Accepted Manuscript

Decarboxylative cross-couplings of 2-aminopyrimidine-5-carboxylic acids

Ngoc Son Le Pham, Jihong Lee, Hyunik Shin, Jeong-Hun Sohn

PII: S0040-4020(18)30537-4

DOI: 10.1016/j.tet.2018.05.018

Reference: TET 29525

To appear in: Tetrahedron

Received Date: 28 March 2018

Revised Date: 2 May 2018

Accepted Date: 7 May 2018

Please cite this article as: Pham NSL, Lee J, Shin H, Sohn J-H, Decarboxylative cross-couplings of 2-aminopyrimidine-5-carboxylic acids, *Tetrahedron* (2018), doi: 10.1016/j.tet.2018.05.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Decarboxylative Cross-Couplings of 2-Aminopyrimidine-5-Carboxylic Acids

Leave this area blank for abstract info.

Le Pham Noc Son,^a Jihong Lee,^a Hyunik Shin^b and Jeong-Hun Sohn^{*a} ^aDepartment of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764 Korea; ^bYonsung Fine Chemicals R&D Center, Suwon 443-380 Korea

Chillin Minth

Tetrahedron journal homepage: www.elsevier.com

Decarboxylative Cross-Couplings of 2-Aminopyrimidine-5-Carboxylic Acids

Ngoc Son Le Pham,^a Jihong Lee,^a Hyunik Shin,^b and Jeong-Hun Sohn^{*a}

^aDepartment of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764 Korea, ^bYonsung Fine Chemicals R&D Center, Suwon 443-380 Korea

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: decarboxylative coupling arylation olefination alkynylation pyrimidinecarboxylic acid

1. Introduction

As evidenced in the commercialized drugs such as the hypocholesterolemic agent rosuvastatin (Crestor)¹ and the potent anticancer drug imatinib (Gleevec),² the 2-aminopyrimidine motifs have been recognized as important privileged substructure in drug discovery area.³ (Figure 1). Its popularity could also be observed in the development candidates, particularly in the inhibition of protein kinases or receptors.⁴ Although their growing biological importance requires facile access to highly functionalized derivatives, the traditional synthetic route towards this class of compounds usually suffers from multiple steps and the limited substrate scope.⁵

Figure 1. Structures of Rosuvastatin and imatinib.

Recently, we reported the oxidative dehydrosulfurative C-N cross-coupling of 3,4-dihydropyrimidin-1*H*-2-thiones (DHPMs) with aryl- and alkylamines to produce 2-aryl(alkyl)aminopyrimidine derivatives in a single-step under a Pd/Cu catalytic system (Scheme 1).⁶ Since the well-known Biginelli three-component reaction easily produces DHPM

Decarboxylative C-C cross-couplings of 2-aminopyrimidine-5-carboxylic acids under a Pd/Agbased catalytic system opens a new platform for the introduction of diverse C5 substituents. The reaction methods proceeded efficiently with a wide range of the acids and the coupling partners of aryl iodides, alkenes, bromoalkynes, and azoles. Considering ready availability of 2aminopyrimidine-5-carboxylic acid from the oxidative dehydrosulfurative C-N cross-coupling of the 3,4-dihydropyrimidin-1*H*-2-thiones, this reaction method unambiguously pave a shortcut to densely substituted 2-aminopyrimidine derivatives with unprecedented diversity.

2018 Elsevier Ltd. All rights reserved.

substrates possessing diverse substituents at the C4 and C6 positions,⁷ this reaction method offers preparation of pyrimidine derivatives with rapid diversification of C4 and C6 substituents, and C2 amino groups. For final derivatization of the remaining C5 position, at which substituents are usually alkoxycarbonyl groups, we focused on decarboxylative C-C cross-coupling of 2-aminopyrimidine-5-carboxylic acids **2** produced by the hydrolysis of ester **I**.

Scheme 1. Decarboxylative C-C cross-couplings of 2aminopyrimidine-5-carboxylic acids

Transition metal-catalyzed decarboxylative cross-couplings have emerged as powerful tools to provide regiospecific carboncarbon bond formation for target oriented synthesis.⁸ Successful reactions of various aromatic carboxylates with a broad range of coupling partners have been achieved.^{9,10} Five-membered heteroaromatic systems, such as oxazole-, thiazole-, pyrrole-,

Tetrahedron

^{*} Corresponding author. Tel.: +82-42-821-5479; fax: +82-42-821-8896; e-mail: sohnjh@cnu.ac.kr

Tetrahedron CCEPTED MANUSCRIPT

thiopene-, and furancarboxylic acids, were also suitable for the reaction.¹¹ However, the couplings for π -deficient heteroaromatic systems are very rare, especially for highly privileged scaffolds such as pyrimidines.¹² Herein, we report the decarboxylative C-C cross-couplings of densely substituted 2-aminopyrimidine-5-carboxylic acids with aryl iodides, alkenes, and bromoalkynes as the coupling partners under a Pd/Ag-based catalytic system. Implementation of this chemistry could offer a highly efficient route for unprecedented diversification of 2-aminopyrimidines. To achieve this regiospecific cross-coupling, it is necessary to suppress the competitive protodecarboxylation reaction (Scheme 2).

Scheme 2. Decarboxylative cross-coupling and the competitive protodecarboxylation pathways of 2-aminopyrimidinecarboxylic acid and aryl halide

2. Results and Discussion

The initial studies were decarboxylative arylation with acid **2a** and PhBr in the presence of PdCl₂, CuO, and PPh₃ in N-methylpyrrolidone (NMP) at 130 °C for 12 h to produce the desired decarboxylative arylation product **3a** in 62% yield, along with the protodecarboxylative product **3a**' (25%) (Scheme 3). This result paved the way for further optimization studies.

Scheme 3. Initial result of the decarboxylative arylation of 2a

Previous work on the decarboxylative arylations of thiazoleand oxazolecarboxylic acids with aryl halides by Greaney group provided some clue to optimal conditions.^{11b} Further optimization was carried out by varying the reaction parameters including the Pd source, phosphine ligand, metal source, solvent, and temperature. We obtained the desired product **3a** in 86% yield when **2a** was reacted with PhI under the reaction conditions with PdCl₂ (5 mol%), PPh₃ (10 mol%), Ag₂CO₃ (3 equiv), and 4 Å molecular sieves in N,N-dimethylacetamide (DMA) at 155-160 °C for 16 h. We investigated the scope of the reaction under optimal reaction conditions with various acid substrates and aryl iodides (Table 1).

Table 1. Decarboxylative arylation^{*a,b*}

^{*a*}Reaction conditions; **1a**, ArI (2 equiv), $PdCl_2$ (5 mol%), PPh_3 (10 mol%), Ag_2CO_3 (3 equiv) and 4 Å MS in DMA under Ar at 155-160 °C for 16 h. ^{*b*}Isolated yields.

