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Synthesis of (±)-cartorimine
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Abstract—Heating pyranulose 4 and cinnamate 2 in the presence of 2,6-di-t-butylpyridine in CH3CN afforded the [5+2] cycloadduct,
which was hydrolyzed to give 13% of cartorimine (1).
� 2004 Elsevier Ltd. All rights reserved.
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Yin, He and Ye recently isolated the oxabicyclic acid
cartorimine (1) from Carthamus tinctorius L., which is
used as a traditional Chinese medicine to promote blood
circulation. The structure was established from extensive
NMR spectral data interpretation and single crystal X-
ray analysis.1 We thought that 1 could be prepared by
the [5+2] cycloaddition of methyl 4-acetoxycinnamate
(2) with oxypyrylium zwitterion 3, which could be gen-
erated in situ from pyranulose 4 (Scheme 1). This se-
quence may be related to the biosynthesis of 1 because
4-hydroxycinnamic acid is an abundant natural product
and 4 is generated by the dehydration and oxidation of
fructose.2

Hendrickson and Farina discovered that these [5+2] cyclo-
additions can be carried out by simply heating 5 and a
dipolarophile at 130–135 �C to afford up to 69% of ad-
duct 6 (Scheme 2).3 This reaction has been extensively
developed by Sammes, who found that electron rich
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Scheme 1. Retrosynthesis of cartorimine.
dipolarophiles were more reactive and that the reactions
can also be carried out using Et3N to generate the oxy-
pyrylium zwitterion at room temperature.4 Further
examples of [5+2] cycloadditions have been reported
by Heathcock and Ohmori.5–7 Sammes reported that
reaction of 5, styrene (6 equiv) and Et3N in CH2Cl2 at
25 �C afforded 65% of 6, X = endo-Ph, which lacks the
hydroxymethyl and carboxylic acid groups of cartor-
imine (1). Unfortunately, these substituents will retard
the cycloaddition of 2 and 3. The facile dimerization
of the oxypyrylium zwitterion prevents the use of
unreactive dipolarophiles so that it was not clear a
priori that the synthesis of 1 could be achieved by this
route.

5-(Acetoxymethyl)furfural (7) was reduced with NaBH4

in EtOH for 10 min at 0 �C. The solution was quenched
dropwise with HOAc and concentrated. The residue was
taken up in water and treated with bromine in MeOH to
give 80% of 8.2,8 Acetylation with Ac2O, pyridine, and
DMAP in CH2Cl2 afforded the unstable acetate 4, which
was used without purification (Scheme 3). Acetoxy ester
2 was prepared in 94% yield from 4-hydroxycinnamic
acid by esterification with methanolic HCl at reflux
and acetylation with Ac2O, pyridine, and DMAP in
CH2Cl2. Reaction of 2 and 4 with Et3N in CH2Cl2 at
25 �C or with EtN(i-Pr)2 in CH3CN at 80 �C did not
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Scheme 3. Synthesis of cartorimine.
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afford the desired cycloadduct. Thermal reaction in
CH3CN in a sealed tube at 150–175 �C was more suc-
cessful, but not completely reproducible. Eventually,
we concluded that residual pyridine from the prepara-
tion of 4 was important for the success of the reaction.
Heating a 0.2 M solution of crude 4 in CH3CN with
6 equiv of 2 and 1 equiv of 2,6-di-t-butylpyridine in a
175 �C oil bath for 14 h afforded the crude bis acetoxy
methyl ester of 1. Hydrolysis with KOH in 4:1 EtOH/
H2O at reflux for 20 h and preparative TLC afforded
16% (from 8) of a 4:1 mixture of cartorimine (1) and
the stereoisomer 9, which were separated by reverse
phase HPLC.9 A similar reaction using pyridine, instead
of 2,6-di-t-butylpyridine, afforded only 4% of a 3:1 mix-
ture of 1 and 9. The analogous cycloaddition of 4 with
trans-b-methylstyrene provided 31% (from 8) of 1010

regio- and stereospecifically, indicating that the elec-
tron-withdrawing carbomethoxy group of 2 retards the
reaction.

The spectral data of 1 are identical to those previously
reported.1 Small NOEs from the aromatic hydrogens
to the hydroxymethyl group of both 1 and 9 established
that the minor product is a stereo- rather than a regio-
isomer. The vicinal coupling constants support this
assignment. JH5,H6 = 1.5 Hz in 1 and 7.9 Hz in 9, while
JH6,H7 = 7.5 Hz in 1 and 4.3 Hz in 9. These coupling
constants are consistent with those expected from
MM2 calculations and analogous to those in the related
stereoisomeric adducts formed from oxypyrylium zwit-
terions and dimethyl fumarate.6

In conclusion, we have completed the first synthesis of
cartorimine (1) using a possibly biomimetic [5+2] cyclo-
addition to efficiently construct the fully functionalized
8-oxabicyclo[3.2.1]octenone skeleton.
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(2 C), 127.8, 116.3 (2 C), 88.7, 85.2, 65.5 (four C not
observed).
10. Data for 10: 1H NMR (CDCl3) 7.32–7.26 (m, 3), 7.14 (dd,
2, J = 7.0, 1.8), 6.70 (d, 1, J = 9.8), 6.26 (d, 1, J = 9.8), 4.46
(d, 1, J = 11.9), 4.27 (br s, 1), 4.21 (d, 1, J = 11.9), 3.00 (d, 1,
J = 6.7), 2.54 (br dq, 1, J = 6.7, 6.7), 1.36 (d, 3, J = 6.7); 13C
NMR (CDCl3) 195.8, 170.6, 151.1, 135.6, 128.9 (2 C), 128.7
(2 C), 128.3, 127.9, 88.0, 84.7, 65.3, 59.4, 43.0, 20.7, 19.6.


	Synthesis of ( plusmn )-cartorimine
	Acknowledgements
	References and notes


