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Abstract: Cinnamic acids have been identified as interesting compounds with antioxidant, 

anti-inflammatory and cytotoxic properties. In the present study, simple cinnamic acids 

were synthesized by Knoevenagel condensation reactions and evaluated for the above 

biological activities. Compound 4ii proved to be the most potent LOX inhibitor. Phenyl- 

substituted acids showed better inhibitory activity against soybean LOX, and it must be 

noted that compounds 4i and 3i with higher lipophilicity values resulted less active than 

compounds 2i and 1i. The compounds have shown very good activity in different 

antioxidant assays. The antitumor properties of these derivatives have been assessed by their 

1/IC50 inhibitory values in the proliferation of HT-29, A-549, OAW-42, MDA-MB-231, 

HeLa and MRC-5 normal cell lines. The compounds presented low antitumor activity 

considering the IC50 values attained for the cell lines, with the exception of compound 4ii. 

Molecular docking studies were carried out on cinnamic acid derivative 4ii and were found 

to be in accordance with our experimental biological results. 
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Abbreviations 

AA: Arachidonic Acid; AAPH: 2,2'-azobis (2-amidinopropane) hydrochloride; ACPYPE: 

AnteChamber PYthon Parser interface; clog P: Theoretically calculated lipophilicity; COX: 

Cyclooxygenase; DPPH: 2,2-Diphenyl-1-picrylhydrazyl radical; LDL: Low-density lipoprotein; LOX: 

Lipoxygenase; NBT: Nitroblue tetrazolium; ND: Neurodegenerative diseases; NDGA: 

Nordihydroguaretic acid; •OH: Hydroxyl radical; O2
−·: Superoxide radical; ROS: Reactive oxygen 

species; RPTLC: Reverse-phase thin layer chromatography; TCA: Trichloroacetic acid. 

1. Introduction  

Cancer has become the second major cause of death in developed countries and the clinical 

prognosis remains relatively poor. During the last decade extensive research has been done in order to 

define the mechanism by which continued oxidative stress could lead to cancer and chronic inflammation. 

Although inflammation has long been recognized as a risk and causative factor for several types of 

cancer, many of the molecular and cellular mechanisms involved still remain unclear. The functional 

relationship between polyunsaturated fatty acid metabolism, inflammation, and carcinogenesis has 

been extensively examined in numerous molecular studies, revealing potential novel targets like 

arachidonic acid metabolizing enzymes, such as cyclooxygenases (COXs) and lipoxygenases  

(LOXs) [1,2]. The formation by these enzymes of various lipid peroxides and bioactive lipids, free 

radicals, and aldehydes can induce deleterious gene mutation and post-translational modifications  

of key cancer-related proteins, implicated in the regulation of cellular proliferation, apoptosis, 

differentiation, and senescence [3–5]. Especially lipoxygenase-catalyzed products may exert their 

biological effects in an intracrine manner, through the activation of transcription factors of the 

peroxisome proliferator-activated receptor/PPAR family, or may interact with specific trans-membrane 

G protein-coupled cell surface receptors in an autocrine or paracrine manner [6,7].  

High levels of ROS are able to modify essentially biological molecules, such lipids, proteins and 

DNA. It is consistent that rates of ROS production are increased in most diseases [5]. Under “oxidative 

stress” conditions, reactive oxygen species (ROS) in the form of superoxide anion, hydroxyl radical 

and hydrogen peroxide attack various biological macromolecules (proteins, enzymes, DNA, etc.) or 

indirectly may interfere with mechanisms of DNA repair [8]. Oxidative stress can activate signal 

transduction pathways, inducing changes in a variety of transcription factors (nuclear factor/NF-κB, 

activator proteion/AP-1, hypoxia-inducible factor-1α/HIF-1α, nuclear factor of activated T-cells and 

NF-E2 related factor-2/Nrf2) leading to the expression of genes, including those for growth factors, 

inflammatory cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules 

that may induce a high perturbation in the intracellular and intercellular homeostasis, genetic instability, 

proliferation, chemoresistance, radioresistance, invasion, angiogenesis, and stem cell survival [9]. 

It is of increasing interest that the treatment of the above-mentioned pathophysiological conditions 

could benefit from the use of drugs that combine the above activities. The urgency and the growing 

need for multifunction molecules designed to block multiple targets in cancer cells are well accepted. 

During the last decade, natural products bearing the cinnamoyl moiety have attached much attention 

due to their broad spectrum of biological activities and low toxicity. Additionally, trans-cinnamic acid 
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derivatives, both isolated from plant sources or synthesized, are well known for their antioxidant [10], 

antitumor [11], antimicrobial [12] and antimycobacterial properties [13]. Cinnamic acid derivatives, 

especially those combining the cinnamoyl moiety with hydroxyl groups, present strong free radical 

scavenging properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with 

such activities are reported in the literature for their health benefits [14,15]. Especially, p-coumaric 

acid or 4-hydroxy-trans-cinnamic acid presents antioxidant activity, involving direct scavenger of 

reactive oxygen species (ROS) by minimizing the oxidation of low-density lipoprotein (LDL) [16]. 

Lipophilic hexylamides and hexylesters of cinnamic and hydrocinnamic acids as well as the 

corresponding acid precursors, have been recently studied for their antioxidant profile and found to 

play important role in neurodegenerative diseases (ND) due to their ability to cross the blood-brain 

barrier [17]. Additionally, 2'-hydroxycinnamaldehyde and the analogue 2'-benzoyloxycinnamaldehyde 

induce apoptosis in cancer cells via the induction of cellular reactive oxygen species (ROS) [18]. 

Recently antitumor activities of various cinnamic acid derivatives were explored by many research 

groups [19–22]. 