With respect to the aryl iodide, a range of functional groups on Ph and heteroaromatic ring were suitable for the reaction. First, we performed the reaction with aryl iodides containing electrondonating and withdrawing substituents to study the electronic effects. Both substituents resulted in the desired products with good yields. The m-methyl and p-methoxy groups afforded the desired products 3b and 3c in 79% and 72% yields, respectively. Halide groups F and Cl yielded the corresponding products 3d (86%) and 3e (90%), respectively, in high yields. Br afforded 3f in low yield, which may be attributed to a competitive sidereaction. The F group at the ortho position afforded 3g in 79% yield. Other electron-withdrawing groups, such as NO₂, CN, CHO, and CF₃ at the para position, also exhibited good yields in the production of 3h-3k. No significant steric hindrance was observed for the o-Me group in the production of 3l (80%), while very bulky 2,6-dimethyl groups afforded 3m in 33% yield. Bicyclic 1-iodonaphthalene produced the desired product 3n in

63% yield, and heterocyclic 3-fluoro-4-iodopyridine was also suitable as the reaction partner in the production of **30** in 87% yield. We also investigated the scope of the reaction with respect to the acid substrate by varying the substituents. The reaction of the acid containing a 4-fluorophenylamino group at the C2 position with iodobenzene produced **3p** in 52% yield. When the acid possessing 4-F-C₆H₅, tolyl, or methyl group at the C4 position was reacted with iodobenzene or 1-iodo-2methylbenzene, the corresponding products **3q-3u** were obtained in 61-85% yields. Acids possessing Et, *n*-Pr, and *i*-Pr groups at C6 were reacted with iodobenzene to investigate the effect of substituents at the C6 position. These substrates were also suitable for the reaction method (**3v-3x**, 64-71%).

^{*a*}Reaction conditions for olefination; **1a**, olefin (2 equiv), $Pd(OAc)_2$ (20 mol%), and Ag_2CO_3 (3 equiv), 4 Å MS and DMA under Ar at 120 °C for 16 h. ^{*b*}Reaction conditions for alkynylation; **1a**, bromoalkyne (2 equiv), $PdCl_2$ (5 mol%), $P(o-tolyl)_3$ (10 mol%), and Ag_2CO_3 (3 equiv), 4 Å MS and DMA under Ar at 160 °C for 16 h ^cIsolated yields.

Subsequently, we studied the decarboxylative Heck reaction for olefination at the C5 position of the pyrimidine ring, which could provide facile access to rosuvastatin analogues. To our knowledge, since the first report on the decarboxylative olefination with arene carboxylic acids by Myers group in 2002,^{10j} the reaction with pyrimidine substrates has not been reported yet. We performed the reaction of acid 2a with styrene in the presence of PdCl₂, PPh₃, Ag₂CO₃, and 4 Å molecular sieves in DMA at 160 °C to give the desired product 4a in 25% yield. After optimizing the reaction conditions, the desired product was obtained in 72% yield when the reaction was carried out using $Pd(OAc)_2$ with no ligand, Ag_2CO_3 , and 4 Å molecular sieves in DMA at 120 °C. In this case, more amount of the Pd catalyst (20 mol%) was needed to maximize the yield compared to the arylation reaction (5 mol%). Under optimized reaction conditions, 2a was reacted with various olefin compounds (Table 2). Styrenes possessing Me or t-Bu at the para position of the Ph ring produced 4b and 4c in 69% and 63% yields, respectively. The reaction with but-3-en-1-ylbenzene gave the non-conjugated olefin 4d as the major product, along with the conjugated olefin 4d' (6:1).¹³ The reaction with acrylates produced esters 4e and 4f in 44% and 41% yields, respectively, which was lower than the yields obtained with other olefins.

We also performed decarboxylative alkynylation.¹⁴ Initially, the terminal alkyne was selected for the reaction, but the desired alkynylated product was not produced under various reaction conditions. Among the alkyne sources for decarboxylative alkynylations, we found that bromoalkyne afforded the desired product. The reaction of acid 2a with (bromoethynyl)benzene under the conditions with PdCl₂, PPh₃, and Ag₂CO₃ in N,Ndimethylformamide (DMF) at 160 °C produced 5a in 37% yield. After optimizing the reaction conditions, the desired product was obtained in 69% yield when the reaction was performed using PdCl₂ (5 mol%), P(o-tolyl)₃ (10 mol%), Ag₂CO₃ (3.0 equiv) and 4 Å molecular sieves in DMA at 160 °C. Under these conditions, subsequent reactions were carried out with other bromoalkynes to give the corresponding decarboxylative alkynylated products. The bromoalkynes possessing ortho, meta, or para methylphenyl groups were also suitable and afforded the corresponding products 5b-5d, in 59-67% yields (Table 2). We also carried out the reaction with bromaoalkynes containing bicyclic naphthyl group to produce the desired product 5e in 53% yield. To our knowledge, the result is the first report of decarboxylative alkynylation of pyrimidine compounds.

We also investigated the decarboxylative azolation of 2aminopyrimidine-5-carboxylic acid with azole compound for efficient synthesis of biheteroaryl pyrimidine-azole compound.¹⁵ Relevant to this reaction, Glorius group established the intramolecular decarboxylative C-H activation of ortho-phenoxy benzoic acids for the synthesis of dibenzofurans.⁹¹ Crabtree and Larrosa groups reported the intermolecular cross-coupling of ortho-substituted benzoic acids with anisoles and indoles, respectively.^{9g,j} Greaney group developed decarboxylative C-H arylation reaction that features the intermolecular union of two azole heteroarenes.^{11c} Acid **1a** was reacted with benzoxazole in the presence of PdCl₂, PPh₃, Ag₂CO₃, and 4 Å molecular sieves in DMF at 120 °C to afford the desired product **6** in 56% yield. Benzothiazole was also suitable for the reaction and produce the corresponding product **7** in 60% yield.

Scheme 4. Decarboxylative azolation

3. Conclusion

We developed decarboxylative C-C cross-couplings of 2aminopyrimidine-5-carboxylic acid under a Pd/Ag-based catalytic system for facile introduction of diverse C5 substituents. The reactions proceeded efficiently with a wide range of the acids and the coupling partners of aryl iodides, alkenes, bromoalkynes, and azoles. Since the high diversity of C4 and C6 substituents, and C2 amino groups could be derived from the Biginelli reaction and our previous oxidative amination protocol, these decarboxylative couplings open a final functionalization at the C5 position to lead to densely substituted 2-aminopyrimidine derivatives, which could serve as important structures for valuable drug molecules.

4. Experimental

4.1. General information

solvents were purified before use. N.N-Common Dimethylacetamide (DMA, AcroSeal) was used as received. All reagents were reagent grade and purified where necessary. 'water' refers to distilled water. Reactions were monitored by thin layer chromatography (TLC) using Merck precoated silica gel plates. Flash column chromatography was performed over ultra pure silica gel (230-400 mesh) from Merck. Melting points were determined in opened-capillary tubes and are uncorrected. 1 H NMR and 13 C NMR spectra were recorded on a AVANCE 300 MHz or 600 MHz spectrometer using residual solvent peaks as an internal standard (CHCl₃: δ 7.24 ppm for proton and δ 77.0 ppm for carbon). Multiplicities for ¹H NMR are designated as: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, m =multiplet, br = broad. Infrared spectra (IR) were recorded on JASCO FT/IR-4100 spectrometer and are reported in reciprocal centimeter (cm⁻¹). High resolution mass spectra (HRMS) were obtained on BrukermicroTOF-Q.

