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ABSTRACT: A rhodium-catalyzed direct insertion of ethylene 
into a relatively unstrained carbon–carbon bond in 1-indanones is 
reported, which provides a two-carbon ring-expansion strategy for 
preparing seven-membered cyclic ketones. As many 1-indanones 
are commercially available and ethylene is inexpensive, this 
strategy simplifies synthesis of benzocycloheptenones that are 
valuable synthetic intermediates for bioactive compounds but 
challenging to prepare otherwise. In addition, the reaction is 
byproduct-free, redox neutral, and tolerant of a wide range of 
functional groups, which may have implications on 
unconventional strategic bond disconnections for preparing 
complex cyclic molecules. 

Ring expansion reactions of carbonyl compounds, such as 
Baeyer−Villiger oxidation, Beckmann rearrangement and various 
carbon-insertion reactions, are highly valuable transformations 
and have been frequently utilized in complex molecule syntheses.1 
With a few exceptions, most direct ring-expansion reactions could 
add only a one-atom unit to the existing structures. Compared to 
the well-established one-carbon homologation methods2 (Scheme 
1a), limited approaches are known for direct two-carbon ring 
expansions of ketones.3 After an accidental discovery in 1974, 
Proctor elucidated that carbocyclic β-ketoesters could undergo a 
[2+2] cycloaddition with an activated alkyne, followed by an 
accelerated retro-4π cyclization, to give two-carbon extended 
products4 (Scheme 1b). Later, Kuninobu and Takai discovered a 
similar but efficient rhenium-catalyzed reaction for insertion of 
terminal alkynes with β-ketoesters5, though the reaction was not 
suitable for preparing 7-membered rings. As a mechanistically 
related transformation, Caubere6, and Stoltz7, reported an 
intriguing two-carbon ring expansion method via benzyne 
insertion (Scheme 1b).

Alternatively, it could be attractive to directly insert a common 
unsaturated unit into a cyclic ketone through transition metal-
catalyzed C−C activation8-10, which should offer a straightforward 
and byproduct-free approach for multi-atom ring expansions. The 
reaction involves oxidative addition of C−C bond to a low-valent 
transition metal8b, followed by 2π-insertion to give an enlarged 
metallocycle and C−C reductive elimination. Such a 
transformation, also known as a “cut-and-sew” process9b, has 
been extensively demonstrated in strained three- and four-
membered ring systems (Scheme 1c).11 However, for unstrained 
systems,10 the scope of the process has been primarily limited to 
the use of polar C−CN bonds12 or some special intramolecular 
reactions13. In addition, ethylene, as the most highly produced 
organic compound, may serve as an appealing two-carbon 
coupling partner; to the best of our knowledge, the “cut-and-sew” 
reaction using ethylene as a 2π unit has been elusive for either 

strained or unstrained systems. Moreover, the preference to break 
the stronger aryl−carbonyl bond (e.g. in 1-indanones), enabled by 
transition-metal catalysts, could offer complementary selectivity 
to the conventional1 or radical-mediated C−C cleavage 
reactions14. Herein, we describe our preliminary development of a 
Rh-catalyzed two-carbon ring expansion of 1-indanones via 
insertion of ethylene into C−C bonds (Scheme 1d). 

Scheme 1. Representative direct methods for ring 
expansion of cyclic ketones
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To explore the proposed ethylene-insertion reaction, 
unsubstituted 1-indanone (1a) was used as the model substrate, 
and the Jun’s ketimine directing mode8d,10b was employed for 
C−C activation. The reaction parameters, including different 
aminopyridines (serving as the temporary directing group), 
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ligands, solvents, additives, temperature and pressure of ethylene, 
were carefully 

Chart 1. Scope of the Ethylene-Insertion Reactiona
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aUnless otherwise noted, all the reactions were carried out on 1.0 mmol scale in 72 hours under the standard conditions and yields are of material isolated by 
silica gel chromatography. bThe reaction was carried out at 130 oC. cYields were determined by 1H NMR using 1,1,2,2-tetrachloroethane as the internal 
standard. dIn the absence of IMes ligand and use of 50 mol% water. For details, see Supporting Information.

optimized (see Table S1). Ultimately, the desired 
benzocycloheptenone product 1b was obtained in 76% yield from 
1-indanone (1a) and ethylene gas (100 psi) in the presence of 5 
mol% [Rh(C2H4)2Cl]2, 10 mol% 1,3-bis(2,4,6-

trimethylphenyl)imidazol-2-ylidene (IMes), 20 mol% p-
toluenesulfonic acid monohydrate (TsOH.H2O), 100 mol% 2-
amino-3-picoline (DG-1) and 100 mol% H2O in THF (Table S1, 
entry 1). The only observable side product was the ketone α-C−H 

