received: March 12, 2010
   Published Online: August 5, 2010