4.2. General procedure for decarboxylative arylation

A flame-dried tube filled with argon was charge with 2aminopyrimidine-5-carboxylic acid **2** (0.13 mmol), PdCl₂ (5 mol %), PPh₃ (10 mol %), Ag₂CO₃ (0.39 mmol), ArI (0.26 mmol) and 4Å molecular sieves (100 mg) in DMA (2 mL). The resulting mixture was stirred at 155-160 °C for 16 h. After cooling to room temperature, the mixture was filtered through Celite pad and washed with EtOAc (25 mL). The filtrate was washed with water (5 mL x 2) and brine (5 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (*n*hexane/EtOAc = 10:1 v/v) to afford the corresponding product.

4.2.1. 4-methyl-N,5,6-triphenylpyrimidin-2-amine $(3a)^1$ (86%): Pale yellow viscous oil. 1H NMR (300 MHz, CDCl3): δ 7.64 (t, J = 13.0 Hz,2H), 7.31 – 7.25 (m, 1H), 7.24 – 7.13 (m, 7H), 7.10 – 7.05 (m, 2H), 6.99 (dd, J = 12.5, 5.8 Hz, 2H), 6.90 (dd, J = 16.3, 8.9 Hz, 1H), 2.22 (s, 3H).

4.2.2. 4-methyl-N,6-diphenyl-5-(m-tolyl)pyrimidin-2-amine (**3b**) (79%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.75, (d, J = 6.8 Hz, 2H), 7.45 (brs, 1H), 7.39 – 7.30 (m, 4H), 7.24-7.13 (m, 4H), 7.10 – 6.98 (m, 2H), 6.95 – 6.85 (m, 2H), 2.32 (s, 3H), 2.29 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.16, 164.53, 158.38, 140.23, 138.79, 138.13, 137.22, 131.35, 129.76, 129.03, 128.68, 128.41, 128.01, 127.84, 127.80, 124.56, 122.07, 118.80, 23.63, 21.55; IR (neat) 3056, 2926, 1552, 1518, 1443, 909, 737, 694 cm⁻¹; HRMS (EI, m/z) calcd for C₂₄H₂₁N₃ [M]⁺ 351.1735, found 351.1757.

4.2.3. 5-(4-methoxyphenyl)-4-methyl-N,6-diphenylpyrimidin-2amine (**3c**) (72%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, *J* = 7.9 Hz, 2H), 7.65 (brs, 1H), 7.37 – 7.29 (m, 7H), 7.15 – 7.08 (d, J = 7.3 Hz, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.72 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H), 2.29 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.87, 163.99, 160.12, 158.36, 140.26, 137.70, 131.47, 131.01, 130.76, 129.00, 128.70, 127.28, 123.94, 122.04, 118.87, 113.26, 55.32, 23.46; IR (neat) 3054, 1550, 1512, 1443, 1264, 1177, 1032, 896, 733, 704 cm⁻¹; HRMS (EI, m/z) calcd for C₂₄H₂₁N₃O [M]⁺ 367.1685, found 367.1677.

4.2.4. 5-(4-fluorophenyl)-4-methyl-N,6-diphenylpyrimidin-2amine (**3d**) (86%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 2H), 7.60 (brs, 1H), 7.45 – 7. 13 (m, 5H), 7.10 – 6.96 (m, 5H), 6.85 (t, J = 7.2 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.11, 164.99, 163.74, 160.47, 158.43, 140.00, 138.50, 133.19, 133.15, 132.43, 132.33, 129.72, 129.04, 128.86, 127.97, 123.35, 122.29, 118.95, 115.82, 115.53, 23.56; IR (neat) 3414, 3276, 3058, 2924, 2853, 1600, 1552, 1509, 1443, 1383, 1296, 1264, 1223, 1158, 1093, 1029, 895, 836, 744, 693, 663, 636 cm⁻¹; HRMS (EI, m/z) calcd for C₂₃H₁₈N₃F [M]⁺ 355.1485, found 355.1477.

4.2.5. 5-(4-chlorophenyl)-4-methyl-N,6-diphenylpyrimidin-2amine (**3e**) (90%): Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.80 – 7.66 (m, 2H), 7.51 (brs, 1H), 7.37 – 7.28 (m, 5H), 7.42 – 7.14 (m, 9H), 7.07 – 6.99 (m, 3H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.78, 165.01, 158.18, 139.76, 138.23, 135.66, 133.45, 132.11, 129.73, 129.07, 128.91, 128.07, 127.93, 123.15, 122.49, 119.06, 23.55; IR (neat) 3409, 3274, 3057, 2924, 1596, 1551, 1518, 1496, 1444, 1265, 1090, 828, 750, 693 cm⁻¹; HRMS (EI, m/z) calcd for C₂₃H₁₈N₃Cl [M]⁺ 371.1189, found 371.1167.

4.2.6. 5-(4-bromophenyl)-4-methyl-N,6-diphenylpyrimidin-2amine (**3f**) (33%): ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 7.9 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.36 – 7.29 (m, 4H), 7.29 – 7.21 (m, 3H), 7.03 (t, J = 7.3, 1H), 6.98 (d, J = 7.3 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.96, 164.81, 158.54, 139.95, 138.42, 136.39, 132.46, 131.81, 129.71, 129.07, 128.92, 128.06, 123.22, 122.33, 121.50, 118.93, 23.72; IR (neat) 3053, 2305, 1552, 1518, 1444, 1264, 896, 733, 704 cm⁻¹; HRMS (EI, m/z) calcd for C₂₃H₁₈N₃Br [M]⁺ 415.0684, found 415.0667.

4.2.7. 5-(2-fluorophenyl)-4-methyl-N,6-diphenylpyrimidin-2amine (**3g**) (79%): Yellow viscous oil. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (brs, 1H), 7.77 (d, J = 7.6 Hz, 2H), 7.40 – 7.24 (m, 8H), 7.12 – 6.95 (m, 4H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.30, 167.29, 166.04, 161.12, 159.50, 158.27, 139.66, 138.18, 132.56, 132.54, 130.04, 129.99, 129.22, 129.16, 129.04, 128.03, 124.66, 124.46, 124.43, 122.62, 119.29, 117.87, 115.94, 115.79, 22.74; IR (neat) 3059, 2925, 1554, 1520, 1445, 1384, 1255, 755, 694 cm⁻¹; HRMS (EI, m/z) calcd for C₂₃H₁₈N₃F [M]⁺ 355.1485, found 355.1473.

4.2.8. 4-methyl-5-(4-nitrophenyl)-N,6-diphenylpyrimidin-2-amine (**3h**) (70%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.46 (m, 1H), 7.39 – 7.17 (m, 9H), 7.15 – 7.11 (m, 1H), 7.06 (t, J = 7.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.38, 165.25, 158.81, 147.03, 144.83, 139.72, 137.90, 131.88, 129.65, 129.31, 129.07, 128.23, 128.18, 123.78, 122.64, 119.20, 23.38; IR (neat) 3058, 2928, 1596, 1551, 1517, 1444, 1344, 1265, 855, 750, 701 cm⁻¹; HRMS (EI, m/z) calcd for $C_{23}H_{18}N_4O_2$ [M]⁺-382.1430, \bigvee 124.22, S124.13, 107.90, 24.70; IR (neat) 3058, 2925, 1572, 1544, 1494, 1412, 1372, 1347, 1027, 768, 738, 893, 639 cm⁻ found 382.1417.