In this study we have chosen to synthesize a series of substituted cinnamic acids based on the fact 

that the cinnamoyl moiety has been found in a variety of biologically active substances, as already 

mentioned. Previous studies of our group have shown that cytotoxic and antiinflammatory effects of 

antioxidant cinnamic acids are associated with their pro-oxidant effects [23–26]. The antioxidant,  

anti-inflammatory and anticancer properties of cinnamic acids are known to be influenced to a great 

extent by the substitutions of the aryl ring and the double bond. In order to enhance the anticancer and 

anti-inflammatory activity of these derivatives [25] a series of new cinnamic acids with the appropriate 

substituents have been synthesized. These series have been evaluated for their: (a) antioxidant activity 

in different assays (b) anticancer activity in different cell lines and (c) ability to inhibit  

soybean lipoxygenase. Judging the in vitro results representative derivatives are further subjected to 

modeling studies. 

2. Results and Discussion 

2.1. Chemistry 

The synthesis of cinnamic acids was accomplished by a Knoevenagel condensation reaction as 

already reported by us [24] and shown in Scheme 1. Acids of series i were derived from the 

condensation of the suitable cinnamic aldehyde or not with 3-phenylacetic acid and acetic acid 

anhydride in the presence of triethylamine, while 3-substituted-acrylic acids of series ii, were  

derived from the condensation of the suitable aldehydes with malonic acid in the presence of pyridine 

and piperidine.  

Products 1i, 1ii, 2i, 2ii were obtained in satisfactory yields (55%–77%), 4i in 33% yield and 

products 3i, 3ii and 4ii only in traces (Table 1). The pure final products were recrystallized from 

ethanol/water. IR, 1H-NMR, 13C-NMR and elemental analysis were used for the confirmation of the 

synthesized compounds structures (Table 1).  
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Scheme 1. Synthesis of cinnamic acids. 

 

Table 1. Chemical structures, physicochemical and reaction data of cinnamic acid 

derivatives 1–4. 

 

No Z Y Formula * Rf Clog P ** RM
# (±SD) Mp °C Yield% 

1i 
  

C16H11NO2 0.74 a 3.20 −0.895 (0.004) e 155–157 60 

1ii 
 

H C10H7NO2 0.48 a 1.61 −0.972 (0.032) e 258–260 67 

2i 
  

C17H13NO4 0.39 b 3.58 −0.706 (0.062) e 163–165 77 

2ii 
 

H C11H9NO4 0.52 b 2.00 −0.868 (0.019) e 170–172 55 

3i 
  

C17H14O2 0.88 b 3.84 0.987 (0.018) e 145–147 12 

3ii 
 

H C11H10O2 0.62 b 2.25 −0.893 (0.002) e 163–165 9 

4i 
  

C17H13BrO2 0.85 c 4.09 0.566 (0.001) e 135–136 33 

4ii 
 

H C11H9BrO2 0.89 d 2.51 −0.847 (0.044) e 169–171 3 

a C6H5:C2H5OH (1:1); b CH3COOCH2CH3:CHCl3:petroleum ether (2:1:1); c CHCl3, CH2Cl2:CH3COOC2H5 (2:1);  

d CH3COOCH2CH3:CHCl3:petroleum spirit (2:1:1); e CH3OH:H2O:CH3COOH, (77: 23: 0.1); * Elemental analyses for molecular formula 

(±0.4%), ** Theoretically calculated clog P values; # RM values are the average of at least 10 measurements. 

The syntheses of compounds 1ii [27], 2ii [28] and 3ii [29] have been previously reported. 

Compound 1i has been isolated in the cis- form by Chapman et al. [30] whereas no evidence for the 

stereochemistry of 3i has been given [31,32].  
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2.2. Physicochemical Studies 

Lipophilicity represents a significant physicochemical property for the absorption, distribution, 

metabolism and excretion of drugs (ADME properties). In this study the experimentally lipophilicity 

as RM values is measured by the reverse-phase thin layer chromatography (RPTLC), a reliable, fast 

and convenient method. The obtained values were compared with the corresponding log P values in  

n-octanol-buffer estimated by ClogP [33,34]. It is well known that lipophilicity plays an important role 

at the ADME properties. In the present study additionally, it influences the radical scavenging property 

(i.e., in an aqueous phase) or the chain-breaking antioxidant activity (i.e., in biological membranes). 

An attempt to correlate log P and RM values (Table 1) did not succeed. The different nature of the 

hydrophilic and lipophilic phases used in the two systems is the main reason.  

2.3. Biological Assays 

In this study a series of eight cinnamic acids were synthesized, by application of standard synthetic 

methods summarized in Scheme 1, expected to offer inhibition of LOX, protection against radical 

attack and cytotoxicity. Antioxidants acting as lipid peroxidation inhibitors could offer for health’s 

maintainance and to the compensation of risk factors [5]. Several different antioxidant protocols have 

been reported and subjected in critical review [35]. They are all available to be used in order to assess 

in vitro antioxidant ability. However, they usually give inconsistent and conflicting responses. Since 

the antioxidant capacity of a compound must be evaluated in a variety of milieus, factors such 

solubility or steric hindrance must be considered seriously. Also each assay is related to the generation 

of a different radical.  

The evaluation of the novel acids against soybean lipoxygenase LOX was accomplished by the  

UV-based enzyme assay of Pontiki and Hadjipavlou-Litina [23–25]. This assay may be used as a 

qualitative or semi-quantitative screen for such activity [36]. 