Page 2 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



insertion product,15 2-ethyl-1-indanone (1c), which was formed in 
8% yield. Interestingly, in the absence of the strong σ-donating 
IMes ligand, the reaction still afforded the desired product 1b in 
60% yield, but gave a poorer selectivity with the α-alkylation 
product formed in 15% yield (Table S1, entry 2). The Rh catalyst, 
TsOH.H2O and the DG-1 are all critical for this transformation, 
and no desired product can be produced without any of them 
(Table S1, entries 3-5). When decreasing DG-1 to 30 mol% and 
50 mol%, the seven-membered ring product 1b could still be 
obtained in 54% and 69% yield, respectively (Table S1, entries 6 
and 7), suggesting that DG-1 exhibits some catalytic activity. 
Other temporary directing groups were found either less efficient 
or less selective (Table S1, entries 8-11), but it is worth noting 
that simple 2-aminopyridine DG-2 favors forming the ketone α-
alkylation product (For more control experiments, see Supporting 
Information, Section 3).

With the optimized conditions in hand, the substrate scope of 
this ethylene-insertion reaction was then explored (Chart 1). First, 
C6-substituted 1-indanone substrates were tested. The electronic 
property of the 6-substituent only had a marginal influence on this 
reaction, as 1-indanones bearing either electron-donating (2a-7a) 
or -withdrawing groups (8a-15a) all gave comparable results to 
the model substrate 1a. A series of functional groups, including 
free phenol (6a), sulfonamide (7a), chloride (10a), ester (14a), 
methyl ketone (15a), silyl (16a) and free hydroxyl group (17a), 
are tolerated. Besides, substrates containing aryl bromide (11a) 
and boronate (18a), which are generally reactive moieties in 
transition-metal catalysis, still afforded the desired products in 
moderate yields. Notably, for the substrate that contains two 
ketone carbonyls (15a), C−C activation occurred exclusively at 
the indanone site. 1-Indanones bearing substituents at the 4- or 5-
position exhibited similar reactivity, yielding the corresponding 
benzocycloheptenones in 52-75% yields (19a-25a). As expected, 
substitutions at the 7-position resulted in lower reactivity due to 
the increased steric hindrance around the carbonyl functionality 
(26a). In addition, several disubstituted 1-indanones (27a-31a) or 
naphthyl-fused cyclopentanone (32a) proved to be competent 
substrates, affording the desired seven-membered ring products in 
moderate to good yields.

After examining the steric and electronic influence of the arene 
part on reactivity, the substitution effect at the aliphatic positions 
of 1-indanones was next investigated. 3-Methyl-1-indanone (33a) 
showed substantially reduced reactivity under the standard 
conditions; however, the yield could be improved in the absence 
of the IMes ligand with a reduced amount of water (50 mol%). 
Under these new reaction conditions, 3-phenyl 1-indanone (34a) 
afforded the desired product in 42% yield. Gratifyingly, the 
reaction efficiency was significantly improved when substrates 
containing an additional substituent on the benzene ring (35a-
40a), though the exact reason is unclear. For example, 6-
trifluoromethyl-3-methyl-1-indanone (37a) produced the desired 
product (37b) in 90% yield. Besides methyl and phenyl groups, 
other alkyl substituents at the 3-position were also tolerated (41b-
43b). Unsurprisingly, substitution at the α-position (C2) of 1-
indanones shut down the reactivity because the steric congestion 
around the ketone would inhibit forming the imine intermediate. 
Finally, this reaction can be applied to natural product-derived or 
tethered indanones. Indanone 44a with an ester-linked cholesterol 
and 45a with an ether-linked androsterone smoothly participated 
in this two-carbon ring-expansion reaction. Similarly, starting 
from estrone-fused cyclopentanone 46a, a seven-membered 
ketone moiety can be efficiently introduced to give a unique 7-6-
6-6-5 pentacyclic structure, which was unambiguously confirmed 
by X-ray crystallography.