4-(4-methyl-6-phenyl-2-(phenylamino)pyrimidin-5-4.2.9. yl)benzonitrile (3i) (72%): White solid; m.p. 213-214 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 7.9 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.44 (brs, 1H), 7.35 (t, J = 8.0 Hz, 2H), 7.29 - 7.19 (m, 7H), 7.05 (t, J = 7.9 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.47, 165.03, 158.71, 142.76, 139.65, 137.97, 132.32, 131.70, 129.64, 129.23, 129.10, 128.19, 122.70, 122.61, 119.08, 118.79, 111.20, 23.66; IR (neat) 3325, 3054, 2230, 1550, 1518, 1444, 1264, 896, 837, 732, 703 cm⁻¹; HRMS (EI, m/z) calcd for C₂₄H₁₈N₄ [M]⁺ 362.1531, found 362.1547.

4.2.10. 4-(4-methyl-6-phenyl-2-(phenylamino)pyrimidin-5yl)benzaldehyde (**3j**) (82%): Colorless viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 10.01 (s, 1H), 7.81 (dd, J = 13.5, 7.1 Hz, 4H), 7.43 – 7.15 (m, 9H), 7.04 (t, J = 7.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 191.91, 166.55, 165.02, 158.69, 144.25, 139.87, 138.17, 135.20, 131.64, 129.89, 129.71, 129.11, 129.06, 128.08, 128.05, 122.47, 119.10, 23.46; IR (neat) 3054, 2305, 1702, 1553, 1519, 1444, 1264, 896, 732, 704 cm⁻¹; HRMS (EI, m/z) calcd for $C_{24}H_{19}N_3O$ [M]⁺ 365.1528, found 365.1539.

4.2.11. 4-methyl-N,6-diphenyl-5-(4-(trifluoromethyl)phenyl)pyrimidin-2-amine (3k) (86%): Pale yellow viscous oil. ¹H NMR (600 MHz, CDCl₃) δ 7.5 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.52 (brs, 1H), 7.35 (t, J = 8.1 Hz, 2H), 7.31 – 7.27 (m, 3H), 7.22 (t, J = 8.5 Hz, 4H), 7.04 (tt, J = 7.3, 1.2 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.78, 165.00, 158.66, 141.41, 139.86, 138.20, 131.24, 129.69, 129.42, 129.08, 129.07, 128.09, 125.57, 125.54, 125.52, 125.49, 123.31, 123.07, 122.46, 119.04, 23.62; IR (neat) 3406, 2925, 1549, 1320, 1160, 1067, 841, 759, 691 cm⁻¹; HRMS (EI, m/z) calcd for $C_{24}H_{18}N_3F_3$ [M]⁺ 405.1453, found 405.1457.

4.2.12. 4-methyl-N,6-diphenyl-5-(o-tolyl)pyrimidin-2-amine (31) (80%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.87 (m, 2H), 7.49 – 7.21 (m, 7H), 7.29 – 7.21 (m, 3H), 7.11 (t, J = 8.2 Hz, 1H) 7.04 (s, 1H), 2.40 (s, 3H), 2.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.69, 163.97, 161.99, 144.58, 143.92, 137.48, 136.90, 131.11, 130.44, 129.69, 128.73, 128.47, 127.06, 127.04, 126.72, 125.56, 124.01, 107.63, 24.72, 18.62; IR (neat) 3061, 2922, 1571, 1544, 1493, 1460, 1412, 1373, 1347, 767, 721, 693 cm^{-1} ; HRMS (EI, m/z) calcd for $C_{24}H_{21}N_3$ [M]⁺ 351.1735, found 351.1745.

4.2.13. 5-(2,6-dimethylphenyl)-4-methyl-N,6-diphenylpyrimidin-2-amine (3m) (33%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2H), 7.41 – 7.33 (m, 5H), 7.30 (s, 1H), 7.28 (s, 1H), 7.22 - 7.10 (m, 3H), 7.07 - 7.00 (m, 2H), 2.40 (s, 3H), 2.08 (s, 6H); ^{13}C NMR (75 MHz, CDCl₃) δ 168.71, 164.12, 161.37, 143.05, 142.25, 137.54, 137.23, 130.42, 128.73, 128.69, 128.28, 127.13, 127.07, 123.58, 123.17, 107.72, 24.72, 18.70; IR (neat) 3061, 2922, 2853, 1571, 1544, 1494, 1410, 1372, 1347, 1029, 767, 741, 692 $\rm cm^{-1};~\rm HRMS~(EI,~m/z)~calcd~for~C_{25}H_{23}N_3$ [M]⁺ 365.1892, found 365.1890.

4.2.14. 4-methyl-5-(naphthalen-1-yl)-N,6-diphenylpyrimidin-2amine (3n) (63%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.92 (t, J = 7.6 Hz, 2H), 7.86 (d, J = 8.1 Hz, 1H), 7.73 -7.68 (m, 2H), 7.57 - 7.49 (m, 2H), 7.49 - 7.42 (m, 4H), 7.38 -7.36 (m, 1H), 7.36 - 7.29 (m, 4H), 7.14 - 7.08 (m, 1H), 7.04 (s, 1H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.70, 163.96, 162.85, 145.36, 142.10, 137.44, 134.95, 131.81, 130.37, 128.66, 128.57, 128.47, 127.24, 127.03, 126.47, 126.29, 125.97, 125.55, HRMS (EI, m/z) calcd for $C_{27}H_{21}N_3$ [M]⁺ 387.1735, found 387.1737.

4.2.15. 5-(3-fluoropyridin-4-yl)-4-methyl-N,6-diphenylpyrimidin-2-amine (30) (87%): Yellow viscous oil. ¹H NMR (600 MHz, $CDCl_3$) δ 8.16 (d, J = 5.1 Hz, 1H), 7.87 (brs, 1H), 7.78 – 7.70 (d, J = 7.5 Hz, 2H), 7.41 – 7.27 (m, 6H), 7.07 (t, J = 8.5 Hz, 1H), 6.94 (dt, J = 5.1, 1.7 Hz, 1H), 6.72 (d, J = 1.7 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.96, 165.34, 164.78, 163.19, 158.48, 151.51, 147.94, 147.84, 139.32, 137.37, 129.68, 129.53, 129.11, 128.37, 123.80, 123.77, 122.97, 120.76, 120.74, 119.41, 111.78, 111.54, 23.26; IR (neat) 3281, 3059, 2927, 1602, 1552, 1518, 1444, 1405, 1295, 1247, 1189, 892, 748, 695 cm⁻¹; HRMS (EI, m/z) calcd for $C_{22}H_{17}N_4F$ [M]⁺ 356.1437, found 356.1451.

4.2.16. N-(4-fluorophenyl)-4-methyl-5,6-diphenylpyrimidin-2amine (**3p**) (52%): Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.97 (brs, 1H), 7.73 – 7.67 (dd, J = 8.5 Hz, 1.2 Hz, 2H), 7.35 - 7.27 (m, 5H), 7.24 - 7.17 (m, 3H), 7.08 - 6.99 (m, 4H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.17, 164.75, 158.39, 156.73, 138.63, 137.24, 136.22, 130.76, 130.48, 129.73, 128.78, 128.59, 127.86, 127.71, 127.33, 124.48, 120.52, 120.42, 115.68, 115.38, 23.55; IR (neat) 3416, 3275, 3058, 2925, 1554, 1505, 1413, 1218, 831, 739, 700 cm⁻¹; HRMS (EI, m/z) calcd for C₂₃H₁₈N₃F [M]⁺ 355.1485, found 355.1487.