Study of LOX IC50 inhibition values demonstrates that compound 4ii is by far the most active 

inhibitor, followed by compounds 1i and 2i (Table 2). It seems that the introduction of a phenyl ring at 

position 2 favours the inhibitory activity, with the exception of compound 4ii. The rest of the 

compounds presented moderate inhibitory activity. In compounds 1i, 2i, 3i and 4i the presence of a 

conjugated double bond does not seem to offer to the activity. Thus, compound 1i is more potent than 

the conjugated acids 2i, 3i, 4i. Compounds 3i and 4i seem to be equipotent. Thus, the replacement of 

an H-atom by a Br-atom in position α does not influence lipoxygenase inhibition. On the contrary a  

p-NO2 substituent offers to the inhibition (2i > 3i). Small differences were observed between 2ii and 3ii.  

Most of the LOX inhibitors present antioxidant activity or act as free radical scavengers [37] since 

lipoxygenation occurs via a carbon centered radical. It has been found that LOX inhibition is 

correlated to the reducing ability of the inhibitors of the Fe3+ at the active site to the catalytically 

inactive Fe2+ [38,39]. Several LOX inhibitors proved to be excellent ligants for Fe3+.  

Lipophilicity is referred [23–25] to as an important physicochemical property for LOX inhibition. 

However, herein highly lipophilic compounds 4i and 3i resulted less active than compounds 1i and 2i 

(Table 2). 
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Table 2. In vitro lipoxygenase (LOX) inhibitory activity of cinnamic acid derivatives 1–4. 

Percent interaction of the cinnamic acids 1–4 with the stable radical 1,1-diphenyl-

picrylhydrazyl (DPPH). 

Compd. 
LOX a  

IC50 (μM) (±SD) b 

RA % 0.05 mM (±SD) b RA % 0.1 mM (±SD) b 

20 min 60 min 20 min 60 min 

1i 60 ± 0.4 12 ± 0.3 14 ± 0.1 28 ± 0.6 20 ± 0.8 
1ii 27% ± 0.8 (0.01 mM) 13 ± 0.3 9 ± 0.03 23 ± 0.5 21 ± 1.0 
2i 66.5 ± 1.2 10 ± 0.04 11 ± 0.02 23 ± 0.7 23 ± 0.9 
2ii 31% ± 0.7 (0.01 mM) 11 ± 0.0.2 13 ± 0.04 29 ± 1.0 24 ± 0.6 
3i 74 ± 1.7 4 ± 0.02 3 ± 0.0 5 ± 0.0 6 ± 0.04 
3ii 24% ± 0.4 (0.01 mM) 11 ± 0.06 7 ± 0.0 20 ± 0.2 16 ± 0.05 
4i 74 ± 1.8 7 ± 0.03 4 ± 0.01 8 ± 0.03 5 ± 0.0 
4ii 10 ± 0.05 17 ± 0.02 13 ± 0.05 30 ± 0.9 29 ± 0.6 

NDGA 28 ± 0.4 85 ± 1.6 83 ± 1.1 81 ± 0.8 83 ± 0.7 
a Soybean lipoxygenase inhibition expressed as IC50

 (μM); b Values are means ± SD of three or four different 

determinations. Means within each column differ significantly (p < 0.05). 

As already mentioned free radicals are highly implicated in lipoxygenase inhibition, inflammation 

and cancer. Compounds possessing these activities in combination with antioxidant activity might be 

protective against these diseases and lead to active and useful drugs, so it would be interesting to 

evaluate these new acids for their antioxidant activities in comparison to well known antioxidants, i.e., 

nordihydroguaretic acid (NDGA), Trolox and caffeic acid (Tables 2–4).  

Table 3. Radical scavenging activity of cinnamic acids derivatives 1–4 of hydroxyl (HO· %) 

and superoxide (O2
−·, %) radicals. Antioxidant activities of cinnamic acids 1–4 in ABTS+ - 

decolorization (ABTS+ %) and inhibition of linoleic acid peroxidation (AAPH) assays.  

Compd. HO (%) 0.1 mM (±SD) a
O2

−··(%)  
0.1 mM (±SD) a

ABTS+·(%)  
0.1 mM (±SD) a 

AAPH (%) 
0.1 mM (±SD) a

1i no 75 ± 1.0 26 ± 0.4 92 ± 1.2 
1ii no 50 ± 0.5 47 ± 0.8 20 ± 0.1 
2i 33 ± 0.8 no 26 ± 0.5 89 ± 0.9 
2ii no no 35 ± 0.9 29 ± 0.7 
3i 81 ± 1.9 no 26 ± 0.8 84 ± 1.4 
3ii 81 ± 1.2 no 31 ± 1.1 30 ± 1.0 
4i no no 24 ± 0.5 88 ± 1.8 
4ii 100 ± 1.8 no 26 ± 0.4 63 ± 1.1 

Trolox 73 ± 1.0 - 88 ± 1.7 63 ± 1.3 
Caffeic acid - 46 ± 0.5 - - 

Ascorbic Acid - - 96 ± 0.9 - 

No: No action under the used experimental conditions; a Values are means ± SD of three or four different 

determinations. Means within each column differ significantly (p < 0.05). 

Several assays should be used in order to assess in vitro antioxidant activity. In this way, factors 

such as solubility or steric hindrance which may be of overriding importance in one environment but 

not in another can be varied. The used methods are associated with the generation of various radicals. 
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Two types of approach have been taken under consideration: (i) the assays in which we have the 

scavenging by hydrogen- or electron donation of a preformed free radical as a marker of antioxidant 

activity as well as assays (ii) involving the presence of antioxidant system during the generation of  

the radical.  

Table 4. Anticancer activity of cinnamic acids 1–4. IC50 refers to the concentration of the 

compounds (in μM) required for 50% growth inhibition of human cancer cells of several 

types. MRC-5 refers to normal cells. 