From a practical viewpoint, the limits of the reaction condition, 
i.e. the lowest catalyst loading/temperature that could still afford 
good synthetic efficiency, were probed. To our delight, when 
decreasing the loading of the rhodium/IMes from 10 mol% to 3 
mol% and decreasing DG-1 from 100 mol% to 50 mol%, the 
reaction still worked well to give 85% conversion and 65% yield 
of product 9b (Scheme 2a, entry 2 vs. entry 1). Using 5 mol% 
rhodium/IMes and 50 mol% DG-1, the reaction efficiency almost 
reached to the level of the original conditions (Scheme 2a, entry 
3). Besides, when running at a lower temperature (130 oC), the 
reaction still proceeded smoothly even with 5 mol% 
rhodium/ligand (Scheme 2a, entry 4). The reaction is also 
scalable. On gram scales, good yields could still be obtained with 
1-indanones bearing either an electron-donating or -withdrawing 
group, and DG-1 could be easily recycled (Scheme 2b). 
Moreover, synthesis of enantiomerically enriched 5-substituted 
benzocycloheptanone (Scheme 2c) could be achieved using chiral 
1-indanone R-35a that was prepared in three steps from 
commercially available arylboronic acid 47 and α,β-unsaturated 
ester 48 via asymmetric conjugate addition16. The slight erosion 
of enantioselectivity was likely due to the unproductive C−C 
activation at the C1−C2 position, which led to reversible β-
hydrogen elimination17.

Scheme 2. Synthetic applications
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Benzocycloheptenones have been frequently used in the 
synthesis of bioactive compounds that contain seven-membered 
rings; however, the conventional approaches for preparing 
benzocycloheptenones are often inefficient18-20 (Scheme 3). Thus, 
this two-carbon homologation approach could contribute to 
shortening the syntheses of those complex pharmaceutical agents. 
F o r  e x a m p l e ,  t h e  t r i f l u o r o m e t h y l - s u b s t i t u t e d  
benzocycloheptanone (8b), prepared in a single step using this 
method, was the key intermediate in the synthesis of anti-obesity 
agent 50 (Scheme 3a). As a comparison, the prior approach 

Page 3 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



required five steps from 2-iodo-4-trifluoromethyl-aniline 5118. In 
the second case, CEP-28122 is a highly potent and selective 
inhibitor of ALK (anaplastic lymphoma kinase), showing 
promising antitumor activity in human cancers19. One key 
structural motif is the benzocycloheptene moiety, which was 
synthesized from methoxyl-substituted benzocycloheptenone 24b. 
The previous synthesis of 24b used three steps from 1-methoxy-
2,3-dimethylbenzene 52 with a 33% overall yield19. Now, 24b can 
b e  p r e p a r e d  s t r a i g h t f o r w a r d l y  v i a  t h e  “ c u t - a n d -

Scheme 3. Application Potentials in the Syntheses of 
Bioactive Molecules
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sew” process from commercially available 4-methoxy-1-indanone 
24a (Scheme 3b). The third example involves the synthesis of 
amine 53, which is a NMDA (N-methyl-D-aspartate) receptor for 
the potential treatment of various neurological disorders.20 The 
existing route prepared the key intermediate 10b in three steps 
from unsubstituted benzocycloheptenone 1b that is either very 
expensive or requires an additional two or three steps for 
preparation. In addition, the electrophilic aromatic substitution 
used in this synthetic route exhibited poor site-selectivity, leading 
to a low overall yield. Analogously, through the two-carbon 
homologation, compound 10b was made available in one-step 
from relatively inexpensive 6-chloro-1-indanone 10a (Scheme 
3c). Moreover, simple transformations of the 
benzocycloheptanone moiety could afford a range of synthetically 
useful scaffolds, and here symmetrical benzocycloheptenone 1b 
was used to avoid forming regioisomers. For instance, tetracyclic 
compound 54 was afforded in 88% yield via Fischer indole 
synthesis. Conjugated seven-membered enone 55 can be prepared 
in a good yield via ketone desaturation.21 Treatment with sodium 
azide under different conditions delivered either eight-membered 
lactam 56 (77% yield) or tetrazole-fused 6-8-5 tricycle 57 (75% 
yield), in which the structure of 57 was unambiguously confirmed 
by X-ray crystallography (Scheme 3d).

In summary, we disclose a two-carbon ring expansion method 
that inserts ethylene into relatively unstrained C−C bonds in 1-
indanones, which offers a straightforward but strategically distinct 
approach for preparing benzocycloheptenones. The reaction is 
chemoselective, scalable and redox-neutral, which could be used 
to simplify the syntheses of benzocycloheptene-derived bioactive 
compounds. Efforts on extending the reaction scope to other 
cyclic ketones and unsaturated coupling partners,22 as well as 
detailed mechanistic studies, are ongoing.
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