4.2.17. 4-(4-fluorophenyl)-6-methyl-N,5-diphenylpyrimidin-2amine (**3q**) (74%): Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.99 (brs, 1H), 7.75 (d, J = 8.5 Hz, 2H), 7.36 – 7.31 (m, 6H), 7.13 – 7.07 (m, 3H), 6.89 (t, J = 8.6 Hz, 3H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.39, 163.43, 161.35, 158.49, 140.08, 137.28, 134.81, 131.84, 131.73, 130.72, 129.06, 128.74, 127.44, 124.29, 122.24, 118.88, 115.03, 114.75, 23.71; IR (neat) 3053, 2253, 1554, 1520, 1443, 1265, 905, 726 cm⁻¹; HRMS (EI, m/z) calcd for C₂₃H₁₈N₃F [M]⁺ 355.1485, found 355.1475.

4.2.18. 4-methyl-N,5-diphenyl-6-(p-tolyl)pyrimidin-2-amine (3r) (85%): Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 2H), 7.51 – 7.19 (m, 8H), 7.14 – 7.08 (m, 2H), 7.00 (d, J = 7.7 Hz, 3H), 2.29 (d, 6H); ¹³C NMR (75 MHz, CDCl₃) § 166.99, 164.52, 158.45, 140.25, 138.78, 137.61, 135.84, 130.77, 129.79, 129.01, 128.60, 128.58, 127.23, 124.27, 122.04, 118.83, 23.60, 21.40; IR (neat) 3403, 3275, 3056, 2922, 1549, 1518, 1442, 1423, 1264, 800, 746, 702 cm⁻¹; HRMS (EI, m/z) calcd for $C_{24}H_{21}N_3$ [M]⁺ 351.1735, found 351.1754.

4-methyl-N-phenyl-5-(o-tolyl)-6-(p-tolyl)pyrimidin-2-4.2.19. amine (3s) (65%): Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 8.2 Hz, 2H), 7.45 - 7.27 (m, 9H), 7.19 -7.12 (m, 1H), 7.08 (s, 1H), 2.44 (s, 3H), 2.43 (s, 3H), 2.20 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.48, 163.92, 161.95, 144.64, 144.00, 140.68, 136.93, 134.72, 131.07, 129.70, 129.46, 128.43, 127.02, 126.96, 126.65, 125.50, 123.88, 107.30, 24.74, 21.52, 18.62; IR (neat) 3404, 3276, 3060, 2922, 1570, 1547, 1518, 1490, 1442, 1412, 1360, 1264, 800, 726, 700 cm⁻¹; HRMS (EI, m/z) calcd for $C_{25}H_{23}N_3$ [M]⁺ 365.1892, found 365.1887.

4.2.20. 4,6-dimethyl-N,5-diphenylpyrimidin-2-amine (3t) (73%): Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.77 – 7.69 (m, 3H), 7.49 – 7.30 (m, 5H), 7.21 – 7.14 (m, 2H), 7.02 (t, J = 7.4 Hz, 1H), 2.20 (s, 6H); 13 C NMR (75 MHz, CDCl₃) δ 165.50, 157.84, 139.98, 137.14, 129.78, 129.00, 128.95, 127.70, 125.58, 122.28, 119.04, 23.03; IR (neat) 3277, 3056, 2925, 1565, 1520,

1441, 1261, 744, 702 cm⁻¹; HRMS (EI, m/z) calcd for $C_{18}H_{17}N_3$ [M]⁺ 275.1422, found 275.1437.

4.2.21. 4,6-dimethyl-5-phenyl-N-(p-tolyl)pyrimidin-2-amine (**3u**) (61%): Pale yellow viscous oil. ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 8.4 Hz, 2H), 7.46 – 7.35 (m, 4H), 7.17 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 2.32 (s, 3H), 2.17 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 165.43, 158.23, 137.50, 137.45, 131.68, 129.83, 129.48, 128.89, 127.58, 125.35, 119.19, 23.11, 20.93; IR (neat) 3275, 3056, 2925, 1565, 1520, 1441, 1378, 1261, 744, 702 cm⁻¹; HRMS (EI, m/z) calcd for C₁₉H₁₉N₃ [M]⁺ 289.1579, found 289.1570.

4.2.22. 4-ethyl-N,5,6-triphenylpyrimidin-2-amine (**3v**) (68%): Orange viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.74 (m, 2H), 7.41 – 7.27 (m, 8H), 7.24 – 7.15 (m, 3H), 7.13 – 7.08 (m, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 2.61 (q, *J* = 7.5 Hz, 2H), 1.23 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.45, 164.88, 158.78, 140.31, 138.87, 137.19, 130.92, 129.71, 129.01, 128.60, 128.47, 127.82, 127.25, 122.00, 118.77, 28.94, 13.01; IR (neat) 3058, 2930, 1550, 1517, 1443, 1420, 744, 700 cm⁻¹; HRMS (EI, m/z) calcd for C₂₄H₂₁N₃ [M]⁺ 351.1735, found 351.1745.

4.2.23. *N*,4,5-triphenyl-6-propylpyrimidin-2-amine (**3w**) (64%): Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.16 (m, 9H), 7.15 – 7.07 (m, 2H), 7.06 – 6.88 (m, 3H), 2.49 (td, *J* = 7.7, 2.5 Hz, 2H), 1.65 (qd, *J* = 7.5, 2.4 Hz, 2H), 0.81 (td, *J* = 7.4, 2.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.35, 164.94, 158.62, 140.26, 138.91, 137.20, 130.99, 129.70, 129.02, 128.60, 128.43, 127.81, 127.23, 124.41, 122.01, 118.74, 37.51, 22.05, 14.23; IR (neat) 3406, 3058, 2962, 2870, 1548, 1517, 1443, 1420, 743, 700 cm⁻¹; HRMS (EI, m/z) calcd for C₂₅H₂₃N₃ [M]⁺ 365.1892, found 365.1887.

4.2.24. *4-isopropyl-N,5,6-triphenylpyrimidin-2-amine* (**3x**) (71%): Pale yellow viscous oil. ¹H NMR (300 MHz, CDCl₃): δ 7.81 (d, J = 8.2 Hz, 2H), 7.43 – 7.22 (m, 7H), 7.15 – 7.08 (m, 2H), 7.03 (ddt, *J* = 8.5, 7.3, 1.2 Hz, 1H), 6.93 – 6.83 (m, 3H), 3.04 (heptet, *J* = 6.7 Hz, 1H), 1.24 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 174.78, 165.55, 158.94, 140.53, 138.72, 137.42, 137.15, 130.99, 130.15, 128.96, 128.27, 127.49, 127.07, 123.45, 121.74, 118.59, 32.05, 22.18; IR (neat) 2962, 1550, 1516, 1442, 749, 703 cm⁻¹; HRMS (EI, m/z) calcd for C₂₅H₂₃N₃ [M]⁺ 365.1892, found 365.1880.

4.3. General procedure for decarboxylative olefination

A flame-dried tube filled with argon was charge with 2aminopyrimidine-5-carboxylic acid **2** (0.13 mmol), Pd(OAc)₂ (20 mol %), Ag₂CO₃ (0.39 mmol), alkene (0.20 mmol) and 4Å molecular sieves (100 mg) in DMA (2 mL). The resulting mixture was stirred at 120 °C for 16 h. After cooling to room temperature, the mixture was filtered through Celite pad and washed with EtOAc (25 mL). The filtrate was washed with water (5 mL x 2) and brine (5 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (*n*-hexane/EtOAc = 10:1) to afford the corresponding product.