Compd. 
IC50 

HT-29 (μM) 

IC50 

A-549 (μM) 

IC50 

OAW-42 (μM) 

IC50 

MDA-MB-231 (μM) 

IC50 

HeLa (μM) 

IC50 

MRC-5 (μM) 

1i >240 >240 >240 >240 >240 222 ± 1.3 

1ii >>240 >>240 >>240 >>240 >>240 >>240 

2i 141 ± 1.8 134 ± 1.6 160 ± 1.1 199 ± 1.9 117.5 ± 1.4 96.3 ± 1.1 

2ii >>240 >>240 >>240 >>240 240 ± 1.6 240 ± 1.0 

3i >240 >240 >240 >240 >240 >240 

3ii >>240 >>240 >>240 >>240 >>240 240 ± 1.8 

4i >240 210 ± 1.0 174 ± 1.8 250 ± 1.2 80 ± 0.9 92 ± 1.3 

4ii 54 ± 1.1 173.5 ± 1.4 63.5 ± 0.8 47.5 ± 0.7 30 ± 0.4 24 ± 0.6 

The novel acids were studied for the antioxidant activity by the use of the sTable 2,2-diphenyl-1-

picrylhydrazyl radical (DPPH) at concentrations 0.05 and 0.1 mM after 20 and 60 min (Table 2) [23–25]. 

In the DPPH assay, the dominant chemical reaction involved is the reduction of the DPPH radical by 

single electron transfer SET from the antioxidant. Phenolic compounds eg. NDGA, giving phenoxide 

anions are effective antioxidants. The compounds presented reducing abilities which ranged nearly  

29% (4ii), small differences were found among the compounds with time and concentration. It has 

been found that phenyl-substituted acids present lower activity than the corresponding non-substituted 

(2i < 2ii, 3i < 3ii, 4i < 4ii). Due to steric reasons the interaction of DPPH with the tested compounds  

is low.  

Superoxide (O2
−·) anion and hydroxyl radical (.OH) are free radical species of potential importance. 

OH reactive radical and 1O2 are responsible for cytotoxicity. During inflammation, ˙OH radicals are 

produced and are responsible for tissue damage.  

Thus we evaluated our acids for their competition with DMSO for ˙OH radicals was measured, 

hydroxyl radicals were produced by the Fe3+/ascorbic acid system and expressed as percent inhibition 

of formaldehyde formation at 0.1 mM concentration (Table 3) [23–25]. Compounds 3i, 3ii, 4ii 

presented high inhibitory activities of the oxidation of DMSO (33 mM) at 0.1 mM compared with the 

reference compound Trolox, while compound 2i showed low inhibitory activity.  

The superoxide anion radical (O2
−·) is less toxic than the hydroxyl radical, but still being one of the 

most known toxic ROS. Two different experimental assays are followed for the determination of 

superoxide anion radical scavenging activity: (i) one involves an enzymatic production of superoxide 

anions and (ii) the other is supported by a non- enzymatic procedure. Herein the test is performed at 

0.1 mM concentration, generating superoxide anion radicals by a non-enzymatically assay (Table 3). 

Compound 1i presented the highest activity, followed by compound 1ii (75% and 50%, respectively).  
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The ABTS•+ is derived from the oxidation of ABTS by potassium persulfate. It is a decolorization 

assay. The addition of electron-donating antioxidants leads to ABTS•+ reduction. The chemistry taking 

place involves the direct generation of the ABTS•+ with no involvement of an intermediary radical. 

The cation radical is formed prior to the addition of the antioxidant and does not take place continually 

in the presence of the antioxidant. All compounds presented moderate activity with the exception of 

compound 1ii (47.4%) (Table 3). For the above mentioned test the results taken do not define the role 

of lipophilicity. 

For the in vitro study of the free radical production, azo compounds generating free radicals through 

spontaneous thermal decomposition are used. The water soluble 2,2'-azobis(2-amidinopropane) 

hydrochloride (AAPH) is recommended as appropriate for measuring radical-scavenging activity  

in vitro. The activity of the peroxyl radicals produced by the action of AAPH greatly resembles to 

cellular activities such as lipid peroxidation. The phenyl substituted acids presented remarkable 

activity at 0.1 mM concentration (84%–92%) compared to the non-substituted derivatives (20%–63%). 

Compounds 1i, 2i, 3i, 4i with higher lipophilicity showed higher anti-lipid peroxidation response. 

Epidemiological studies revealed the link between reactive oxygen species, inflammation and high 

cancer risk. In order to diminish the pro-cancerous mechanisms a key treatment strategy is to reduce 

the free radical load and consequently prevent potential damage to cellular compounds such as DNA, 

proteins and lipids. Moreover, it has been found that LOX metabolism as well as arachidonic acid 

metabolites play an important role in tumor progression and survival [40] and are implicated in the 

etiology of mammary carcinogenesis [41]. Studies have demonstrated that levels of several eicosanoids 

are increased in breast cancer in comparison to benign breast tumours [42,43]. Thus, LOX inhibitors 

may have chemopreventive activity in lung carcinogenesis [44,45]. 

Thus, we conducted in vitro studies in two colon cancer cell lines (HT-29 and HCT-15) reported 

time and dose-dependent stimulation of cell proliferation by LTB4 and 12-HETE [46]. The synthesized 

acids have been tested in five different human tumour cell lines: HT-29 (colon), A-549 (lung), OAW-

42 (ovarian), MDA-MB-231 (breast), HeLa (immortal cells from cervical cancer) and MRC-5 normal 

cells. On the basis of the in vitro testing results, most of these compounds with different substitution 

patterns exhibited significant anticancer activity as depicted in Table 4.  