4.3.1. (*E*)-4-methyl-N,6-diphenyl-5-styrylpyrimidin-2-amine (**4a**) (72%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.77 – 7.66 (m, 4H), 7.48 (brs, 1H) 7.45 – 7.38 (m, 4H), 7.37 – 7.26 (m, 6H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 16.6 Hz, 1H), 6.53 (d, *J* = 16.6 Hz, 1H), 2.65 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.60, 165.43, 157.45, 139.99, 138.96, 137.36, 134.44, 129.82, 129.32, 129.05, 128.84, 128.32, 127.85, 126.35, 123.79, 122.22,

120.10, 118.85, 24.10; IR (neat) 3285, 3057, 2922, 2851, 1638, 1596, 1548, 1518, 1496, 1444, 1380, 1264, 1075, 1030, 968, 895, 749, 699 cm⁻¹; HRMS (EI, m/z) calcd for $C_{25}H_{21}N_3$ [M]⁺ 363.1735, found 363.1747.

4.3.2. (*E*)-4-methyl-5-(4-methylstyryl)-*N*,6-diphenylpyrimidin-2amine (**4b**) (69%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.83 – 7.70 (m, 5H), 7.49 – 7.44 (m, 3H), 7.37 (t, *J* = 7.9 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 16.6 Hz, 1H), 6.53 (d, *J* = 16.6 Hz, 1H), 2.68 (s, 3H), 2.39 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.54, 165.33, 157.39, 140.04, 138.98, 137.81, 134.60, 134.43, 129.83, 129.53, 129.26, 129.02, 128.28, 126.26, 122.72, 122.18, 120.27, 118.86, 23.97, 21.36; IR (neat) 3403, 3277, 3026, 2921, 1596, 1546, 1515, 1497, 1443, 1376, 1250, 970, 795, 751, 700 cm⁻¹; HRMS (EI, m/z) calcd for C₂₆H₂₃N₃ [M]⁺ 377.1892, found 377.1900.

4.3.3. (*E*)-5-(4-(tert-butyl)styryl)-4-methyl-N,6diphenylpyrimidin-2-amine (**4c**) (63%): Yellow viscous oil. ¹H NMR (600 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.71 – 7.68 (m, 2H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.43 (dd, *J* = 5.3, 2.0 Hz, 3H), 7.37 – 7.31 (m, 4H), 7.30 – 7.27 (m, 2H), 7.02 (td, *J* = 7.4, 1.1 Hz, 1H), 6.89 (d, *J* = 16.6 Hz, 1H), 6.51 (d, *J* = 16.6 Hz, 1H), 2.63 (s, 3H), 1.32 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 166.60, 165.32, 157.41, 151.07, 140.05, 139.04, 134.62, 134.27, 129.81, 129.25, 129.04, 128.30, 127.93, 126.11, 125.78, 123.00, 122.18, 118.85, 34.77, 31.42, 24.08; IR (neat) 3278, 3056, 2960, 2865, 1600, 1547, 1517, 1497, 1444, 1363, 1250, 970, 751, 700 cm⁻¹; HRMS (EI, m/z) calcd for C₂₉H₂₉N₃ [M]⁺ 419.2361, found 419.2349.

4.3.4. (*E*)-4-methyl-N,6-diphenyl-5-(4-phenylbut-2-en-1-yl)pyrimidin-2-amine (**4d**) (61%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (m, 3H), 7.60 – 7.48 (m, 2H), 7.47 – 7.35 (m, 4H), 7.35 – 7.22 (m, 4H), 7.15 (d, *J* = 7.3 Hz, 2H), 5.72 – 5.56 (m, 1H), 5.53 – 5.35 (m, 1H), 3.37 (d, *J* = 6.8 Hz, 2H), 3.29 (d, *J* = 4.5 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.45, 168.17, 166.66, 140.35, 140.14, 130.67, 128.92, 128.78, 128.43, 128.57, 128.39, 128.13, 126.06, 123.78, 121.74, 119.20, 118.46, 39.02, 31.17, 22.41; IR (neat) 3286, 3027, 2921, 2851, 1554, 1522, 1496, 1443, 1381, 1252, 746, 699 cm⁻¹; HRMS (EI, m/z) calcd for C₂₇H₂₅N₃ [M]⁺ 391.2048, found 391.2054.

4.3.5. (*E*)-ethyl 3-(4-methyl-6-phenyl-2-(phenylamino)pyrimidin-5-yl)acrylate (**4e**) (44%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) 7.75 – 7.68 (m, 3H), 7.64 (s, 1H), 7.57 (m, 2H), 7.49 – 7.45 (m, 3H), 7.34 (t, J = 8.4, 2H), 7.09 – 7.02 (t, J = 8.4 Hz, 1H), 5.94 (d, J = 16.3 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.64 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.53, 167.26, 166.72, 158.00, 140.17, 139.43, 138.22, 134.43, 129.86, 129.67, 129.08, 128.54, 122.80, 119.26, 117.39, 60.66, 24.52, 14.41; IR (neat) 3339, 2926, 1710, 1598, 1546, 1518, 1445, 1377, 1290, 1252, 1178, 1034, 985, 750, 701 cm⁻¹; HRMS (EI, m/z) calcd for C₂₂H₂₁N₃O₂ [M]⁺ 359.1634, found 359.1637.

4.3.6. (*E*)-tert-butyl 3-(4-methyl-6-phenyl-2-(phenylamino)pyrimidin-5-yl)acrylate (**4f**) (41%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.69 (d, J = 7.5 Hz, 2H), 7.60 – 7.54 (m, 3H), 7.48 – 7.43 (m, 4H), 7.33 (t, J = 7.4 Hz, 2H), 7.04 (t, J = 7.4, 1H), 5.88 (d, J = 16.3 Hz, 1H), 2.63 (s, 3H), 1.47 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.50, 167.21, 166.03, 157.96, 139.53, 139.10, 138.30, 129.76, 129.68, 129.08, 128.45, 124.53, 122.71, 119.19, 117.52, 80.68, 28.32, 24.67; IR (neat) 3326, 2976, 2929, 1704, 1546, 1518, 1497, 1445, 1367, 1290, 1251, 1150, 741, 700 cm⁻¹; HRMS (EI, m/z) calcd for 139.4, 138.2, 133.4, 133.1, 130.3, 130.1, 129.5, 129.1, 128.8, $C_{24}H_{25}N_3O_2$ [M]⁺ 387.1947, found 387.1936.128.4, 128.3, 126.9, 126.6, 126.3, 125.4, 122.9, 121.3, 119.4

4.4. General procedure for decarboxylative alkynylation

A flame-dried tube filled with argon was charge with 2aminopyrimidine-5-carboxylic acid **2** (0.13 mmol), PdCl₂ (5 mol %), P(*o*-tolyl)₃ (10 mol %), Ag₂CO₃ (0.39 mmol), bromoalkyne (0.26 mmol) and 4Å molecular sieves (100 mg) in DMA (2 mL). The resulting mixture was stirred at 160 °C for 16 h. After cooling to room temperature, the mixture was filtered through Celite pad and washed with EtOAc (25 mL). The filtrate was washed with water (5 mL x 2) and brine (5 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (*n*hexane/EtOAc = 10:1) to afford the corresponding product.