For the HT-29 (colon cancer) compound 4ii presented remarkable anticancer activity, followed by 

compound 2i. For the A-549 (lung) cell lines, compound 2i showed very good activity, followed by 

compounds 4ii and 4i. For the OAW-42 (ovary cancer) compounds 4ii, 2i and 4ii possessed the better 

inhibitory anticancer activity. For the MDA-MB-231 (breast) cells compound 4ii presented remarkable 

anticancer activity, followed by compounds 2i and 4ii. For the HeLa cervical cancer cells compounds 

4ii and 4i showed the higher activities, followed by compounds 2i and 2ii. For the rest of the 

compounds the derived results were not satisfactory (>240 or >>240 μM ).  

Normal lung MRC-5 cells found to be more resistant against the tested compounds (higher IC50 

values). In all the cell lines 4-bromo-5-phenylpenta-2,4-dienoic acid (4ii) presents the best  

anticancer activity. 
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2.4. Computational Studies 

2.4.1. Computational Methods, Docking Simulations 

All the molecules were constructed with the ChemDraw program [47] and converted into  

3D-Structures with the OpenBabel program [48], by using MMFF94 force field. Protein setup was 

performed using the UCSF Chimera software [49,50]. Τhe AnteChamber PYthon Parser interfacE 

(ACPYPE) tool [51] was employed to generate the topologies of the ligands. ACPYPE tool is written 

in python to use Antechamber [52,53] to generate topologies for chemical compounds was used for the 

parameterization of the ligands. Energy minimizations where carried out with the molecular simulation 

toolkit GROMACS [54] using the AMBER99SB-ILDN force field [55]. 

Docking calculations were performed with the software Autodock Vina [56]. The PyRx  

program [57] was employed to generate the docking input files and to analyze the docking results. The 

proteins were considered rigid. Performing a blind docking the protein 1RRH soybean LOX, 4ii is 

properly aligned in the binding site of LOX. The single bonds were considered as active torsional 

bonds. An exhaustiveness value of 64 was used for the docking studies with a maximum output of 100 

binding modes. The conformation results of ligands in the binding site of 1RRH are identical with the 

ones in 1IK3. The docking results, as a set of solutions, are ranked according to their scoring function 

values, defined by the 3D coordinates of its atoms and expressed as a PDB file.  

2.4.2. Molecular Docking Studies on Lipoxygenase  

The lack of structural data for human LOX, lead us to model human LOX using soybean enzyme 

because of its availability and its well characterized structure [58]. For the docking studies we selected 

4ii which presents a good combination of in vitro anti-LOX result. The possible mechanism of action, 

as well as the differences in activity toward soybean LOX compared to the other derivatives could be 

explained by docking calculations.  

For the docking studies of LOX we have used the 1RRH (soybean lipoxygenase) accessible from 

the Protein Data Bank (PDB) presenting a resolution of 2 Å [59]. We used the 1RRH from PDB with 

Fe+3 running blind docking. Two soybean LOX models were derived from 1RRH. The first one has the 

ligand taken from 1IK3 (ligand ID: 9OH) into the catalytic site while the other one for the blind 

docking simulation has no ligand. The metal center in both models has charge q = +3 with no bond 

restraint between the iron and the ligands. Lennard-Jones parameters for Fe (III) force field can be 

resumed as: σvdw = 2.138157e-01 nm, εvdw = 2.092e-1 kJ/mol. The confirmation of the docking study 

was accomplished with the crystallisation of the ligands in the protein of complex 1RRH. The results 

are in accordance with the structure of the molecules in the active site of the protein. 

The docking study was performed for all the compounds. or the visualization of the docking results 

two compounds have been selected, 4ii presenting the best anti-LOX activity and 3ii, the simplest one 

of the series, presenting the lowest activity. The docking orientations of compound 4ii are given in  

Figure 1 and of compound 3ii in Figure 2. Compound 4ii presents significant high binding energy to 

the protein (−6.8 kcal/mol) while compound 3ii presents (−6.2 kcal/mol). A number of H-bonds were 

developed. These H-bonds were observed for compound 4ii between: (a) oxygen of the carbonyl group 

with THR792 and (b) the oxygen of the hydroxyl group with SER793. For compound 3ii H-bonds 



Molecules 2014, 19 9664 

 

were developed between the oxygen of the carbonyl group with ARG535. Weak hydrophobic 

interactions were also observed, supporting an even stronger binding of the compounds to the LOX cavity.  

Comparing the G-score of the series to the in vitro results it is concluded that the docking cannot 

really predict the in vitro activity under the reported experimental conditions, however it gives an idea 

for the interactions between the compounds and the active site. 

Figure 1. Docked poses of conjugate 4ii (Magenta) in the LOX binding site. Ball and stick 

models are used to render the side-chains of relevant binding site residues. The iron ion is 

depicted as an orange sphere. 

 

Figure 2. Docked poses of conjugate 3ii (Purple) in the LOX binding site. Ball and stick 

models are used to render the side-chains of relevant binding site residues. The iron ion is 

depicted as an orange sphere. 

 

3. Experimental  

3.1. Materials and Instruments 

All chemicals, solvents, chemical and biochemical reagents were of analytical grade and purchased 

from commercial sources. Soybean lipoxygenase, linoleic acid sodium salt, arachidonic acid (AA) 

were obtained from Sigma Chemical, Co. (St. Louis, MO, USA), 1,1-diphenyl-2-picrylhydrazyl 

(DPPH), nordihydroguairetic acid (NDGA) are purchased from the Aldrich Chemical Co. (Milwaukee, 

WI, USA). 

Melting points (uncorrected) were determined on a MEL-Temp II (Lab. Devices, Holliston, MA, 

USA). UV-Vis spectra were obtained on a Perkin-Elmer 554 double beam spectrophotometer and on a 
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Hitachi U-2001 spectrophotometer. Infrared spectra (film as Nujol mulls) were recorded with  

Perkin-Elmer 597 spectrophotometer (Perkin-Elmer Corporation Ltd., Lane Beaconsfield, Bucks, 

England) and a Shimadzu FTIR-8101M. The 1H-Nucleic Magnetic Resonance (NMR) spectra were 

recorded at 300 MHz on a Bruker AM 300 spectrometer (Bruker Analytische Messtechnik GmbH, 

Rheinstetten, Germany) in CDCl3 or DMSO using tetramethylsilane as an internal standard unless 

otherwise stated. 13C-NMR spectra were obtained at 75.5 MHz on a Bruker AM 300 spectrometer  

in CDCl3 or DMSO solutions with tetramethylsilane as internal reference unless otherwise stated. 

Chemical shifts are expressed in δ (ppm) and coupling constants J in Hz. Elemental analyses for C and 

H gave values acceptably close to the theoretical values (±0.4%) in a Perkin-Elmer 240B CHN 

analyzer. Reactions were monitored by thin-layer chromatography (TLC), on aluminum cards precoated 

with 0.2 mm of silica gel and fluorescent indicator. 

3.2. Chemistry General Procedure 

3.2.1. Synthesis of Phenyl Substituted Cinnamic Acids 1i-4i [23–25] 

Title compounds were prepared by a Knoevenangel reaction, as shown in Scheme 1. according to 

literature methods [23–25]. A suitable aldehyde (0.015 mol) was condensed with phenylacetic acid 

(0.015 mol) and acrylic acid anhydride (10 mL) in the presence of triethylamine (5 mL). The reaction 

mixture was refluxed for 5 h. The solution was poured into 2 N HCl, and ice and the formed 

precipitate was collected by filtration and recrystallized from 50% aqueous ethanol. In case that no 

precipitate was formed an extraction with 3 × 100 mL CHCl3 was made and the organic phase was 

collected, dried over MgSO4 and evaporated to dryness affording a residue that was recrystallized from 

50% aqueous ethanol. 

3-(4-Cyanophenyl)-2-phenylacrylic acid (1i) [30]. 1H-NMR (CDCl3): δ, (ppm) 7.39–7.46 (m, 7H), 7.51 

(d, 1H, J = 9 Hz), 7.56 (s, 1H), 7.65 (d, 1H, J = 9 Hz) Anal. C, H, N. Calcd %: (C16H11NO2) C: 77.10, H: 

4.45, N: 5.62 Found %: C: 76.96, H: 4.39, N: 5.68. 

5-(4-Nitrophenyl)-2-phenylpenta-2,4-dienoic acid (2i). IR (Nujol) (cm−1): 3050–2940,1720, 1640  
1H-NMR (CDCl3): δ, (ppm) 6.95–7.06 (m, 1H), 7.31–7.33 (m, 2H), 7.45–7.50 (m, 7H), 7.73 (d, 1H,  

J = 9 Hz, phenyl), 8.16 (d, 1H, J = 9 Hz, Ph), 10.6 (s, 1H, COOH). 13C-NMR (CDCl3): 124.1 127.7, 

128.2, 128.4, 128.7, 128.9, 129.9, 131.4, 134.2, 136.6, 140.1, 153.6, 163.4 Anal. C, H, N. Calcd %: 

(C17H13NO4) C: 69.15, H: 4.44, N: 4.74, Found %: C: 69.2, H: 4.61, N: 4.35. 

2,5-Diphenylpenta-2,4-dienoic acid (3i) [31,32]. 1H-NMR (CDCl3): δ, (ppm) 7.33–7.41 (m, 11H), 7.82 

(d, 1H, J = 9 Hz, Ph), 7.94 (d, 1H, J = 9 Hz, Ph). Anal. C, H. Calcd %: (C17H14O2) C: 81.58, H: 5.64, 

Found %: C: 81.46, H: 5.25. 

4-Bromo-2,5-diphenylpenta-2,4-dienoic acid (4i). IR (Nujol) (cm−1): 3000–2900, 1750, 1630, 1480. 
1H-NMR (CDCl3): δ, (ppm) 7.34–7.45 (m, 7H), 7.61–7.62 (b, 1H), 7.81–7.84 (m, 2H), 7.93–7.96 (m, 2H). 
13C-NMR (CDCl3): 117.3, 126.2, 126.4, 127.8, 128.7, 128.8, 129.2, 129.9, 132.3, 133.3, 135.3, 137.2, 

165.4. Anal. C, H. Calcd %: (C17H13BrO2) C: 62.03, H: 3.98, Found %: C: 62.05, H: 3.08. 
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3.2.2. General Procedure of the Synthesis of Cinnamic Acids 1ii–4ii [23–25] 

The synthesis of the title compounds (Scheme 1) follows a Knoevenangel condensation of the 

suitable heteroarylaldehyde (0.01 mol) with malonic acid (0.01 mol) dissolved in 1.12 mL of pyridine 

and piperidine (0.01 mol). The mixture was refluxed until the emission of CO2 stopped. The reaction 

solution was poured into 2N HCl and ice and the formed precipitate was collected by filtration and 

recrystallized from water or from 3:1 water/ethanol. In the case that no precipitate was formed the 

water phase was extracted with 3 × 100 mL CHCl3 or CH2Cl2 and the organic phase was collected, 

dried over Mg2SO4, and evaporated to dryness affording a residue that was recrystallized from  

aqueous ethanol. 