4.4.1. *4-methyl-N*,6-*diphenyl-5-(phenylethynyl)pyrimidin-2-amine* (**5a**) (69%): Brown viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 8.12 (m, 2H), 7.67 (dd, J = 8.6, 4.7 Hz, 2H), 7.50 – 7.49 (m, 4H), 7.47 (brs, 1H), 7.43 – 7.36 (m, 2H), 7.37 – 7.29 (m, 3H), 7.04 (t, J = 8.7 Hz, 2H), 2.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 156.9, 139.3, 137.7, 130.9, 130.2, 129.4, 129.0, 128.4, 128.3, 128.0, 123.4, 122.7, 119.2, 98.4, 85.2, 23.7; IR (neat) 3057, 2924, 1597, 1550, 1516, 1494, 1445, 754, 691 cm⁻¹; HRMS (EI, m/z) calcd for C₂₅H₁₉N₃ [M]⁺ 361.1579, found 361.1583.

4.4.2. 4-methyl-N,6-diphenyl-5-(o-tolylethynyl)pyrimidin-2-amine (**5b**) (59%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 8.12 (m, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.53 (brs, 1H), 7.51 – 7.46 (m, 3H), 7.35 (t, J = 8.5 Hz, 4H), 7.22 – 7.17 (m, 2H), 7.08 – 7.02 (m, 1H), 2.73 (s, 3H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 166.8, 157.2, 139.8, 139.6, 138.1, 131.6, 130.1, 129.7, 129.5, 129.1, 128.4, 128.1, 125.8, 123.4, 122.7, 119.3, 106.7, 97.7, 89.1, 24.2, 21.0; IR (neat) 3405, 3278, 3058, 2922, 2853, 1546, 1514, 1494, 1444, 752, 692 cm⁻¹; HRMS (EI, m/z) calcd for C₂₆H₂₁N₃ [M]⁺ 375.1735, found 375.1747.

4.4.3. 4-methyl-N,6-diphenyl-5-(m-tolylethynyl)pyrimidin-2amine (**5c**) (65%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃ δ 8.15 (dd, J = 7.9, 1.8 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.54 – 7.49 (m, 3H), 7.35 (t, J = 8.5 Hz, 3H), 7.22 (d, J = 8.5 Hz, 3H), 7.13 (d, J = 8.4 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 2.73 (s, 3H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 166.8, 156.6, 139.3, 138.5, 137.8, 130.9, 130.2, 129.4, 129.2, 128.9, 128.0, 122.7, 120.3, 119.3, 106.4, 98.7, 84.4, 23.5, 21.5; IR (neat) 3057, 2922, 2853, 1549, 1516, 1496, 1445, 783, 751, 691 cm⁻¹; HRMS (EI, m/z) calcd for C₂₆H₂₁N₃ [M]⁺ 375.1735, found 375.1740.

4.4.4. 4-methyl-N,6-diphenyl-5-(p-tolylethynyl)pyrimidin-2-amine (**5d**) (67%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) 8.15 (s, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.51 (s, 3H), 7.43 – 7.21 (m, 4H), 7.14 (d, J = 7.8 Hz, 2H), 7.09 – 6.94 (m, 1H), 2.73 (s, 3H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 166.8, 156.6, 139.3, 138.5, 137.8, 130.9, 130.2, 129.4, 129.2, 128.9, 128.0, 122.7, 120.3, 119.3, 106.4, 98.7, 84.4, 23.5, 21.5; IR (neat) 3284, 3056, 2922, 1550, 1513, 1497, 1445, 816, 753, 692 cm⁻¹; HRMS (EI, m/z) calcd for C₂₆H₂₁N₃ [M]⁺ 375. 1735, found 375.1751.

4.4.5. *4-methyl-5-(naphthalen-1-ylethynyl)-N,6diphenylpyrimidin-2-amine* (**5e**) (53%): Yellow viscous oil. ¹H NMR (600 MHz, CDCl₃) δ 8.21 – 8.12 (m, 2H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.83 (t, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 7.9 Hz, 2H), 7.63 (d, *J* = 7.1 Hz, 1H), 7.57 – 7.31 (m, 9H), 7.07 (t, *J* = 7.3 Hz, 1H), 2.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.2, 167.2, 157.1, 139.4, 138.2, 135.4, 135.1, 130.3, 130.1, 129.3, 129.1, 128.8, 128.4, 128.3, 126.9, 126.6, 126.3, 125.4, 122.9, 121.3, 119.4, 106.8, 97.1, 90.0, 24.3; IR (neat) 3411, 3054, 1548, 1515, 1445, 1264, 734, 703 cm⁻¹; HRMS (EI, m/z) calcd for $C_{29}H_{21}N_3$ [M]⁺ 411.1735, found 411.1749.

4.5. Decarboxylative azolation

A flame-dried tube filled with argon was charge with acid **2a** (0.13 mmol), $PdCl_2$ (5 mol %), PPh_3 (10 mol %), Ag_2CO_3 (0.39 mmol), benzoxazole (0.13 mmol) and 4Å molecular sieves (100 mg) in DMF (2 mL). The resulting mixture was stirred at 120 °C for 18 h. After cooling to room temperature, the mixture was filtered through Celite pad and washed with EtOAc (25 mL). The filtrate was washed with water (5 mL x 2) and brine (5 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (*n*-hexane/EtOAc = 20:1 v/v) to afford the corresponding product.

4.5.1. 5-(benzo[d]oxazol-2-yl)-4-methyl-N,6-diphenylpyrimidin-2amine (6) (56%): yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ) δ 7.76 (d, J = 7.4 Hz, 3H), 7.55 - 7.16 (m, 11H), 7.08 (t, J = 7.2 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.47, 167.31, 164.28, 159.34, 141.62, 139.18, 129.92, 129.12, 128.53, 125.44, 124.61, 123.14, 120.34, 119.61, 110.80, 23.41; IR (neat) 3275, 3059, 2927, 1548, 1521, 1445, 1250, 743, 692 cm⁻¹; HRMS (EI, m/z) calcd for C₂₄H₁₈N₄O [M]⁺ 378.1481, found 378.1487.

4.5.2. 5-(benzo[d]thiazol-2-yl)-4-methyl-N,6-diphenylpyrimidin-2-amine (7) (60%): Yellow viscous oil. ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, J = 8.2, 1H) 7.88 - 7.69 (m 3H), 7.64 - 7.44 (m, 5H), 7.41 - 7.23 (m, 5H), 7.06 (t, J = 7.4 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.54, 165.97, 165.20, 159.22, 153.28, 139.46, 137.99, 136.83, 129.66, 129.39, 129.09, 128.36, 126.26, 125.46, 123.59, 122.86, 121.67, 119.38, 117.29, 23.40; IR (neat) 3270, 3059, 2922, 1551, 1524, 1444, 758, 731, 695 cm⁻¹; HRMS (EI, m/z) calcd for C₂₄H₁₈N₄S [M]⁺ 394.1252, found 394.1265.

Acknowledgement

This work was supported by the NRF grant (NRF-2017R1A2B2003614) and the research fund of Chungnam National University.