3-(4-Cyanophenyl)acrylic acid (1ii) [27]. 1H-NMR (DMSO): δ, (ppm) 6.53 (d, 1H, J = 15 Hz, 

CH=CH), 7.09 (d, 1H, J = 6 Hz), 7.43 (d, 1H, J = 6 Hz), 7.57–7.61 (s, 2H), 7.66 (d, 1H, J = 15 Hz, 

CH=CH). Anal. C, H, N. Calcd %: (C10H7NO2) C: 69.36, H: 4.07, N: 8.09, Found %: C: 69.49, H: 

4.23, N: 8.00. 

5-(4-Nitrophenyl)penta-2,4-dienoic acid (2ii) [28]. 1H-NMR (DMSO): δ, (ppm) 6.09 (d, 1H, J = 12 Hz, 

CH=CH=CH=CH), 6.93–7.14 (m, 2H, CH=CH=CH=CH), 7.42 (d, 1H, J =12 Hz, CH=CH=CH=CH), 

7.66–8.21 (m, 4H, Ph). Anal. C, H, N. Calcd %: (C11H9NO4) C: 60.27, H: 4.14, N: 6.39, Found %: C: 

59.95, H: 4.53, N: 6.79. 

5-Phenylpenta-2,4-dienoic acid (3ii) [29]. 1H-NMR (CDCl3): δ, (ppm) 6.00 (d, 1H, J = 15 Hz, 

CH=CH), 6.86–6.99 (m, 1H), 732–7.40 (m, 4H), 7.47–7.50 (m, 3H). Anal. C, H. Calcd %: (C11H10O2) 

C: 75.84, H: 5.79, Found %: C: 76.08, H: 5.42. 

4-Bromo-5-phenylpenta-2,4-dienoic acid (4ii). IR (Nujol) (cm−1): 3020–2900, 1750, 1650. 1H-NMR 

(CDCl3): 7.34–7.66 (m, 4H), 7.81–7.90 (m, 2H), 7.99–8.02 (m, 2H), 9.33 (s, 1H). 13C-NMR (CDCl3): 

117.2, 118.3, 127.9, 128.1, 128.6, 136.8, 143.8, 170.4. Anal. C, H, N. Calcd %: (C11H9BrO2) C: 52.20, 

H: 3.58 Found %: C: 52.35, H: 3.62. 

3.3. Physicochemical Studies 

3.3.1. Determination of RM Values 

Reversed phase TLC (RPTLC) was studied using silica gel plates saturated with 55% (v/v) liquid 

paraffin in light petroleum ether and methanol/water mixture (77/23, v/v) containing 0.1% of acetic 

acid was used as a mobile phase. Spots were detected under UV light or by iodine vapours. RM values 

were determined by the corresponding Rf values (from ten individual measurements) using the 

equation RM = log [(1/Rf) − 1] [23–25]. 

3.3.2. Estimation of Lipophilicity as Clog P 

Bioloom of Biobyte Corp was used for the theoretical calculation of lipophilicity as Clog P values [34]. 
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3.4. Biological Experiments 

3.4.1. Experiments in vitro 

The in vitro assays were repeated at least in triplicate and the standard deviation of absorbance was 

less than 10% of the mean. 

3.4.1.1. Soybean Lipoxygenase Inhibition Study in vitro [23–25] 

In vitro inhibitory LOX assay is accomplished as described previously. The novel derivatives for 

testing (stock solutions 10 mM in DMSO) were incubated at room temperature with sodium linoleate 

(0.1 mM) and 0.2 mL of LOX enzyme solution (1/9 × 10−4 w/v in saline). The conversion of sodium 

linoleate to 13-hydroperoxylinoleic acid was measured at 234 nm and compared with the reference 

inhibitor. Several concentrations were used for the IC50 determination (Table 2).  

3.4.1.2. Interaction of the New Acrylic Acids with the Stable Radical 1,1-diphenyl-picrylhydrazyl  

(DPPH) [23–25] 

To a solution of DPPH in absolute ethanol the appropriate volume of the compounds (0.05 and  

0.1 mM final concentrations) dissolved in DMSO was added. The absorbance was recorded at 517 nm 

after 20 and 60 min at room temperature (Table 3). 

3.4.1.3. Hydroxyl Radicals Scavenging Activity [23–25] 

The hydroxyl radicals were produced by the Fe 3+/ascorbic acid system. EDTA (0.1 mM), Fe 3+ 

(167 μM), DMSO (33 mM) in phosphate buffer (50 mM, pH 7.4), the tested compounds (0.1 mM) and 

ascorbic acid (10 mM) were mixed in test tubes. The solutions were incubated at 37 °C for 30 min. 

The reaction was stopped by CCl3COOH (17% w/v) (Table 4) and the % scavenging activity of the 

tested compounds for hydroxyl radicals was given. 

3.4.1.4. Superoxide Radical Scavenging Activity [23–25] 

Superoxide radicals were produced non-enzymatically by mixing PMS, NADH and air–oxygen. 

The nitroblue tetrazolium method was used for the estimation of the produced radicals. The reaction 

mixture containing compounds (0.1 mM), 3 μM PMS, 78 μM NADH, and 25 μM NBT in 19 μM 

phosphate buffer pH 7.4 was incubated for 2 min at room temperature. The acrylic acids were 

preincubated for 2 min before adding NADH (Table 4) and the absorption was recorded at 560 nm.  