Supplementary data

Supplementary data related with this article can be found at http://

References and notes

- 1. Watanabe M, Koike H, Ishiba T, Okada T, Seo S, Hirai K. *Bioorg. Med. Chem.* 1997;5:437–444.
- Capdeville R, Buchdunger E, Zimmermann J, Matter A. Nat. Rev. Drug. Discov. 2002;1:493–502.
- 3. a) Patchett AA, Nargund RP. *Annu. Rep. Med. Chem.* 2000;35:289–318;
 - b) Lagoja IM. Chem. Biodivers. 2005;2:1-50;
 - c) Pharmaceutical Substances: Syntheses, Patents, Applications; Kleemann A, Engels J, Eds.; Thieme: Stuttgart, Germany 2001.
- For selected references, see:

 a) Han YT, Choi GI, Son D, Kim NJ, Yun H, Lee S, Chang DJ, Hong HS, Kim H, Ha HJ, Kim YH, Park HJ, Lee J, Suh YG. J. Med. Chem. 2012;55:9120-9135;
 - b) Lagoja IM. Chem. Biodivers. 2005;2:1-50;

c) Noble EMM, Endicott JA, Johnson LN. Science. 2004;303:1800-1805; d) Saklatvala. J. Curr. Opin. Pharmacol. 2004;4:372-377; e) Cohen P. Nature Rev. Drug Discovery. 2002;1:309-315; f) Traxler P, Bold G, Buchdunger E, Caravatti G, Furet P, Manley P, O'Reilly T, Wood J, Zimmermann J. Med. Res. Rev. 2001;21:499-519. For selected examples of 2-aminopyrimidine syntheses, see: 5. a) Wei KJ, Quan Z, Zhang Z, Da Y, Wang X. Org. Biomol. Chem. 2016;14:2395-2398; b) Yang Q, Quan Z, Wu S, Du B, Wang M, Li P, Zhang Y, Wang X. Tetrahedron 2015;71:6124-6134. c) Xing T, Wei KJ, Quan ZJ, Wang XC. Synthesis 2015;47:3925-3935; d) Val C, Crespo A, Yaziji V, Coelho A, Azuaje J, Maatougui A. E, Carbajales C, Sotelo E. ACS Comb. Sci. 2013;15:370-378; e) Quan ZJ, Lv Y, Wang ZJ, Zhang Z, Da YX, Wang XC. Tetrahedron Lett. 2013;54:1884-1887; f) Singh K, Kaur H, Chibale K, Balzarini J, Little S, Bharatam P. V. Eur. J. Med. Chem. 2012;52:82-97; g) Singh K, Singh K, Wan B, Franzblau S, Chibale K, Balzarini J. Eur. J. Med. Chem. 2011;46:2290-2294; h) Wang XC, Yang GJ, Jia XD, Zhang Z, Da YX, Quan ZJ. Tetrahedron 2011;67:3267-3272; i) Wang XC, Yang GJ, Quan ZJ, Ji PY, Liang JL, Ren RG. Synlett 2010:1657-1660: j) Matloobi M, Kappe CO. J. Comb. Chem. 2007;9:275-284; k) Kang FA, Kodah J, Guan Q, Li X, Murray WV. J. Org. Chem. 2005;70:1957-1960. Phan NHT, Kim H, Shin H, Lee HS, Sohn JH. Org. Lett. 6. 2016;18:5154-5157. For selected reviews, see: 7. a) Singh K, Singh K. Adv. Heterocycl. Chem. 2012;105:223-308; b) Suresh, Sandhu JS. ARKIVOC. 2012:66-133; c) Wan JP, Liu Y, Synthesis. 2010;40:3943-3953; d) Kappe CO. Acc. Chem. Res. 2000;33:879-888. 8 For recent reviews on decarboxylative cross-couplings, see: a) Patra T, Maiti D, Chem. Eur. J. 2017;23:7382-7401; a) Dzik WI, Lange PP, Gooßen LJ, Chem. Sci. 2012;3:2671-2678: b) Cornella J, Larrosa I, Synthesis. 2012:653-676; c) Rodríguez N, Gooßen LJ, Chem. Soc. Rev. 2011;40:5030-5048: d) Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011;111:1846-1913; e) Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008:47:3100-3120.

b) Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. *Science*. 2014;345:437–440;

c) Behenna DC, Liu Y, Yurino T, Kim J, White DE, Virgil SC, Stoltz BM. *Nat. Chem.* 2012;4:130–133;

d) Bhadra S, Dzik WI, Goossen LJ. J. Am. Chem. Soc. 2012;134:9938-9941; e) Zhou J, Wu G, Zhang M, Jie X, Su W. Chem. Eur. J. 2012;18:8032-8036; f) Shang R, Yang ZW, Wang Y, Zhang SL, Liu L. J. Am. Chem. Soc. 2010;132:14391-14393; g) Cornella J, Lu P, Larrosa I. Org. Lett. 2009;11:5506-5509; h) Shang R, Fu Y, Li JB, Zhang SL, Guo QX, Liu L. J. Am. Chem. Soc. 2009;131:5738-5739; i) Wang C, Piel I, Glorius F. J. Am. Chem. Soc. 2009;131:4194-4195: j) Voutchkova A, Coplin A, Leadbeater NE, Crabtree RH. Chem. Commun. 2008;47:6312-6314; k) Becht JM, Catala C, Le Drian C, Wagner A. Org. Lett. 2007;9:1781-1783; 1) Goossen LJ, Deng G, Levy LM. Science. 2006;313:662-664. 10. For selected recent examples of decarboxylative olefinations, see: a) Qin X, Chen C, Zhang L, Xu J, Pan Y, Zhao H, Han J, Li H, Xu L. Tetrahedron. 2017;73:2242-2249; b) Agasti S, Dey A, Maiti D. Chem. Commun. 2016;52:12191-12194; c) Hossian A, Bhunia SK, Jana R. J. Org. Chem. 2016;81:2521-2533; d) Tang J, Hackenberger D, Goossen L. J. Angew. Chem. Int. Ed. 2016;55:11296-11299; e) Noble A, MacCarver SJ, MacMillan DW. J. Am. Chem. Soc. 2015;137:624-627; f) Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011;111:1846-1913; g) Hu P, Kan J, Su W, Hong M. Org. Lett. 2009;11:2341-2344; h) Tanaka D, Romeril SP, Myers AG, J. Am. Chem. Soc. 2005;127:10323-10333; i)Tanaka D, Myers AG. Org. Lett. 2004;6:433-436; j) Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc. 2002:124:11250-11251

- a) Forgione P, Brochu MC, St-Onge M, Thesen KH, Bailey MD, Bilodeau F. J. Am. Chem. Soc. 2006;128:11350-11351;
 b) Zhang F, Greaney MF. Org. Lett. 2010;12:4745-4747;
 c) Zhang F, Greaney MF. Angew. Chem. Int. Ed. 2010;49:2768-2771.
- 12. a) Wang S, Lu H, Li J, Zou D, Wu Y, Wu Y. *Tetrahedron Lett*. 2017;58:2723-2726;
 b) Jalani HB, Cai W, Lu H. *Adv. Synth. Catal.* 2017;359:2509-2513.
- 13. Hu P, Kan J, Su W, Hong M. Org. Lett. 2009;11:2341-2344.
- 14. Bi HP, Zhao L, Liang YM, Li CJ Angew. Chem. Int. Ed. 2009;48:792-795.
- 15. Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017;117:8864-8907.