3.4.1.5. Inhibition of Linoleic Acid Peroxidation [25] 

For initiating the free radical, 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) is used. The 

final solution in the UV cuvette consisted of ten microliters of the 16 mM linoleate sodium dispersion 

0.93 mL of 0.05 M phosphate buffer, pH 7.4, thermostatted at 37 °C. 50 μL of 40 mM AAPH solution 

was added as a free radical initiator at 37 °C under air and 10 μL of the tested compounds. The 
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oxidation of linoleic acid sodium salt results a conjugated diene hydroperoxide. The reaction is 

monitored at 234 nm (Table 3).  

3.4.1.6. ABTS+-Decolorization Assay [25] 

In this assay, ethanol is used for the dilution of the ABTS+• solution. ABTS is dissolved in water to 

a 7 mM and reacts with 2.45 mM potassium phosphate to produce the ABTS radical cation (ABTS+•) 

by allowing the mixture to stand in the dark at room temperature for 12–16 h before use. Ten μL of 

diluted ABTS+• solution (734 nm) is added to 10 μL of antioxidant compounds or Trolox standards 

(final concentration 0–0.1 mM) in ethanol and the absorbance is measured at 30 °C exactly 1 min after 

the initial mixing (Table 3).  

3.4.1.7. Cytotoxic Activity 

Cell Lines and Culture Maintenance 

Human cancer cell lines used as targets were HT-29 (colon), A-549 (lung), OAW-42 (ovarian), 

MDA-MB-231 (breast), HeLa (immortal cells from cervical cancer). All cells were obtained from the 

American Type Culture Collection (ATCC). Cells were routinely grown as monolayer cell cultures in 

T-75 flasks (Costar) in an atmosphere containing 5% CO2 in air and 100% relative humidity at 37 °C 

and subcultured twice a week, restricting the total number of cell passages below 20. The culture 

medium used was Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Grand Island, NY, USA) [60] 

supplemented with 10% fetal bovine serum (Gibco), 2 mM glutamine (Sigma), 100 μg/mL streptomycin 

and 100 IU/mL penicillin.  

Trypan Blue Exclusion 

The loss of membrane integrity, as a morphological characteristic for cell death, was assayed by 

Trypan Blue exclusion [61]. The number of cells that were alive was estimated through a 

haematocytometer and phase-contrast microscopy. Each result represented the mean of four 

independent measurements and used for the inoculation of cells in the microplates.  

Cell Inoculation–Drug Exposure–SRB Cytotoxicity Assay  

Cell passages were carried out by detaching adherent, logarithmically growing cells after addition 

of 2–3 mL of a mixture of 0.05% solution of trypsin (Gibco, 1:250) in phosphate-buffered saline 

(PBS) with 0.02% EDTA and incubation for 3–5 min at 37 °C. For the experiments, cells were plated 

(100 μL containing 10,000 cells/well) in 96-well flat-bottom microplates microplates (Costar-Corning, 

Acton, MA 01720, USA) [62] so that untreated cells were in exponential growth phase at the time of 

cytotoxicity evaluation. Cells were left for 24 h at 37 °C to resume exponential growth and stabilization 

and afterwards exposed to tested agents for 48 h by the addition of an equal volume (100 μL) of either 

complete culture medium (control wells), or twice the final drug concentrations diluted in complete 

culture medium (test wells). Drug cytotoxicity was measured by means of the SRB colorimetric assay 

estimating the survival fractions (SF) as the percent of control (untreated cells) absorbance. The SRB 

assay was carried out as previously described [63] and modified by our group [64]. In brief, culture 



Molecules 2014, 19 9669 

 

medium was aspirated prior to fixation using a microplate-multiwash device (Tri-Continent Scientific, 

Inc., Grass Valley, CA, USA) and 50 μL of 10% cold (4 °C) trichloroacetic acid (TCA) were gently 

added to the wells. Microplates were left for 30 min at 4 °C, washed five times with deionized water 

and left to dry at room temperature for at least 24 h. Subsequently, 70 μL of 0.4% (w/v) 

sulforhodamine B (Sigma) in 1% acetic acid solution were added to each well and left at room 

temperature for 20 min. SRB was removed and the plates were washed five times with 1% acetic acid 

before air drying. Bound SRB was solubilized with 200 μL of 10 mM unbuffered Tris-base solution 

and plates were left on a plate shaker for at least 10 min. Absorbance was read in a 96-well plate 

reader at 492 nm subtracting the background measurement at 620 nm. The test optical density (OD) 

value was defined as the absorbance of each individual well, minus the blank value (“blank” is the 

mean optical density of the background control wells, n = 8). Mean values and the coefficient of 

variation (CV) from six replicate wells were calculated automatically. Results were expressed as the 

“survival fraction” (SF), as shown below.  

Calculation of Results 

For each tested compound a dose-effect curve was produced. Sextuplicate determinations gave a 

CV (Standard Deviation/mean %) of much less than 10%, resulting in standard error (SE) which was 

very low in all cases. The data showing inhibition of cellular growth are expressed as the fraction of 

cells that remains unaffected (fu) (survival fraction, SF), which is derived from the following equation:  

fu = ODx/ODc 

where ODx and ODc represent the test and the control optical density, respectively. Drug potency was 

expressed in terms of IC50 values (50% inhibitory concentration) calculated from the plotted dose-

effect curves (through least-square regression analysis) (Table 4). 

4. Conclusions 

The present study shows that the synthesized cinnamic acids constitute a promising class of 

antioxidant anticancer compounds. Docking studies support the in vitro anti-LOX activity indicating 

the entrance of 4ii into the cavity of LOX. Compound 4ii presented a promising anti-cancer activity, 

high LOX inhibitory activity as well as hydroxyl scavenging high and anti-LPO activities. Thus, acid 

4ii might be used as a lead compound for the design of new multifunction agents. 
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